WAS IMMUNOGLOBULINS EFFECTIVE IN DISEASE SEVERITY AND LENGTH OF HOSPITAL STAY IN CHILDREN WITH THE INFECTION OF SARS-COV-2 ?
Yıl 2023,
Cilt: 24 Sayı: 3, 322 - 326, 13.07.2023
Hatice Uygun
,
Sibel Yavuz
,
Nurettin Erdem
,
Saniye Başak Oktay
,
Mehmet Turğut
Öz
OBJECTIVE: We investigated whether immunoglobulin levels on admission are associated with disease severity, time to negativization of SARS-CoV-2 RT-PCR test, and length of hospital stay in children with severe illness requiring hospitalization.
MATERIAL AND METHODS: Forty-four pediatric patients hospitalized and treated for COVID-19 were included. The patients were divided into two groups as those with mild-to-moderate (n=35) and those with severe disease (n=9) for ease of evaluation. The relationship of immunoglobulin levels with disease severity, time to SARS-CoV-2 RT-PCR test negativization and length of hospital stay was examined.
RESULTS: The study population had a median (min-max) age of 13 (1-18) years and consisted of 25 (56.8%) girls and 19 (43.2%) boys. IgG levels were normal in 89.2% (n=33) and elevated in 5.7% (n=2) of the children with mild-to-moderate disease. Among patients with severe disease, IgG levels were normal in 44.4% (n=4) and elevated in 55.6% (n=5). A significant difference was found between the groups in terms of IgG levels (p=0.002). When the relationship of IgG level with length of hospital stay and time to SARS-CoV-2 RT-PCR test negativization was investigated, no significant correlation was observed between time to SARS-CoV-2 RT-PCR test negativization and Ig G level (p=0.096, z=1.667). However, the length of hospital stay was significantly longer in patients with elevated IgG levels (p=0.096, p=0.002).
CONCLUSIONS: Higher-than-normal endogenous IgG levels may be independently associated with the development of severe illness and prolonged hospital stay in children hospitalized for COVID-19.
Kaynakça
-
1. Panda PK, Sharawat IK, Natarajan V, et al. COVID-19 treatment in children: A systematic review and meta-analysis. J Family Med Prim Care. 2021;10(9):3292-3302.
-
2. Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell. 2021;184(7):1671-1692.
-
3. Odales J, Guzman Valle J, Martínez-Cortés F, et al. Immunogenic properties of immunoglobulin superfamily members within complex biological networks. Cell Immunol. 2020;358:104235.
-
4. Marcos-Jiménez A, Sánchez-Alonso S, Alcaraz-Serna A, et al. Deregulated cellular circuits driving immunoglobulins and complement consumption associate with the severity of COVID-19 patients. Eur J Immunol.
2021;51(3):634-647.
-
5. Lotfi R, Kalmarzi RN, Roghani SA. A review on the immune responses against novel emerging coronavirus (SARS-CoV-2). Immunol Res. 2021;69(3):213-224.
-
6. Husain-Syed F, Vadász I, Wilhelm J, et al. Immunoglobulin deficiency as an indicator of disease severity in patients with COVID-19. Am J Physiol Lung Cell Mol Physiol. 2021;320(4):590-599.
-
7. Valentini P, Sodero G, Buonsenso D. The Relationship between COVID-19 and Innate Immunity in Children: A Review. Children (Basel). 2021;8(4):266.
-
8. Zhao Y, Nie HX, Hu K, et al. Abnormal immunity of non-survivors with COVID-19: predictors for mortality. Infect Dis Poverty. 2020;9(1):108.
-
9. Republic of Turkey Ministry of Health General Directorate of Public Health Covid-19 (SARS-CoV-2 Infection) Scientific Committee Study Pediatric Patient Management and Treatment Guide. January 2022, Ankara.
Accessed February 25, 2022.
-
10. Stanley, F. Reference intervals for laboratory tests and procedures. Nelson textbook of pediatrics. 20th ed. Philadelphia: Elsevier. 2015: 3465-72.
-
11. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720.
-
12. Qin C, Zhou L, Hu Z, et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-768.
-
13. Hasan Ali O, Bomze D, Risch L, et al. Severe Coronavirus Disease 2019 (COVID-19) is Associated With Elevated Serum Immunoglobulin (Ig) A and Antiphospholipid IgA Antibodies Clin Infect Dis. 2021;73(9):2869-74.
-
14. Shields AM, Burns SO, Savic S, et al. UK PIN COVID-19 Consortium. COVID-19 in patients with primary and secondary immunodeficiency: The United Kingdom experience. J Allergy Clin Immunol. 2021;147(3):870-
875.
-
15. Fletcher-Sandersjöö A, Bellander BM. Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review. Thromb Res. 2020;194:36-41.
-
16. Ni L, Ye F, Cheng ML, et al. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity. 2020;52(6):971-977.
-
17. Maecker HT. Immune profiling of COVID-19: preliminary findings and implications for the pandemic. J Immunother Cancer. 2021;9(5):e002550.
-
18. Gustine JN, Jones D. Immunopathology of Hyperinflammation in COVID-19. Am J Pathol. 2021;191(1):4-17.
ÇOCUKLARDA SARS-COV-2 ENFEKSİYONUNDA İMMÜNOGLOBULİNLER HASTALIK ŞİDDETİ VE HASTANEDE YATIŞ SÜRESİNE ETKİLİ MİYDİ ?
Yıl 2023,
Cilt: 24 Sayı: 3, 322 - 326, 13.07.2023
Hatice Uygun
,
Sibel Yavuz
,
Nurettin Erdem
,
Saniye Başak Oktay
,
Mehmet Turğut
Öz
AMAÇ: Hastaneye yatış gerektiren ciddi hastalığı olan çocuklarda başvuru sırasındaki immünoglobulin düzeylerinin hastalık şiddeti, SARS-CoV-2 RT-PCR testinin negatifleşmesine kadar geçen süre ve hastanede kalış süresi ile ilişkili olup olmadığını araştırdık.
GEREÇ VE YÖNTEM: Hastaneye yatırılan ve COVID-19 tedavisi gören kırk dört pediatrik hasta dahil edildi. Hastalar değerlendirme kolaylığı açısından hafif-orta (n=35) ve ağır hastalığı olanlar (n=9) olarak iki gruba ayrıldı. İmmünoglobulin düzeylerinin hastalık şiddeti, SARS-CoV-2 RT-PCR testi negatifleşmesine kadar geçen süre ve hastanede kalış süresi ile ilişkisi incelendi.
BULGULAR: Çalışma popülasyonunun ortanca (min-maks) yaşı 13 (1-18) olup, 25'i (%56,8) kız ve 19'u (%43,2) erkekten oluşmaktadır. Hafif-orta hastalığı olan çocukların %89.2'sinde (n=33) IgG seviyeleri normaldi ve %5.7'sinde (n=2) yükselmişti. Ağır hastalığı olan hastaların %44.4'ünde (n=4) IgG seviyeleri normaldi ve %55.6'sında (n=5) yükselmişti. IgG düzeyleri açısından gruplar arasında anlamlı fark bulundu (p=0,002). IgG düzeyinin hastanede kalış süresi ve SARS-CoV-2 RT-PCR testi negatifleşmesine kadar geçen süre ile ilişkisi incelendiğinde, SARS-CoV-2 RT-PCR test negatifleşmesine kadar geçen süre ile Ig G düzeyi arasında anlamlı bir ilişki gözlenmedi ( p=0.096, z=1.667). Ancak Ig G düzeyi yüksek olan hastalarda hastanede kalış süresi anlamlı olarak daha uzundu (p=0.096, p=0.002).
SONUÇ: Normalden yüksek endojen IgG seviyeleri, COVID-19 nedeniyle hastaneye yatırılan çocuklarda ciddi hastalık gelişimi ve uzun süreli hastanede kalış süresi ile bağımsız olarak ilişkili olabilir.
Kaynakça
-
1. Panda PK, Sharawat IK, Natarajan V, et al. COVID-19 treatment in children: A systematic review and meta-analysis. J Family Med Prim Care. 2021;10(9):3292-3302.
-
2. Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell. 2021;184(7):1671-1692.
-
3. Odales J, Guzman Valle J, Martínez-Cortés F, et al. Immunogenic properties of immunoglobulin superfamily members within complex biological networks. Cell Immunol. 2020;358:104235.
-
4. Marcos-Jiménez A, Sánchez-Alonso S, Alcaraz-Serna A, et al. Deregulated cellular circuits driving immunoglobulins and complement consumption associate with the severity of COVID-19 patients. Eur J Immunol.
2021;51(3):634-647.
-
5. Lotfi R, Kalmarzi RN, Roghani SA. A review on the immune responses against novel emerging coronavirus (SARS-CoV-2). Immunol Res. 2021;69(3):213-224.
-
6. Husain-Syed F, Vadász I, Wilhelm J, et al. Immunoglobulin deficiency as an indicator of disease severity in patients with COVID-19. Am J Physiol Lung Cell Mol Physiol. 2021;320(4):590-599.
-
7. Valentini P, Sodero G, Buonsenso D. The Relationship between COVID-19 and Innate Immunity in Children: A Review. Children (Basel). 2021;8(4):266.
-
8. Zhao Y, Nie HX, Hu K, et al. Abnormal immunity of non-survivors with COVID-19: predictors for mortality. Infect Dis Poverty. 2020;9(1):108.
-
9. Republic of Turkey Ministry of Health General Directorate of Public Health Covid-19 (SARS-CoV-2 Infection) Scientific Committee Study Pediatric Patient Management and Treatment Guide. January 2022, Ankara.
Accessed February 25, 2022.
-
10. Stanley, F. Reference intervals for laboratory tests and procedures. Nelson textbook of pediatrics. 20th ed. Philadelphia: Elsevier. 2015: 3465-72.
-
11. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720.
-
12. Qin C, Zhou L, Hu Z, et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-768.
-
13. Hasan Ali O, Bomze D, Risch L, et al. Severe Coronavirus Disease 2019 (COVID-19) is Associated With Elevated Serum Immunoglobulin (Ig) A and Antiphospholipid IgA Antibodies Clin Infect Dis. 2021;73(9):2869-74.
-
14. Shields AM, Burns SO, Savic S, et al. UK PIN COVID-19 Consortium. COVID-19 in patients with primary and secondary immunodeficiency: The United Kingdom experience. J Allergy Clin Immunol. 2021;147(3):870-
875.
-
15. Fletcher-Sandersjöö A, Bellander BM. Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review. Thromb Res. 2020;194:36-41.
-
16. Ni L, Ye F, Cheng ML, et al. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity. 2020;52(6):971-977.
-
17. Maecker HT. Immune profiling of COVID-19: preliminary findings and implications for the pandemic. J Immunother Cancer. 2021;9(5):e002550.
-
18. Gustine JN, Jones D. Immunopathology of Hyperinflammation in COVID-19. Am J Pathol. 2021;191(1):4-17.