Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF THE RELATIONSHIP OF DL-PHENYLALANINE AND DL-ALANINE WİTH THE HEDGEHOG PATHWAY IN THE PROSTATE CANCER CELL LINE (PC-3)

Yıl 2024, Cilt: 25 Sayı: 4, 496 - 501, 21.10.2024
https://doi.org/10.18229/kocatepetip.1410508

Öz

OBJECTIVE: In this study, it was aimed to investigate the effect of DL-Phenylalanine and DL-Alanine on the Hedgehog signaling pathway on the PC-3 prostate cancer cell line.
MATERIAL AND METHODS: The effects of DL-Phenylalanine and DL-Alanine on cell viability in PC-3 cancer cells were determined by the MTT method. The IC50 value determined for DL-Phenylalanine was applied to PC-3 and HEK-293 cells. Total RNA isolation and cDNA synthesis were performed. Gene expression of key genes related to the Hedgehog pathway (SHH, PTCH, SMO, GLI-1) was determined by qPCR (Quantitative PCR).
RESULTS: DL-Alanine showed no cytotoxic effect on PC-3 cells. DL-Phenylalanine decreased cell viability in a time- and dose-dependent manner. The IC50 value for DL-Phenylalanine was determined to be 500 μg/mL at 48 hours. After DL-Phenylalanine application in PC-3 cells, down-regulation in the expression of all genes was detected, while up-regulation was detected in HEK-293 cells (p<0.05).
CONCLUSIONS: DL-Phenylalanine inhibited the Hedgehog pathway in prostate cancer cells. This inhibition was not observed in the control group HEK-293 cells. While DL-Phenylalanine may be a therapeutic candidate for the treatment of prostate cancer, DL-Alanine was not found to have such an effect.

Kaynakça

  • 1. Bergengren O, Pekala KR, Matsoukas K, et al. 2022 Update on Prostate Cancer Epidemiology and Risk Factors-A Systematic Review. Eur Urol. 2023;84(2):191-206.
  • 2. Gandaglia G, Leni R, Bray F, et al. Epidemiology and Prevention of Prostate Cancer. Eur Urol Oncol. 2021;4(6):877-92.
  • 3. Şahin H, Cetinkaya M, Deliktaş H Prostat Kanserinde; Üriner, Serum ve Doku Biyomarkerlerinde Yeni Gelişmeler Nelerdir?. Üroonkoloji Bülteni. 2017;16(3):95-100.
  • 4. Buhmeida A, Pyrhönen S, Laato M, Collan Y. Prognostic factors in prostate cancer. Diagn Pathol. 2006;1(4):1- 15.
  • 5. O'Malley DE, Raspin K, Melton PE, Burdon KP, Dickinson JL, FitzGerald LM. Acquired copy number variation in prostate tumours: a review of common somatic copy number alterations, how they are formed and their clinical utility. Br J Cancer. 2024;130(3):347-57.
  • 6. Konishi N, Cho M, Yamamoto K, Hiasa Y. Genetic changes in prostate cancer. Pathol Int. 1997;47(11):735-47.
  • 7. Ertunç O, Burçin T. Prostat Kanseri Moleküler Patogenezi. Med J SDU, 2022;29(4):697-706.
  • 8. Salaritabar A, Berindan-Neagoe I, Darvish B, et al. Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacol Res. 2019;141:466-80.
  • 9. Jain R, Dubey SK, Singhvi G. The Hedgehog pathway and its inhibitors: Emerging therapeutic approaches for basal cell carcinoma. Drug Discov Today. 2022;27(4):1176-83.
  • 10. Skoda AM, Simovic D, Karin V, et al. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci. 2018;18(1):8-20.
  • 11. Deshpande I, Liang J, Hedeen D, et al. Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature. 2019;571(7764):284-88.
  • 12. Carpenter RL, Ray H. Safety and Tolerability of Sonic Hedgehog Pathway Inhibitors in Cancer. Drug Saf. 2019;42(2):263-79.
  • 13. Wierbowski BM, Petrov K, Aravena L, et al. Hedgehog Pathway Activation Requires Coreceptor-Catalyzed, Lipid-Dependent Relay of the Sonic Hedgehog Ligand. Dev Cell. 2020;55(4):450-67.
  • 14. Sheng T, Li C, Zhang X, et al. Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer. 2004;3(1):1-13.
  • 15. Fedorov, I. A., Yu N. Zhuravlev, and Yu A. Klishin. "Ab initio study of the effect of pressure on structural and electronic properties of crystalline DL-alanine." Russian Physics J. 2016; 59(3):466-68.
  • 16. Saikia J, Devi TG, Karlo T. Synthesis, spectroscopic, and molecular interaction study of lead (II) complex of DL-alanine using experimental techniques and quantum chemical calculations. J Mol Struct. 2023;1283(1):1- 19.
  • 17. Harper, Alfred E. "Phenylalanine metabolism." Aspartame. CRC Press, 2020;77-109.
  • 18. Kahraman AB, Çıkı K, Yıldız Y, et al. COVID-19 pandemisinin hiperfenilalaninemi taraması başvurularına etkileri. Cocuk Sagligi ve Hastaliklari Dergisi. 2022;65(1):8-13.
  • 19. Zhao Q, Xu T, Li M, et al. Synthesis of six phenylalanine derivatives and their cell toxicity effect on human colon cancer cell line HT-29. Lett Drug Des Discov. 2015;12(6):466-70.
  • 20. Meng Y, Wu J. One-Step and Facile Synthesis of Poly(phenylalanine) as a Robust Drug Carrier for Enhanced Cancer Therapy. ACS Appl Mater Interfaces. 2021;13(42):49658-70.
  • 21. Duran T, Tuncer Z. Investigation of Cytotoxic and Apoptotic Effects of Styrax Liquidus Obtained From Liquidambar orientalis Miller (Hamamelidaceae) on HEp-2 Cancer Cell with Caspase Pathway. Eurasian J Med. 2023;55(3):185-91.
  • 22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402-8.
  • 23. Krejbich P, Birringer M. The Self-Administered Use of Complementary and Alternative Medicine (CAM) Supplements and Antioxidants in Cancer Therapy and the Critical Role of Nrf-2-A Systematic Review. Antioxidants. 2022;11(11):2149.
  • 24. Rébé C, Ghiringhelli F. Cytotoxic effects of chemotherapy on cancer and immune cells: how can it be modulated to generate novel therapeutic strategies?. Future Oncol. 2015;11(19):2645-54.
  • 25. Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet. 2010;376(9750):1417-27.
  • 26. Zishen W, Ziqi G, Zhenhuan Y. Synthesis, characterization and anticancer activity of L-alanine Schiff base complexes of copper (II), zinc (II), nickel (II) and cobalt (II). Inorganic and Nano-Metal Chemistry. 1990;20(3):335-44.
  • 27. Sagunthala P, Veeravazhuthi V, Yasotha P, et al. Growth, characterısatıon, antımıcrobıal and antıcancer actıvıtıes of l alanıne added nıckel sulphate crystals. World J Pharm Res. 2016;5(8):414-20.
  • 28. Pandurangan M, Enkhtaivan G, Mistry B, et al. β-Alanine intercede metabolic recovery for amelioration of human cervical and renal tumors. Amino Acids. 2017;49(8):1373-80.
  • 29. Sousa CM, Biancur DE, Wang X, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 2016;536(7617):479-83.
  • 30. Ron-Harel N, Ghergurovich JM, Notarangelo G, et al. T Cell Activation Depends on Extracellular Alanine. Cell Rep. 2019;28(12):3011-21.
  • 31. Caiola E, Colombo M, Sestito G, et al. Glutaminase Inhibition on NSCLC Depends on Extracellular Alanine Exploitation. Cells. 2020;9(8):1766.
  • 32. Arslan E, Koyuncu I. Comparison of Amino Acid Metabolisms in Normal Prostate (PNT-1A) and Cancer Cells (PC-3). Oncologie. 2021;23(1):105-17.
  • 33. Wu J, Yu L, Yang F, et al. Optimization of 2-(3-(arylalkyl amino carbonyl) phenyl)-3-(2- methoxyphenyl)-4-thiazolidinone derivatives as potent antitumor growth and metastasis agents. Eur J Med Chem. 2014;80:340-51.
  • 34. Salem MS, Hussein RA, El-Sayed WM. Substitution at Phenyl Rings of Chalcone and Schiff Base Moieties Accounts for their Antiproliferative Activity. Anticancer Agents Med Chem. 2019;19(5):620-26.
  • 35. Meng Y, Han S, Yin J, et al. Therapeutic Copolymer from Salicylic Acid and l-Phenylalanine as a Nanosized Drug Carrier for Orthotopic Breast Cancer with Lung Metastasis. ACS Appl Mater Interfaces. 2023;15(35):41743-54.
  • 36. Yao Q, Wang Y, Dong Z, et al. Dichondra repens JR Forst. and G. Forst.: A review of its traditional uses, chemistry, pharmacology, toxicology and applications. Front pharmacol. 2021;11(1):1-29.
  • 37. Liu X, Xue L, Zhang H, et al. Phase I, First-in-Human, Single and Multiple Ascending Dose and Food-Effect Studies to Assess the Safety, Tolerability and Pharmacokinetics of a Novel Anti-hepatitis B Virus Drug, Bentysrepinine (Y101), in Healthy Chinese Subjects. Clin Drug Investig. 2020;40(6):555-66.
  • 38. Li L, Yang M, Yu J, et al. A Novel L-Phenylalanine Dipeptide Inhibits the Growth and Metastasis of Prostate Cancer Cells via Targeting DUSP1 and TNFSF9. Int J Mol Sci. 2022;23(18):10916.
  • 39. Xu B, Wang N, Pan W, et al. Synthesis and anti-tumor activity evaluation of Matijin-Su derivatives. Bioorg Chem. 2014;56:34-40.
  • 40. Qiu J, Xu B, Gong Q, et al. Synthesis and Biological Evaluation of Matijin-Su Derivatives as Potential Antihepatitis B Virus and Anticancer Agents. Chem Biodivers. 2016;13(11):1584-92

PROSTAT KANSERİ HÜCRE HATTINDA (PC-3) DL-FENİLALANİN VE DL-ALANİN'İN HEDGEHOG YOLU İLE İLİŞKİSİNİN ARAŞTIRILMASI

Yıl 2024, Cilt: 25 Sayı: 4, 496 - 501, 21.10.2024
https://doi.org/10.18229/kocatepetip.1410508

Öz

AMAÇ: Bu çalışmada, DL-Fenilalanin ve DL-Alanin’nin PC-3 prostat kanser hücre hattında Hedgehog sinyal yolağı üzerinden etkisinin araştırılması amaçlanmıştır.
GEREÇ VE YÖNTEM: DL-Fenilalanin ve DL-Alaninin PC-3 kanser hücrelerinde hücre canlılığına etkisi MTT yöntemi ile belirlemiştir. DL-Fenilalanin için belirlenen IC50 değeri PC-3 ve HEK-293 hücrelerine uygulandı. Total RNA izolasyonu ve cDNA sentezi yapıldı. Hedgehog yolağı ile ilişki anahtar genlerin (SHH, PTCH, SMO, GLI-1) gen ifadesi qPCR (Kantitatif PCR) ile belirlendi.
BULGULAR: PC-3 hücreleri üzerinde DL-Alanin sitotoksik etki göstermedi. DL-Fenilalanin hücre canlılığını zamana ve doza bağlı olarak azalttı. DL-Fenilalanin için IC50 değeri 48.saatte 500 μg/mL olarak belirlendi. PC-3 hücrelerinde DL-Fenilalanin uygulamasından sonra tüm genlerin ekspresyonunda aşağı regülasyon, HEK-293 hücrelerinde ise yukarı regülasyon tespit edildi (p<0.05).
SONUÇ: DL-Fenilalanin prostat kanseri hücrelerinde Hedgehog yolağını inhibe etmiştir. Bu inhibisyon kontrol grubu HEK-293 hücrelerinde gözlenmemiştir. DL-Fenilalanin prostat kanseri tedavisi için terapötik bir aday olabilir ancak, DL-Alanin’nin böyle bir etkisi bulunmamıştır.

Kaynakça

  • 1. Bergengren O, Pekala KR, Matsoukas K, et al. 2022 Update on Prostate Cancer Epidemiology and Risk Factors-A Systematic Review. Eur Urol. 2023;84(2):191-206.
  • 2. Gandaglia G, Leni R, Bray F, et al. Epidemiology and Prevention of Prostate Cancer. Eur Urol Oncol. 2021;4(6):877-92.
  • 3. Şahin H, Cetinkaya M, Deliktaş H Prostat Kanserinde; Üriner, Serum ve Doku Biyomarkerlerinde Yeni Gelişmeler Nelerdir?. Üroonkoloji Bülteni. 2017;16(3):95-100.
  • 4. Buhmeida A, Pyrhönen S, Laato M, Collan Y. Prognostic factors in prostate cancer. Diagn Pathol. 2006;1(4):1- 15.
  • 5. O'Malley DE, Raspin K, Melton PE, Burdon KP, Dickinson JL, FitzGerald LM. Acquired copy number variation in prostate tumours: a review of common somatic copy number alterations, how they are formed and their clinical utility. Br J Cancer. 2024;130(3):347-57.
  • 6. Konishi N, Cho M, Yamamoto K, Hiasa Y. Genetic changes in prostate cancer. Pathol Int. 1997;47(11):735-47.
  • 7. Ertunç O, Burçin T. Prostat Kanseri Moleküler Patogenezi. Med J SDU, 2022;29(4):697-706.
  • 8. Salaritabar A, Berindan-Neagoe I, Darvish B, et al. Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacol Res. 2019;141:466-80.
  • 9. Jain R, Dubey SK, Singhvi G. The Hedgehog pathway and its inhibitors: Emerging therapeutic approaches for basal cell carcinoma. Drug Discov Today. 2022;27(4):1176-83.
  • 10. Skoda AM, Simovic D, Karin V, et al. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci. 2018;18(1):8-20.
  • 11. Deshpande I, Liang J, Hedeen D, et al. Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature. 2019;571(7764):284-88.
  • 12. Carpenter RL, Ray H. Safety and Tolerability of Sonic Hedgehog Pathway Inhibitors in Cancer. Drug Saf. 2019;42(2):263-79.
  • 13. Wierbowski BM, Petrov K, Aravena L, et al. Hedgehog Pathway Activation Requires Coreceptor-Catalyzed, Lipid-Dependent Relay of the Sonic Hedgehog Ligand. Dev Cell. 2020;55(4):450-67.
  • 14. Sheng T, Li C, Zhang X, et al. Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer. 2004;3(1):1-13.
  • 15. Fedorov, I. A., Yu N. Zhuravlev, and Yu A. Klishin. "Ab initio study of the effect of pressure on structural and electronic properties of crystalline DL-alanine." Russian Physics J. 2016; 59(3):466-68.
  • 16. Saikia J, Devi TG, Karlo T. Synthesis, spectroscopic, and molecular interaction study of lead (II) complex of DL-alanine using experimental techniques and quantum chemical calculations. J Mol Struct. 2023;1283(1):1- 19.
  • 17. Harper, Alfred E. "Phenylalanine metabolism." Aspartame. CRC Press, 2020;77-109.
  • 18. Kahraman AB, Çıkı K, Yıldız Y, et al. COVID-19 pandemisinin hiperfenilalaninemi taraması başvurularına etkileri. Cocuk Sagligi ve Hastaliklari Dergisi. 2022;65(1):8-13.
  • 19. Zhao Q, Xu T, Li M, et al. Synthesis of six phenylalanine derivatives and their cell toxicity effect on human colon cancer cell line HT-29. Lett Drug Des Discov. 2015;12(6):466-70.
  • 20. Meng Y, Wu J. One-Step and Facile Synthesis of Poly(phenylalanine) as a Robust Drug Carrier for Enhanced Cancer Therapy. ACS Appl Mater Interfaces. 2021;13(42):49658-70.
  • 21. Duran T, Tuncer Z. Investigation of Cytotoxic and Apoptotic Effects of Styrax Liquidus Obtained From Liquidambar orientalis Miller (Hamamelidaceae) on HEp-2 Cancer Cell with Caspase Pathway. Eurasian J Med. 2023;55(3):185-91.
  • 22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402-8.
  • 23. Krejbich P, Birringer M. The Self-Administered Use of Complementary and Alternative Medicine (CAM) Supplements and Antioxidants in Cancer Therapy and the Critical Role of Nrf-2-A Systematic Review. Antioxidants. 2022;11(11):2149.
  • 24. Rébé C, Ghiringhelli F. Cytotoxic effects of chemotherapy on cancer and immune cells: how can it be modulated to generate novel therapeutic strategies?. Future Oncol. 2015;11(19):2645-54.
  • 25. Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet. 2010;376(9750):1417-27.
  • 26. Zishen W, Ziqi G, Zhenhuan Y. Synthesis, characterization and anticancer activity of L-alanine Schiff base complexes of copper (II), zinc (II), nickel (II) and cobalt (II). Inorganic and Nano-Metal Chemistry. 1990;20(3):335-44.
  • 27. Sagunthala P, Veeravazhuthi V, Yasotha P, et al. Growth, characterısatıon, antımıcrobıal and antıcancer actıvıtıes of l alanıne added nıckel sulphate crystals. World J Pharm Res. 2016;5(8):414-20.
  • 28. Pandurangan M, Enkhtaivan G, Mistry B, et al. β-Alanine intercede metabolic recovery for amelioration of human cervical and renal tumors. Amino Acids. 2017;49(8):1373-80.
  • 29. Sousa CM, Biancur DE, Wang X, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 2016;536(7617):479-83.
  • 30. Ron-Harel N, Ghergurovich JM, Notarangelo G, et al. T Cell Activation Depends on Extracellular Alanine. Cell Rep. 2019;28(12):3011-21.
  • 31. Caiola E, Colombo M, Sestito G, et al. Glutaminase Inhibition on NSCLC Depends on Extracellular Alanine Exploitation. Cells. 2020;9(8):1766.
  • 32. Arslan E, Koyuncu I. Comparison of Amino Acid Metabolisms in Normal Prostate (PNT-1A) and Cancer Cells (PC-3). Oncologie. 2021;23(1):105-17.
  • 33. Wu J, Yu L, Yang F, et al. Optimization of 2-(3-(arylalkyl amino carbonyl) phenyl)-3-(2- methoxyphenyl)-4-thiazolidinone derivatives as potent antitumor growth and metastasis agents. Eur J Med Chem. 2014;80:340-51.
  • 34. Salem MS, Hussein RA, El-Sayed WM. Substitution at Phenyl Rings of Chalcone and Schiff Base Moieties Accounts for their Antiproliferative Activity. Anticancer Agents Med Chem. 2019;19(5):620-26.
  • 35. Meng Y, Han S, Yin J, et al. Therapeutic Copolymer from Salicylic Acid and l-Phenylalanine as a Nanosized Drug Carrier for Orthotopic Breast Cancer with Lung Metastasis. ACS Appl Mater Interfaces. 2023;15(35):41743-54.
  • 36. Yao Q, Wang Y, Dong Z, et al. Dichondra repens JR Forst. and G. Forst.: A review of its traditional uses, chemistry, pharmacology, toxicology and applications. Front pharmacol. 2021;11(1):1-29.
  • 37. Liu X, Xue L, Zhang H, et al. Phase I, First-in-Human, Single and Multiple Ascending Dose and Food-Effect Studies to Assess the Safety, Tolerability and Pharmacokinetics of a Novel Anti-hepatitis B Virus Drug, Bentysrepinine (Y101), in Healthy Chinese Subjects. Clin Drug Investig. 2020;40(6):555-66.
  • 38. Li L, Yang M, Yu J, et al. A Novel L-Phenylalanine Dipeptide Inhibits the Growth and Metastasis of Prostate Cancer Cells via Targeting DUSP1 and TNFSF9. Int J Mol Sci. 2022;23(18):10916.
  • 39. Xu B, Wang N, Pan W, et al. Synthesis and anti-tumor activity evaluation of Matijin-Su derivatives. Bioorg Chem. 2014;56:34-40.
  • 40. Qiu J, Xu B, Gong Q, et al. Synthesis and Biological Evaluation of Matijin-Su Derivatives as Potential Antihepatitis B Virus and Anticancer Agents. Chem Biodivers. 2016;13(11):1584-92
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Genetik (Diğer)
Bölüm Makaleler-Araştırma Yazıları
Yazarlar

Tuğçe Duran 0000-0002-7353-4527

Zeliha Tuncer 0000-0001-8131-1422

İlknur Karalezli 0000-0001-5278-9064

Yayımlanma Tarihi 21 Ekim 2024
Gönderilme Tarihi 26 Aralık 2023
Kabul Tarihi 6 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 25 Sayı: 4

Kaynak Göster

APA Duran, T., Tuncer, Z., & Karalezli, İ. (2024). INVESTIGATION OF THE RELATIONSHIP OF DL-PHENYLALANINE AND DL-ALANINE WİTH THE HEDGEHOG PATHWAY IN THE PROSTATE CANCER CELL LINE (PC-3). Kocatepe Tıp Dergisi, 25(4), 496-501. https://doi.org/10.18229/kocatepetip.1410508
AMA Duran T, Tuncer Z, Karalezli İ. INVESTIGATION OF THE RELATIONSHIP OF DL-PHENYLALANINE AND DL-ALANINE WİTH THE HEDGEHOG PATHWAY IN THE PROSTATE CANCER CELL LINE (PC-3). KTD. Ekim 2024;25(4):496-501. doi:10.18229/kocatepetip.1410508
Chicago Duran, Tuğçe, Zeliha Tuncer, ve İlknur Karalezli. “INVESTIGATION OF THE RELATIONSHIP OF DL-PHENYLALANINE AND DL-ALANINE WİTH THE HEDGEHOG PATHWAY IN THE PROSTATE CANCER CELL LINE (PC-3)”. Kocatepe Tıp Dergisi 25, sy. 4 (Ekim 2024): 496-501. https://doi.org/10.18229/kocatepetip.1410508.
EndNote Duran T, Tuncer Z, Karalezli İ (01 Ekim 2024) INVESTIGATION OF THE RELATIONSHIP OF DL-PHENYLALANINE AND DL-ALANINE WİTH THE HEDGEHOG PATHWAY IN THE PROSTATE CANCER CELL LINE (PC-3). Kocatepe Tıp Dergisi 25 4 496–501.
IEEE T. Duran, Z. Tuncer, ve İ. Karalezli, “INVESTIGATION OF THE RELATIONSHIP OF DL-PHENYLALANINE AND DL-ALANINE WİTH THE HEDGEHOG PATHWAY IN THE PROSTATE CANCER CELL LINE (PC-3)”, KTD, c. 25, sy. 4, ss. 496–501, 2024, doi: 10.18229/kocatepetip.1410508.
ISNAD Duran, Tuğçe vd. “INVESTIGATION OF THE RELATIONSHIP OF DL-PHENYLALANINE AND DL-ALANINE WİTH THE HEDGEHOG PATHWAY IN THE PROSTATE CANCER CELL LINE (PC-3)”. Kocatepe Tıp Dergisi 25/4 (Ekim 2024), 496-501. https://doi.org/10.18229/kocatepetip.1410508.
JAMA Duran T, Tuncer Z, Karalezli İ. INVESTIGATION OF THE RELATIONSHIP OF DL-PHENYLALANINE AND DL-ALANINE WİTH THE HEDGEHOG PATHWAY IN THE PROSTATE CANCER CELL LINE (PC-3). KTD. 2024;25:496–501.
MLA Duran, Tuğçe vd. “INVESTIGATION OF THE RELATIONSHIP OF DL-PHENYLALANINE AND DL-ALANINE WİTH THE HEDGEHOG PATHWAY IN THE PROSTATE CANCER CELL LINE (PC-3)”. Kocatepe Tıp Dergisi, c. 25, sy. 4, 2024, ss. 496-01, doi:10.18229/kocatepetip.1410508.
Vancouver Duran T, Tuncer Z, Karalezli İ. INVESTIGATION OF THE RELATIONSHIP OF DL-PHENYLALANINE AND DL-ALANINE WİTH THE HEDGEHOG PATHWAY IN THE PROSTATE CANCER CELL LINE (PC-3). KTD. 2024;25(4):496-501.

88x31.png
Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.