Araştırma Makalesi
BibTex RIS Kaynak Göster

Estimating Wind Speed with ANFIS: A Case Study in Karaman City

Yıl 2024, , 52 - 57, 15.12.2024
https://doi.org/10.55213/kmujens.1557925

Öz

Wind energy, one of the renewable energy sources, plays an increasingly important role in our world as a clean and sustainable energy source. Since the electricity generation potential from wind energy has a variable structure, energy generation estimates to be made to minimize the adverse effects of this situation have an important place for both power plants and operators. Various estimation methods are used for wind energy sources. In this study, wind speed (m/s) is estimated using fuzzy logic, one of the 34902 data Adaptive-Network-Based Fuzzy Inference System (ANFIS) models consisting of hourly average temperature (℃), relative humidity (%), and actual pressure (hPa) parameters are taken at Karaman-17246 Meteorology Station in 2022. The Root Mean Square Error (RMSE) of the obtained results is examined, and it is seen that the method used approached the result with 0.97. Thus, the technical information is presented for researchers to determine the wind energy potential for the Karaman region in Turkiye.

Teşekkür

We would like to thank the Karaman Meteorology Station Directorate for providing us with the real data used in this study.

Kaynakça

  • Barbounis TG, Theocharis JB (2007). Locally recurrent neural networks for wind speed prediction using spatial correlation. Information Sciences, 177(24): 5775–5797.
  • Cassola F, and Burlando M (2012). Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output. Applied Energy, 99: 154–166.
  • Chiu SL (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 2(3): 267–278.
  • Doan N, Doan H, Nguyen CP, Nguyen BQ (2024). From Kyoto to Paris and beyond: A deep dive into the green shift. Renewable Energy, 228: 120675.
  • Durak M, Ozer S (2008). Rüzgar Enerjisi: Teori ve Uygulama. Enermet.
  • Findik MM (2022). Derin Ogrenme Tabanlı Hibrit Tahminleme Modeli Kullanılarak Rüzgar Hızı Tahminlemesi. Master Thesis, Tokat Gaziosmanpaşa University.
  • Grassi G, Vecchio P (2010). Wind energy prediction using a two-hidden layer neural network. Communications in Nonlinear Science and Numerical Simulation, 15(9): 2262–2266.
  • Kader O (2024). Derin Ogrenme Yontemi ile Bingol Ilinin Rüzgar Hızı Tahmini. Master Thesis, Bingöl University.
  • Kul S, Yıldız B, Tezcan SS (2022). Estimation of Core Losses in Three-Phase Dry-Type Transformers Using Adaptive-Network Based Fuzzy Inference Systems (ANFIS). Electric Power Components and Systems, 50(16–17): 1006–1013.
  • Nouhitehrani S, Caro E, Juan J (2024). Computation of prediction intervals of wind energy based on the EWMA and BOA techniques. Sustainable Energy Technologies and Assessments, 66: 103806.
  • Odeyemi C (2020). The UNFCCC, the EU, and the UNSC: A research agenda proposal for the climate security question. Advances in Climate Change Research, 11(4): 442–452.
  • Pérez-Pérez EJ, López-Estrada FR, Puig V, Valencia-Palomo G, Santos-Ruiz I (2022). Fault diagnosis in wind turbines based on ANFIS and Takagi–Sugeno interval observers. Expert Systems with Applications, 206: 117698.
  • Qureshi S, Shaikh F, Kumar L, Ali F, Awais M, Gürel AE (2023). Short-term forecasting of wind power generation using artificial intelligence. Environmental Challenges, 11: 100722.
  • Republic of Türkiye Ministry of Energy and Natural Resources (2024). https://www.enerji.gov.tr.
  • Jang J-S (1993). ANFIS : Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics, 23(3): 665-685.
  • Salman M, Long X, Wang G, Zha D (2022). Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design. Energy Policy, 168: 113128.
  • Song D, Yu M, Wang Z, Wang X (2023). Wind and wave energy prediction using an AT-BiLSTM model. Ocean Engineering, 281.
  • Takagi T, Sugeno M (1985). Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Transactions on Systems, Man and Cybernetics, 1: 116–132.
  • Tekin P (2022). Çukurova Bölgesi için Kısa Vadeli Yapay Zeka Tabanlı Rüzgar Güç Tahmini. Cukurova University Journal of the Faculty of Engineering, 37(4): 1143–1153.
  • Unes F, Kasal D, Tasar B (2019). Meterolojik Ölçüm Verilerini Kullanarak Mamdani-Bulanık Mantık Yöntemi ile Rüzgar Hızının Tahmini. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, 2(1): 97–104.
  • World Wind Energy Association (2024). https://wwindea.org.
  • WWEA Annual Report (2023). www.wwindea.org.

ANFIS ile Rüzgar Hızının Tahmini: Karaman Şehrinde Bir Vaka Çalışması

Yıl 2024, , 52 - 57, 15.12.2024
https://doi.org/10.55213/kmujens.1557925

Öz

Yenilenebilir enerji kaynaklarından biri olan rüzgar enerjisi, temiz ve sürdürülebilir bir enerji kaynağı olarak dünyamızda giderek daha önemli bir rol oynamaktadır. Rüzgar enerjisinden elektrik üretim potansiyeli değişken bir yapıya sahip olduğundan, bu durumun sebep olacağı olumsuz etkileri minimuma indirmek için yapılacak enerji üretim tahminleri hem santral hem de işletmeciler açısından önemli bir yere sahiptir. Rüzgar enerjisi kaynakları için çeşitli tahmin yöntemleri kullanılmaktadır. Bu çalışmada, 2022 yılında Karaman-17246 Meteoroloji İstasyonu'nda saatlik ortalama sıcaklık (℃), bağıl nem (%) ve gerçek basınç (hPa) parametrelerinden oluşan 34902 veriden oluşan Adaptif Ağ Tabanlı Bulanık Çıkarım Sistemi (ANFIS) modellerinden biri olan bulanık mantık kullanılarak rüzgar hızı (m/s) tahmini yapılmıştır. Elde edilen sonuçların Kök Ortalama Kare Hatası (RMSE) incelenmiş ve kullanılan yöntemin sonuca %0,97 ile yaklaştığı görülmüştür. Böylece araştırmacılara Türkiye'de Karaman bölgesi için rüzgar enerjisi potansiyelini belirlemede yardımcı olacak teknik bilgiler sunulmuştur.

Kaynakça

  • Barbounis TG, Theocharis JB (2007). Locally recurrent neural networks for wind speed prediction using spatial correlation. Information Sciences, 177(24): 5775–5797.
  • Cassola F, and Burlando M (2012). Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output. Applied Energy, 99: 154–166.
  • Chiu SL (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 2(3): 267–278.
  • Doan N, Doan H, Nguyen CP, Nguyen BQ (2024). From Kyoto to Paris and beyond: A deep dive into the green shift. Renewable Energy, 228: 120675.
  • Durak M, Ozer S (2008). Rüzgar Enerjisi: Teori ve Uygulama. Enermet.
  • Findik MM (2022). Derin Ogrenme Tabanlı Hibrit Tahminleme Modeli Kullanılarak Rüzgar Hızı Tahminlemesi. Master Thesis, Tokat Gaziosmanpaşa University.
  • Grassi G, Vecchio P (2010). Wind energy prediction using a two-hidden layer neural network. Communications in Nonlinear Science and Numerical Simulation, 15(9): 2262–2266.
  • Kader O (2024). Derin Ogrenme Yontemi ile Bingol Ilinin Rüzgar Hızı Tahmini. Master Thesis, Bingöl University.
  • Kul S, Yıldız B, Tezcan SS (2022). Estimation of Core Losses in Three-Phase Dry-Type Transformers Using Adaptive-Network Based Fuzzy Inference Systems (ANFIS). Electric Power Components and Systems, 50(16–17): 1006–1013.
  • Nouhitehrani S, Caro E, Juan J (2024). Computation of prediction intervals of wind energy based on the EWMA and BOA techniques. Sustainable Energy Technologies and Assessments, 66: 103806.
  • Odeyemi C (2020). The UNFCCC, the EU, and the UNSC: A research agenda proposal for the climate security question. Advances in Climate Change Research, 11(4): 442–452.
  • Pérez-Pérez EJ, López-Estrada FR, Puig V, Valencia-Palomo G, Santos-Ruiz I (2022). Fault diagnosis in wind turbines based on ANFIS and Takagi–Sugeno interval observers. Expert Systems with Applications, 206: 117698.
  • Qureshi S, Shaikh F, Kumar L, Ali F, Awais M, Gürel AE (2023). Short-term forecasting of wind power generation using artificial intelligence. Environmental Challenges, 11: 100722.
  • Republic of Türkiye Ministry of Energy and Natural Resources (2024). https://www.enerji.gov.tr.
  • Jang J-S (1993). ANFIS : Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics, 23(3): 665-685.
  • Salman M, Long X, Wang G, Zha D (2022). Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design. Energy Policy, 168: 113128.
  • Song D, Yu M, Wang Z, Wang X (2023). Wind and wave energy prediction using an AT-BiLSTM model. Ocean Engineering, 281.
  • Takagi T, Sugeno M (1985). Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Transactions on Systems, Man and Cybernetics, 1: 116–132.
  • Tekin P (2022). Çukurova Bölgesi için Kısa Vadeli Yapay Zeka Tabanlı Rüzgar Güç Tahmini. Cukurova University Journal of the Faculty of Engineering, 37(4): 1143–1153.
  • Unes F, Kasal D, Tasar B (2019). Meterolojik Ölçüm Verilerini Kullanarak Mamdani-Bulanık Mantık Yöntemi ile Rüzgar Hızının Tahmini. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, 2(1): 97–104.
  • World Wind Energy Association (2024). https://wwindea.org.
  • WWEA Annual Report (2023). www.wwindea.org.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Selim Gulhan 0009-0003-5808-1579

Seda Kul 0000-0001-8278-4723

Selami Balcı 0000-0002-3922-4824

Seyit Alperen Çeltek 0000-0002-7097-2521

Erken Görünüm Tarihi 9 Aralık 2024
Yayımlanma Tarihi 15 Aralık 2024
Gönderilme Tarihi 30 Eylül 2024
Kabul Tarihi 19 Kasım 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Gulhan, S., Kul, S., Balcı, S., Çeltek, S. A. (2024). Estimating Wind Speed with ANFIS: A Case Study in Karaman City. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, 6(2), 52-57. https://doi.org/10.55213/kmujens.1557925
AMA Gulhan S, Kul S, Balcı S, Çeltek SA. Estimating Wind Speed with ANFIS: A Case Study in Karaman City. KMUJENS. Aralık 2024;6(2):52-57. doi:10.55213/kmujens.1557925
Chicago Gulhan, Selim, Seda Kul, Selami Balcı, ve Seyit Alperen Çeltek. “Estimating Wind Speed With ANFIS: A Case Study in Karaman City”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi 6, sy. 2 (Aralık 2024): 52-57. https://doi.org/10.55213/kmujens.1557925.
EndNote Gulhan S, Kul S, Balcı S, Çeltek SA (01 Aralık 2024) Estimating Wind Speed with ANFIS: A Case Study in Karaman City. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 6 2 52–57.
IEEE S. Gulhan, S. Kul, S. Balcı, ve S. A. Çeltek, “Estimating Wind Speed with ANFIS: A Case Study in Karaman City”, KMUJENS, c. 6, sy. 2, ss. 52–57, 2024, doi: 10.55213/kmujens.1557925.
ISNAD Gulhan, Selim vd. “Estimating Wind Speed With ANFIS: A Case Study in Karaman City”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 6/2 (Aralık 2024), 52-57. https://doi.org/10.55213/kmujens.1557925.
JAMA Gulhan S, Kul S, Balcı S, Çeltek SA. Estimating Wind Speed with ANFIS: A Case Study in Karaman City. KMUJENS. 2024;6:52–57.
MLA Gulhan, Selim vd. “Estimating Wind Speed With ANFIS: A Case Study in Karaman City”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, c. 6, sy. 2, 2024, ss. 52-57, doi:10.55213/kmujens.1557925.
Vancouver Gulhan S, Kul S, Balcı S, Çeltek SA. Estimating Wind Speed with ANFIS: A Case Study in Karaman City. KMUJENS. 2024;6(2):52-7.

KMUJENS’nde yayınlanan makaleler Creative Commons Atıf-Gayriticari 4.0 Uluslararası Lisansı (CC BY-NC) ile lisanslanmıştır. İçeriğin ticari amaçlı kullanımı yasaktır. Dergide yer alan makaleler, yazarına ve orijinal kaynağa atıfta bulunulduğu sürece kullanılabilir.