Araştırma Makalesi
BibTex RIS Kaynak Göster

Solution of parabolic problem with inverse coefficient s(t) with periodic and integral conditions

Yıl 2022, Cilt: 5 Sayı: ICOLES2021 Special Issue, 1 - 9, 30.11.2022
https://doi.org/10.34088/kojose.1030080

Öz

In this publication, We examine the inverse parabolic parabolik with nonlocal and integral conditional. Firstly, finding the existence, uniqueness and problem of stability, numerical analysis will be done by using the finite difference method for the numerical approximation of this problem.The solution is found examining the Fourier and the iteration method and also numerical solution are given using the finite difference method and results will be mentioned in the discussion section.

Destekleyen Kurum

Kocaeli University

Proje Numarası

Unit(ID:1599)

Kaynakça

  • [1] Baglan I., Kanca F., Mishra V.N., 2018. Determination of an Unknown Heat Source from Integral Overdetermination Condition. Iran J Sci Technol Trans Sci, 42(3), pp.1373–1382.
  • [2] Kanca F., Baglan I., 2013. Continuous dependence on data for a solution of the quasilinear parabolic equation with a periodic boundary condition. Boundary Value Problems, 28(3), pp.55-67.
  • [3] Baglan I., 2015. Determination of a coefficient in a quasilinear parabolic equation with periodic boundary condition. Inverse Problems in Science and Engineering, 23(5), pp.884–900.
  • [4] Cannon J.R., Lin Y., 1988. Determination of parameter p(t) in Hölder classes for some semilinear parabolic equations. Inverse Problems, 4(3), pp.595-606.
Yıl 2022, Cilt: 5 Sayı: ICOLES2021 Special Issue, 1 - 9, 30.11.2022
https://doi.org/10.34088/kojose.1030080

Öz

Proje Numarası

Unit(ID:1599)

Kaynakça

  • [1] Baglan I., Kanca F., Mishra V.N., 2018. Determination of an Unknown Heat Source from Integral Overdetermination Condition. Iran J Sci Technol Trans Sci, 42(3), pp.1373–1382.
  • [2] Kanca F., Baglan I., 2013. Continuous dependence on data for a solution of the quasilinear parabolic equation with a periodic boundary condition. Boundary Value Problems, 28(3), pp.55-67.
  • [3] Baglan I., 2015. Determination of a coefficient in a quasilinear parabolic equation with periodic boundary condition. Inverse Problems in Science and Engineering, 23(5), pp.884–900.
  • [4] Cannon J.R., Lin Y., 1988. Determination of parameter p(t) in Hölder classes for some semilinear parabolic equations. Inverse Problems, 4(3), pp.595-606.
Toplam 4 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

İrem Bağlan 0000-0002-1877-9791

Proje Numarası Unit(ID:1599)
Erken Görünüm Tarihi 30 Haziran 2022
Yayımlanma Tarihi 30 Kasım 2022
Kabul Tarihi 3 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: ICOLES2021 Special Issue

Kaynak Göster

APA Bağlan, İ. (2022). Solution of parabolic problem with inverse coefficient s(t) with periodic and integral conditions. Kocaeli Journal of Science and Engineering, 5(ICOLES2021 Special Issue), 1-9. https://doi.org/10.34088/kojose.1030080