Araştırma Makalesi
BibTex RIS Kaynak Göster

FEMUR KIRIK MODELLERİNDE İKİLİ VE ÜÇLÜ TİTANYUM ELASTİK ÇİVİ UYGULAMALARININ BİYOMEKANİK OLARAK KARŞILAŞTIRILMASI

Yıl 2019, Cilt: 20 Sayı: 3, 109 - 114, 22.07.2019
https://doi.org/10.18229/kocatepetip.595043

Öz

AMAÇ: Bu çalışmanın amacı, pediatrik femur cisim transvers ve parçalı kırık modellerinde iki adet retrograt titanyum elastik çivi (TEÇ) uygulaması ile iki adet retrograt bir adet anterograt TEÇ uygulamasının, sentetik kemik modeller üzerinde vertikal ve rotasyonel kuvvetlere karşı biyomekanik stabilitelerinin araştırılmasıdır.
GEREÇ VE YÖNTEM: 24 adet sentetik femur modelinde oluşturulan transvers ve parçalı kırık paternleri ikili (retrograt) ve üçlü (iki adet retrograt bir adet anterograt) TEÇ ile fiske edildi. Oluşturulan fiksasyon modelleri rotasyonel ve vertikal kuvvetlere maruz bırakılarak stabiliteleri biyomekanik açıdan incelendi.
BULGULAR: Transvers kırığın üçlü TEÇ ile fiske edildiği modellerde 10 derecelik açı değişimine neden olan rotasyonel kuvvet ortalama 4.92N iken, ikili TEÇ uygulanan modellerde ortalama 1.86N olarak bulunmuştur (p=0.002). Parçalı kırıkların fiske edildiği üçlü ve ikili TEÇ modellerinde 10 derecelik değişim için gerekli rotasyonel kuvvetler sırasıyla 3.43N ve 1.77N bulunmuştur (p=0.002). İkili TEÇ uygulanan transvers kırık oluşturulmuş modellerde kırık hattında 5mm deplasman oluşturan ortalama kuvvet 103.6N olarak bulunmuşken, üçlü TEÇ’te bu kuvvetler ortalama 135.7N’dur (p=0.238). Parçalı kırık modellerinde 10 derecelik açılanma oluşturan vertikal kuvvetler ikili ve üçlü TEÇ uygulanan modellerde sırasıyla 83.8N ve 86.1N olarak tespit edilmiştir (p=0.87).
SONUÇ: Rotasyonel kuvvetler açısından transvers ve parçalı kırıklarda üçlü TEÇ modelinin daha stabil fiksasyon sağladığı bulunmuşken, vertikal kuvvetlere karşı meydana gelen açılanma ve deplasman miktarı açısından ikili ve üçlü TEÇ arasında anlamlı fark bulunamamıştır. Pediatrik femur kırıklarında ince ama sayıca fazla ve anterograt uygulama ile retrograd uygulamanın kombine edildiği TEÇ uygulanmasıyla daha stabil fiksasyon sağlanabileceği sonucuna ulaşılmıştır. Pediatrik femurlarda ince ama sayıca fazla ve anterograt uygulama ile retrograd uygulamanın kombine edildiği TEÇ uygulanmasıyla daha stabil fiksasyon sağlanabileceği sonucuna ulaşılmıştır.

Kaynakça

  • 1. Biçimoğlu A, Çelebi L. Çocuk Femur Cisim Kırıkları. TOTBİD Dergisi 2006;5(2):34-43.
  • 2. Flynn JM, Schwend RM. Management of pediatric femoral shaft fractures. J Am Acad Orthop Surg 2004;12:347-359.
  • 3. Imam MA, Negida AS, Elgebaly A, et al. Titanium Elastic Nails Versus Spica Cast in Pediatric Femoral Shaft Fractures: A Systematic Review and Meta-analysis of 1012 Patients. Arch Bone Jt Surg. 2018;6(3):176-188.
  • 4. Mohamed A, Rajeev AS. Clinical outcomes and complications of titanium versus stainless steel elastic nail in management of paediatric femoral fractures-a systematic review. Eur J Orthop Surg Traumatol. 2017;27(2):157-167.
  • 5. Buckley SL. Current trends in the treatment of femoral shaft fractures in children and adolescents. Clin Orthop Relat Res. 1997;(338):60-73.
  • 6. Gwyn DT, Olney BW, Dart BR, et al. Rotational control of various pediatric femur fractures stabilized with titanium elastic intramedullary nails. J Pediatr Orthop. 2004;24(2):172-7.
  • 7. Heinrich SD, Drvaric DM, Darr K, et al. The operative stabilization of pediatric diaphyseal femur fractures with flexible intramedullary nails: a prospective analysis. J Pediatr Orthop. 1994;14(4):501-7. 114
  • 8. Hinton RY, Lincoln A, Crockett MM, et al. Fractures of the femoral shaft in children. Incidence, mechanisms, and sociodemographic risk factors. J Bone Joint Surg Am. 1999;81(4):500-9.
  • 9. Mazda K, Khairouni A, Penneçot GF, et al Closed flexible intramedullary nailing of the femoral shaft fractures in children. J Pediatr Orthop B. 1997;6(3):198-202.
  • 10. Hughes BF, Sponseller PD, Thompson JD. Pediatric femur fractures: effects of spica cast treatment on family and community. J Pediatr Orthop. 1995;15(4):457-60.
  • 11. Ligier JN, Metaizeau JP, Prévot J, et al. Elastic stable intramedullary nailing of femoral shaft fractures in children. J Bone Joint Surg Br. 1988;70(1):74-7.
  • 12. Vrsansky P, Bourdelat D, Al Faour A. Flexible stable intramedullary pinning technique in the treatment of pediatric fractures. J Pediatr Orthop. 2000;20(1):23-7.
  • 13. Huber RI, Keller HW, Huber PM, et al. Flexible intramedullary nailing as fracture treatment in children. J Pediatr Orthop. 1996;16(5):602-5.
  • 14. Flynn JM, Luedtke LM, Ganley TJ, et al. Comparison of titanium elastic nails with traction and a spica cast to treat femoral fractures in children. J Bone Joint Surg Am. 2004;86-A(4):770-7.
  • 15. Mann DC, Weddington J, Davenport K. Closed Ender nailing of femoral shaft fractures in adolescents. J Pediatr Orthop. 1986;6(6):651-5.
  • 16. Fricka KB, Mahar AT, Lee SS, et al. Biomechanical analysis of antegrade and retrograde flexible intramedullary nail fixation of pediatric femoral fractures using a synthetic bone model. J Pediatr Orthop. 2004;24(2):167-71.
  • 17. Mehlman CT, Nemeth NM, Glos DL. Antegrade versus retrograde titanium elastic nail fixation of pediatric distal-third femoral-shaft fractures: a mechanical study. J Orthop Trauma. 2006;20(9):608-12.
  • 18. Kiely N. Mechanical properties of different combinations of flexible nails in a model of a pediatric femoral fracture. J Pediatr Orthop. 2002;22(4):424-7.
  • 19. Mani US, Sabatino CT, Sabharwal S, et al. Biomechanical comparison of flexible stainless steel and titanium nails with external fixation using a femur fracture model. J Pediatr Orthop. 2006;26(2):182-7.
  • 20. Lee SS, Mahar AT, Newton PO. Ender nail fixation of pediatric femur fractures: a biomechanical analysis. J Pediatr Orthop. 2001;21(4):442-5.
  • 21. Green JK, Werner FW, Dhawan R, et al. A biomechanical study on flexible intramedullary nails used to treat pediatric femoral fractures. J Orthop Res. 2005;23(6):1315-20.
  • 22. Heiner AD, Brown TD. Structural properties of a new design of composite replicate femurs and tibias. J Biomech. 2001;34(6):773-81.
  • 23. Cristofolini L, Viceconti M, Cappello A, et al. Mechanical validation of whole bone composite femur models. J Biomech. 1996;29(4):525-35

BIOMECHANICAL COMPARISON OF DOUBLE AND TRIPLE TITANIUM ELASTIC NAIL FIXATION IN FEMUR FRACTURE MODELS

Yıl 2019, Cilt: 20 Sayı: 3, 109 - 114, 22.07.2019
https://doi.org/10.18229/kocatepetip.595043

Öz

OBJECTIVE: The aim of this study is to investigate biomechanical stability of vertical and rotational forces on two retrograde titanium elastic nail (TEN) and three (two retrograde and one anterograde) TEN applications in pediatric femur diaphysis transverse and communited fracture models.

MATERIAL AND METHODS: The transverse and fragmented fracture patterns formed in 24 synthetic femur models were fixed with double and triple TEN. The fixation models were subjected to rotational and vertical forces and their stability was examined biomechanically.

RESULTS: While the mean rotational forces that leads to 10 degree angulation of the transverse fracture pattern fixed with triple TEN models was 4.92N, it was 1.86N in the double TEN models (p=0.002). The rotational forces required for the 10-degree angulation in the communited fracture models fixed with triple and double TEN were found to be 3.43N and 1.77N, respectively (p = 0.002). The mean rotational forces that leads 5-mm displacement at the fracture site in transverse fracture patterns fixed with double TEN was 103.6N, on the other hand these mean forces was 135.7N in the triple TEN models. In communited fracture models, the vertical forces results in 10 degree angulation were found to be 83.8N and 86.1N, respectively, in the double and triple TEN models (p=0.87).

CONCLUSIONS: Although it was found that triple TEN models provided more stable fixation in transvers and communited fracture in terms of rotational forces, there was no significant difference between them in terms of the amount of displacement and angulation occurred against vertical forces. It was concluded that a more stable fixation could be achieved in pediatric femur fractures by applying smaller in size but multiple TEN combined anterograde and retrograde technique.


Kaynakça

  • 1. Biçimoğlu A, Çelebi L. Çocuk Femur Cisim Kırıkları. TOTBİD Dergisi 2006;5(2):34-43.
  • 2. Flynn JM, Schwend RM. Management of pediatric femoral shaft fractures. J Am Acad Orthop Surg 2004;12:347-359.
  • 3. Imam MA, Negida AS, Elgebaly A, et al. Titanium Elastic Nails Versus Spica Cast in Pediatric Femoral Shaft Fractures: A Systematic Review and Meta-analysis of 1012 Patients. Arch Bone Jt Surg. 2018;6(3):176-188.
  • 4. Mohamed A, Rajeev AS. Clinical outcomes and complications of titanium versus stainless steel elastic nail in management of paediatric femoral fractures-a systematic review. Eur J Orthop Surg Traumatol. 2017;27(2):157-167.
  • 5. Buckley SL. Current trends in the treatment of femoral shaft fractures in children and adolescents. Clin Orthop Relat Res. 1997;(338):60-73.
  • 6. Gwyn DT, Olney BW, Dart BR, et al. Rotational control of various pediatric femur fractures stabilized with titanium elastic intramedullary nails. J Pediatr Orthop. 2004;24(2):172-7.
  • 7. Heinrich SD, Drvaric DM, Darr K, et al. The operative stabilization of pediatric diaphyseal femur fractures with flexible intramedullary nails: a prospective analysis. J Pediatr Orthop. 1994;14(4):501-7. 114
  • 8. Hinton RY, Lincoln A, Crockett MM, et al. Fractures of the femoral shaft in children. Incidence, mechanisms, and sociodemographic risk factors. J Bone Joint Surg Am. 1999;81(4):500-9.
  • 9. Mazda K, Khairouni A, Penneçot GF, et al Closed flexible intramedullary nailing of the femoral shaft fractures in children. J Pediatr Orthop B. 1997;6(3):198-202.
  • 10. Hughes BF, Sponseller PD, Thompson JD. Pediatric femur fractures: effects of spica cast treatment on family and community. J Pediatr Orthop. 1995;15(4):457-60.
  • 11. Ligier JN, Metaizeau JP, Prévot J, et al. Elastic stable intramedullary nailing of femoral shaft fractures in children. J Bone Joint Surg Br. 1988;70(1):74-7.
  • 12. Vrsansky P, Bourdelat D, Al Faour A. Flexible stable intramedullary pinning technique in the treatment of pediatric fractures. J Pediatr Orthop. 2000;20(1):23-7.
  • 13. Huber RI, Keller HW, Huber PM, et al. Flexible intramedullary nailing as fracture treatment in children. J Pediatr Orthop. 1996;16(5):602-5.
  • 14. Flynn JM, Luedtke LM, Ganley TJ, et al. Comparison of titanium elastic nails with traction and a spica cast to treat femoral fractures in children. J Bone Joint Surg Am. 2004;86-A(4):770-7.
  • 15. Mann DC, Weddington J, Davenport K. Closed Ender nailing of femoral shaft fractures in adolescents. J Pediatr Orthop. 1986;6(6):651-5.
  • 16. Fricka KB, Mahar AT, Lee SS, et al. Biomechanical analysis of antegrade and retrograde flexible intramedullary nail fixation of pediatric femoral fractures using a synthetic bone model. J Pediatr Orthop. 2004;24(2):167-71.
  • 17. Mehlman CT, Nemeth NM, Glos DL. Antegrade versus retrograde titanium elastic nail fixation of pediatric distal-third femoral-shaft fractures: a mechanical study. J Orthop Trauma. 2006;20(9):608-12.
  • 18. Kiely N. Mechanical properties of different combinations of flexible nails in a model of a pediatric femoral fracture. J Pediatr Orthop. 2002;22(4):424-7.
  • 19. Mani US, Sabatino CT, Sabharwal S, et al. Biomechanical comparison of flexible stainless steel and titanium nails with external fixation using a femur fracture model. J Pediatr Orthop. 2006;26(2):182-7.
  • 20. Lee SS, Mahar AT, Newton PO. Ender nail fixation of pediatric femur fractures: a biomechanical analysis. J Pediatr Orthop. 2001;21(4):442-5.
  • 21. Green JK, Werner FW, Dhawan R, et al. A biomechanical study on flexible intramedullary nails used to treat pediatric femoral fractures. J Orthop Res. 2005;23(6):1315-20.
  • 22. Heiner AD, Brown TD. Structural properties of a new design of composite replicate femurs and tibias. J Biomech. 2001;34(6):773-81.
  • 23. Cristofolini L, Viceconti M, Cappello A, et al. Mechanical validation of whole bone composite femur models. J Biomech. 1996;29(4):525-35
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler-Araştırma Yazıları
Yazarlar

Ahmet Çulcu

Yayımlanma Tarihi 22 Temmuz 2019
Kabul Tarihi 2 Kasım 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 20 Sayı: 3

Kaynak Göster

APA Çulcu, A. (2019). FEMUR KIRIK MODELLERİNDE İKİLİ VE ÜÇLÜ TİTANYUM ELASTİK ÇİVİ UYGULAMALARININ BİYOMEKANİK OLARAK KARŞILAŞTIRILMASI. Kocatepe Tıp Dergisi, 20(3), 109-114. https://doi.org/10.18229/kocatepetip.595043
AMA Çulcu A. FEMUR KIRIK MODELLERİNDE İKİLİ VE ÜÇLÜ TİTANYUM ELASTİK ÇİVİ UYGULAMALARININ BİYOMEKANİK OLARAK KARŞILAŞTIRILMASI. KTD. Temmuz 2019;20(3):109-114. doi:10.18229/kocatepetip.595043
Chicago Çulcu, Ahmet. “FEMUR KIRIK MODELLERİNDE İKİLİ VE ÜÇLÜ TİTANYUM ELASTİK ÇİVİ UYGULAMALARININ BİYOMEKANİK OLARAK KARŞILAŞTIRILMASI”. Kocatepe Tıp Dergisi 20, sy. 3 (Temmuz 2019): 109-14. https://doi.org/10.18229/kocatepetip.595043.
EndNote Çulcu A (01 Temmuz 2019) FEMUR KIRIK MODELLERİNDE İKİLİ VE ÜÇLÜ TİTANYUM ELASTİK ÇİVİ UYGULAMALARININ BİYOMEKANİK OLARAK KARŞILAŞTIRILMASI. Kocatepe Tıp Dergisi 20 3 109–114.
IEEE A. Çulcu, “FEMUR KIRIK MODELLERİNDE İKİLİ VE ÜÇLÜ TİTANYUM ELASTİK ÇİVİ UYGULAMALARININ BİYOMEKANİK OLARAK KARŞILAŞTIRILMASI”, KTD, c. 20, sy. 3, ss. 109–114, 2019, doi: 10.18229/kocatepetip.595043.
ISNAD Çulcu, Ahmet. “FEMUR KIRIK MODELLERİNDE İKİLİ VE ÜÇLÜ TİTANYUM ELASTİK ÇİVİ UYGULAMALARININ BİYOMEKANİK OLARAK KARŞILAŞTIRILMASI”. Kocatepe Tıp Dergisi 20/3 (Temmuz 2019), 109-114. https://doi.org/10.18229/kocatepetip.595043.
JAMA Çulcu A. FEMUR KIRIK MODELLERİNDE İKİLİ VE ÜÇLÜ TİTANYUM ELASTİK ÇİVİ UYGULAMALARININ BİYOMEKANİK OLARAK KARŞILAŞTIRILMASI. KTD. 2019;20:109–114.
MLA Çulcu, Ahmet. “FEMUR KIRIK MODELLERİNDE İKİLİ VE ÜÇLÜ TİTANYUM ELASTİK ÇİVİ UYGULAMALARININ BİYOMEKANİK OLARAK KARŞILAŞTIRILMASI”. Kocatepe Tıp Dergisi, c. 20, sy. 3, 2019, ss. 109-14, doi:10.18229/kocatepetip.595043.
Vancouver Çulcu A. FEMUR KIRIK MODELLERİNDE İKİLİ VE ÜÇLÜ TİTANYUM ELASTİK ÇİVİ UYGULAMALARININ BİYOMEKANİK OLARAK KARŞILAŞTIRILMASI. KTD. 2019;20(3):109-14.

88x31.png
Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.