Araştırma Makalesi
BibTex RIS Kaynak Göster

Su Ürünleri Ambalajı İçin Jelatin Filmlerde Mavi Renklendirici Olarak Bakır Ftalosiyanin Pigmentlerinin Kullanımı

Yıl 2025, Cilt: 8 Sayı: 2, 186 - 197, 30.11.2025
https://doi.org/10.34088/kojose.1650941

Öz

Bu çalışmada, PD1 ve PD2 kodlu Bakır (Cu) ftalosiyanin pigmentleri karakterize edilmiş ve jelatin esaslı akuatik ambalajlama malzemelerinde mavi renklendirici olarak kullanılma olanakları değerlendirilmiştir. Sentezlenen ftalosiyanin pigmentleri ithal ticari PB15:1 (kontrol) ile Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR), HPLC sonuçları, Cu içeriği, kül içeriği ve bakır içeriği açısından karşılaştırılmıştır. Üretilen D1 ve D2 numunelerinin hem Cu miktarı hem de FTIR sonuçları açısından ticari toza en yakın olanlar olduğu belirlenmiştir. Çözeltiye göre ağırlıkça %0,5 oranında PD1 kodlu seçilen örnek, %10 ve %5 gliserol içeren jelatin içeren çözeltilere eklenmiş ve sırasıyla GL10, GL5 kurutulmuş filmleri elde edilmiştir. %10 gliserollü film daha iyi renk özellikleri göstermesine rağmen, L, a, b, Hue açısı ve Kroma parametreleri önemsiz bulunmuştur (p>0,05). Çekme testleri ve sürünme/geri kazanım eğrileri, GL10'un GL5'e kıyasla %107 daha yüksek kopma uzaması, %29 daha düşük Young modülü (Ea) ve daha yüksek gerinim değerlerine sahip olduğunu, dolayısıyla daha yumuşak ve daha esnek olduğunu göstermiştir. Seçilen GL10 numunesi için sertlik, çiğnenebilirlik ve yapışkanlık gibi deformasyon parametreleri de farklı deformasyon oranlarında karşılaştırılmıştır. Sonuçlar, mavi pigment katkılı jelatin filmlerin su ürünleri ambalajlarında kullanılabileceğini göstermiştir.

Kaynakça

  • [1] Heide M., Olsen S.O., 2017. Influence of packaging attributes on consumer evaluation of fresh cod. Food Quality and Preference, 60. pp. 9–18. https://doi.org/10.1016/J.FOODQUAL.2017.02.015.
  • [2] Labrecque L.I., Milne G.R., 2012. Exciting red and competent blue: The importance of color in marketing. Journal of the Academy of Marketing Science, 40. pp. 711–727. https://doi.org/10.1007/S11747-010-0245-Y.
  • [3] Hallez L., Vansteenbeeck H., Boen F., Smits T., 2023. Persuasive packaging? The impact of packaging color and claims on young consumers’ perceptions of product healthiness, sustainability and tastiness. Appetite, 182 pp. 106433. https://doi.org/10.1016/J.APPET.2022.106433.
  • [4] Steiner K., Florack A., 2023. The Influence of Packaging Color on Consumer Perceptions of Healthfulness: A Systematic Review and Theoretical Framework. Foods, 12 pp. 31911. https://doi.org/10.3390/FOODS12213911.
  • [5] Marine Stewardship Council. 2024. MSC label guidelines | Marine Stewardship Council. MSC label guidelines.
  • [6] Li X., Liang H., Wang J., Liu W., 2025. From notice to decision: How does packaging color shape consumers’ perception and purchase intention toward over-the-counter drugs. Food Quality and Preference, pp. 105642. https://doi.org/10.1016/J.FOODQUAL.2025.105642.
  • [7] Shirai M., 2025. Combined effects of packaging colour and shape on consumers’ sweetness expectations and purchase intentions for hedonic foods. British Food Journal, 127 pp. 2271–2285. https://doi.org/10.1108/BFJ-07-2024-0667.
  • [8] Romeh R.M., Elhawary D.M., Maghraby T.M., Elhag A.E., Hassabo A.G., 2024. Psychology of the color of advertising in marketing and consumer psychology. Journal of Textiles, Coloration and Polymer Science, 21 pp. 427–434. https://doi.org/10.21608/JTCPS.2024.259025.1272.
  • [9] Rawan M., Elhawary R.D.M., Maghraby T.M., Elhag A.E., 2024. Psychology of the Color of Advertising in Marketing and Cons. Journal of Textiles, Coloration and Polymer Science, 21.
  • [10] Cadrin S.X., Shuya N., 2024. Marine Stewardship Council’s Fisheries Standard: Updated best practices for promoting sustainable seafood. Marine Policy, 163 pp. 106083. https://doi.org/10.1016/J.MARPOL.2024.106083.
  • [11] George JF., 2008. Seafood packaging, part 1 - Responsible Seafood Advocate. Packaging materials, traits.
  • [12] Jeong J., Kumar R.S., Kim I.J., Son Y.A., 2017. Synthesis, characterization of symmetrical and unsymmetrical naphthoxy substituted metallophthalocyanines. Molecular Crystals and Liquid Crystals, 644 pp. 249–256. https://doi.org/10.1080/15421406.2016.1277498.
  • [13] García-Sánchez MA., Rojas-González FE., Menchaca-Campos E.C., Tello-Solís S.R., Iris Y., Quiroz-Segoviano L.I.Y., Diaz-Alejo L.A., Salas-Bañales E,, Campero A., 2013. Crossed and Linked Histories of Tetrapyrrolic Macrocycles and Their Use for Engineering Pores within Sol-Gel Matrices. Molecules, 18 pp. 588–653. https://doi.org/10.3390/MOLECULES18010588.
  • [14] Ma C., Ye K., Yu S., Du G., Zhao Y., Cong F., Chang Y., et al. 2007. Synthesis and hypochromic effect of phthalocyanines and metal phthalocyanines. Dyes and Pigments, 74 pp.141–147. https://doi.org/10.1016/J.DYEPIG.2006.01.044.
  • [15] Christie R., Abel A., 2021. Phthalocyanine pigments: General principles. Physical Sciences Reviews, 6 pp. 671–677. https://doi.org/10.1515/PSR-2020-0194.
  • [16] U.S. Food & Drug Administration., 2024. Inventory of Food Contact Substances Listed in 21 CFR | FDA.
  • [17] U.S. Food & Drug Administration., 2024. Code of Federal Regulations. CFR - Code of Federal Regulations Title 21.
  • [18] Ruggiero E., Katherine Y., Persson SM., Delpivo C., Wohlleben W., 2022. Food contact of paper and plastic products containing SiO2, Cu-Phthalocyanine, Fe2O3, CaCO3: Ranking factors that control the similarity of form and rate of release. NanoImpact, 25 pp. 100372. https://doi.org/10.1016/J.IMPACT.2021.100372.
  • [19] Zhang Z., Kappenstein O., Ebner I., Ruggiero E., Müller P., Luch A., Wohlleben Wendel., Haase Andrea., 2020. Investigating ion-release from nanocomposites in food simulant solutions: Case studies contrasting kaolin, CaCO3 and Cu-phthalocyanine. Food Packaging and Shelf Life, 26 pp. 100560. https://doi.org/10.1016/J.FPSL.2020.100560.
  • [20] Lu Y., Luo Q., Chu Y., Tao N., Deng S., Wang L., Li L., 2022. Application of Gelatin in Food Packaging: A Review. Polymers, 14 pp. 436. https://doi.org/10.3390/POLYM14030436.
  • [21] Liu F, Chiou B.S., Avena-Bustillos RJ., Zhang Y., Li Y., McHugh T.H., Zhong F., 2017. Study of combined effects of glycerol and transglutaminase on properties of gelatin films. Food Hydrocolloids, 65 pp. 1–9. https://doi.org/10.1016/J.FOODHYD.2016.10.004.
  • [22] Lukasik K.V., Ludescher RD., 2006. Molecular mobility in water and glycerol plasticized cold- and hot-cast gelatin films. Food Hydrocolloids, 20 pp. 96–105. https://doi.org/10.1016/J.FOODHYD.2005.03.007.
  • [23] Bandeira SF., Da Silva RDSG., De Moura JMotta., de Almeida PLA., 2015. Modified Gelatin Films from Croaker Skins: Effects of pH, and Addition of Glycerol and Chitosan. Journal of Food Process Engineering, 38 pp. 613–620. https://doi.org/10.1111/JFPE.12191.
  • [24] Said N.S., Sarbon Norizah Mhd., 2022. Physical and Mechanical Characteristics of Gelatin-Based Films as a Potential Food Packaging Material: A Review. Membranes, 12 pp. 442. https://doi.org/10.3390/MEMBRANES12050442.
  • [25] Lee Y.L., Hsiao C.Y., Chang C.H., Yang Y.M., 2003. Effects of sensing temperature on the gas sensing properties of copper phthalocyanine and copper tetra-tert-butyl phthalocyanine films. Sensors and Actuators B: Chemical, 94 pp.169–175. https://doi.org/10.1016/S0925-4005(03)00329-0.
  • [26] Baş H., Kahriman N., Biyiklioğlu Z., 2020. Synthesis and electrochemical properties of copper(II), manganese(III) phthalocyanines bearing chalcone groups at peripheral or nonperipheral positions. Turkish Journal of Chemistry, 44 pp. 1549–1555. https://doi.org/10.3906/kim-2006-21.
  • [27] Borker P., Salker A.V., 2006. Synthesis, characterization and photocatalytic studies of some metal phthalocyanines. Indian Journal of Chemical Technology, 13 pp. 341–346.
  • [28] Protonotariou S.V., Chaloulos P., Mandala I.G., 2024. Encapsulated Opuntia spp. fruit powder as a natural colorant in biscuit filling cream. Journal of Food Measurement and Characterization, 18 pp. 5567–5576. https://doi.org/10.1007/S11694-024-02588-6.
  • [29] He J., Wanli Z., Goksen G., Khan M.R., Ahmad N., Cong X., 2024. Functionalized sodium alginate composite films based on double-encapsulated essential oil of wampee nanoparticles: a green preservation material. Food Chemistry: X, 24 pp. 101842. https://doi.org/10.1016/J.FOCHX.2024.101842.
  • [30] Yılmaz Y., Bayıl S., 2019. PB15 kodlu pigmentler; sentezi, karakterizasyonu ve endüstriyel uygulamaları. KSÜ Tarım ve Doğa Dergisi, 22 pp. 466-472. https://doi.org/10.18016/ksutarimdoga.vi.497752.
  • [31] Cetinkaya T., Bildik F., Altay F., Ceylan Z., 2024. Gelatin nanofibers with black elderberry, Au nanoparticles and SnO2 as intelligent packaging layer used for monitoring freshness of Hake fish. Food Chemistry, 437 pp. 137843. https://doi.org/10.1016/J.FOODCHEM.2023.137843.
  • [32] Mclelan M.R., Lind L.R., Kime R.W., 1995. Hue Angle Determinations and Statistical Analysis for Multiquadrant Hunter L,a,b Data. Journal of Food Quality, 18 pp. 235–240. https://doi.org/10.1111/j.1745-4557.1995.tb00377.x.
  • [33] Francis F.J., 1985. Blueberries as a Colorant Ingredient in Food Products. Journal of Food Science, 50 pp. 754–756. https://doi.org/10.1111/j.1365-2621.1985.tb13789.x.
  • [34] Jamila dSA., Canabarro N.I., Boeira C.P., Melo P.T.S., Aouada M.R.D.M., da Rosa C.S., 2023. Design of Biodegradable Films Using Pecan Nut Cake Extracts for Food Packing. Foods, 12 pp. 1405. https://doi.org/10.3390/FOODS12071405.
  • [35] Anter KF., 2000. What colour is the red house? : perceived colour of painted facades. Dept. of Architectural Forms, Institution of Architecture, Royal Institute of Technology (KTH): 338, Stockholm.
  • [36] Suderman N., MIN Isa., Sarbon NM., 2018. Characterization on the mechanical and physical properties of chicken skin gelatin films in comparison to mammalian gelatin films. IOP Conference Series: Materials Science and Engineering, 440 pp. 012033. https://doi.org/10.1088/1757-899X/440/1/012033.
  • [37] Yang J.L., Zhang Z., Schlarb A.K., Friedrich K., 2006. On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance. Polymer, 47 pp. 6745–6758. https://doi.org/10.1016/J.POLYMER.2006.07.060.
  • [38] Alanalp M.B., Durmus A., 2025. Easy synthesis of self-healing thermoplastic elastomer (TPE) via functionalization of styrene block copolymer (SEBS) with a cyclic amine compound in melt state and rheological assessment of non-covalent dynamic interactions. Polymer, 320 pp. 128083. https://doi.org/10.1016/J.POLYMER.2025.128083.
  • [39] Georgiopoulos P., Kontou E., Christopoulos A., 2015. Short-term creep behavior of a biodegradable polymer reinforced with wood-fibers. Composites Part B: Engineering, 80 pp. 134–144. https://doi.org/10.1016/J.COMPOSITESB.2015.05.046.
  • [40] Eftekhari M., Fatemi A., 2016. Creep behavior and modeling of neat, talc-filled, and short glass fiber reinforced thermoplastics. Composites Part B: Engineering, 97 pp. 68–83. https://doi.org/10.1016/J.COMPOSITESB.2016.04.043.
  • [41] Martucci J.F, Ruseckaite R.A., Vázquez A., 2006. Creep of glutaraldehyde-crosslinked gelatin films. Materials Science and Engineering: A, 435–436 pp. 681–686. https://doi.org/10.1016/J.MSEA.2006.07.097.
  • [42] Hernandez-Perez, P., Flores-Silva PC., Velazquez G., Morales-Sanchez E., Rodríguez-Fernández O., Hernández-Hernández E., Mendez-Montealvo G., Sifuentes-Nieves I., 2021. Rheological performance of film-forming solutions made from plasma-modified starches with different amylose/amylopectin content. Carbohydrate Polymers, 255 pp.117349. https://doi.org/10.1016/J.CARBPOL.2020.117349.
  • [43] Kasgoz A., Akın D., Durmus A., 2016. Quantifying Structural and Solid-State Viscoelastic Properties of Poly(propylene) (PP)/Poly(oxymethylene) (POM) Blend Films. Macromolecular Materials and Engineering, 301 pp. 1402–1414. https://doi.org/10.1002/MAME.201600109.
  • [44] Porayanee M., Katemake P., Duangmal K., 2015. Effect of gelatin concentrations and glucose syrup to sucrose ratios on textural and optical properties of gelatin gel Journal of Food Science and Agricultural Technology, 1 pp. 26–30.
  • [45] Rivero S., García M.A., Pinotti A., 2010. Correlations between structural, barrier, thermal and mechanical properties of plasticized gelatin films. Innovative Food Science & Emerging Technologies, 11 pp. 369–375. https://doi.org/10.1016/J.IFSET.2009.07.005.
  • [46] Wittaya T., 2012. Protein-Based Edible Films: Characteristics and Improvement of Properties. Structure and Function of Food Engineering. IntechOpen, London, England. https://doi.org/10.5772/48167.
  • [47] Pouralkhas M., Kordjazi M., Ojagh S.M., Farsani O.A., 2023. Physicochemical and functional characterization of gelatin edible film incorporated with fucoidan isolated from Sargassum tenerrimum. Food Science & Nutrition, 11 pp. 4124–4135. https://doi.org/10.1002/FSN3.3402.
  • [48] Yap K.L., Kong I., Saleena L.A.K., Pui L.P., 2022. 3D Printed gelatin film with Garcinia atroviridis extract. Journal of Food Science and Technology, 59 pp. 4341–4351. https://doi.org/10.1007/S13197-022-05508-Y.

The Use of Copper Phthalocyanine Pigments as Blue Colorants in Gelatin Films for Aquatic Food Packaging

Yıl 2025, Cilt: 8 Sayı: 2, 186 - 197, 30.11.2025
https://doi.org/10.34088/kojose.1650941

Öz

In this study, Copper (Cu) phthalocyanine pigments, coded PD1 and PD2, were characterized, and the possibility of using them as blue colorants in gelatin-based materials for aquatic packaging was evaluated. Synthesized phthalocyanine pigments were compared with imported commercial PB15:1 (control) in terms of Fourier Transform Infrared Spectroscopy (FTIR), high-performance liquid chromatography (HPLC) results, Cu, and ash content. It was found that the synthesized PD1 and PD2 samples were the ones closest to the commercial powder in terms of FTIR peaks, Cu amount, and HPLC results. The selected sample coded PD1 at 0.5 wt% with respect to the solution was further added to gelatin-containing solutions containing 10% and 5% glycerol, and dried films of GL10 and GL5 were obtained, respectively. Although the 10% glycerol-added film showed better color properties, L, a, b, Hue angle, and Chroma parameters were insignificant (p>0.05). Tensile tests and creep/recovery curves showed that GL10 had 107% higher elongation at break, 29% lower Young’s modulus, and higher strain values compared to GL5, making it softer and more flexible. Deformation parameters such as hardness, chewiness, and gumminess were also compared at different deformation rates for the selected GL10 sample. Results indicated that blue pigment-added gelatin films can be used in aquatic food product packages.

Kaynakça

  • [1] Heide M., Olsen S.O., 2017. Influence of packaging attributes on consumer evaluation of fresh cod. Food Quality and Preference, 60. pp. 9–18. https://doi.org/10.1016/J.FOODQUAL.2017.02.015.
  • [2] Labrecque L.I., Milne G.R., 2012. Exciting red and competent blue: The importance of color in marketing. Journal of the Academy of Marketing Science, 40. pp. 711–727. https://doi.org/10.1007/S11747-010-0245-Y.
  • [3] Hallez L., Vansteenbeeck H., Boen F., Smits T., 2023. Persuasive packaging? The impact of packaging color and claims on young consumers’ perceptions of product healthiness, sustainability and tastiness. Appetite, 182 pp. 106433. https://doi.org/10.1016/J.APPET.2022.106433.
  • [4] Steiner K., Florack A., 2023. The Influence of Packaging Color on Consumer Perceptions of Healthfulness: A Systematic Review and Theoretical Framework. Foods, 12 pp. 31911. https://doi.org/10.3390/FOODS12213911.
  • [5] Marine Stewardship Council. 2024. MSC label guidelines | Marine Stewardship Council. MSC label guidelines.
  • [6] Li X., Liang H., Wang J., Liu W., 2025. From notice to decision: How does packaging color shape consumers’ perception and purchase intention toward over-the-counter drugs. Food Quality and Preference, pp. 105642. https://doi.org/10.1016/J.FOODQUAL.2025.105642.
  • [7] Shirai M., 2025. Combined effects of packaging colour and shape on consumers’ sweetness expectations and purchase intentions for hedonic foods. British Food Journal, 127 pp. 2271–2285. https://doi.org/10.1108/BFJ-07-2024-0667.
  • [8] Romeh R.M., Elhawary D.M., Maghraby T.M., Elhag A.E., Hassabo A.G., 2024. Psychology of the color of advertising in marketing and consumer psychology. Journal of Textiles, Coloration and Polymer Science, 21 pp. 427–434. https://doi.org/10.21608/JTCPS.2024.259025.1272.
  • [9] Rawan M., Elhawary R.D.M., Maghraby T.M., Elhag A.E., 2024. Psychology of the Color of Advertising in Marketing and Cons. Journal of Textiles, Coloration and Polymer Science, 21.
  • [10] Cadrin S.X., Shuya N., 2024. Marine Stewardship Council’s Fisheries Standard: Updated best practices for promoting sustainable seafood. Marine Policy, 163 pp. 106083. https://doi.org/10.1016/J.MARPOL.2024.106083.
  • [11] George JF., 2008. Seafood packaging, part 1 - Responsible Seafood Advocate. Packaging materials, traits.
  • [12] Jeong J., Kumar R.S., Kim I.J., Son Y.A., 2017. Synthesis, characterization of symmetrical and unsymmetrical naphthoxy substituted metallophthalocyanines. Molecular Crystals and Liquid Crystals, 644 pp. 249–256. https://doi.org/10.1080/15421406.2016.1277498.
  • [13] García-Sánchez MA., Rojas-González FE., Menchaca-Campos E.C., Tello-Solís S.R., Iris Y., Quiroz-Segoviano L.I.Y., Diaz-Alejo L.A., Salas-Bañales E,, Campero A., 2013. Crossed and Linked Histories of Tetrapyrrolic Macrocycles and Their Use for Engineering Pores within Sol-Gel Matrices. Molecules, 18 pp. 588–653. https://doi.org/10.3390/MOLECULES18010588.
  • [14] Ma C., Ye K., Yu S., Du G., Zhao Y., Cong F., Chang Y., et al. 2007. Synthesis and hypochromic effect of phthalocyanines and metal phthalocyanines. Dyes and Pigments, 74 pp.141–147. https://doi.org/10.1016/J.DYEPIG.2006.01.044.
  • [15] Christie R., Abel A., 2021. Phthalocyanine pigments: General principles. Physical Sciences Reviews, 6 pp. 671–677. https://doi.org/10.1515/PSR-2020-0194.
  • [16] U.S. Food & Drug Administration., 2024. Inventory of Food Contact Substances Listed in 21 CFR | FDA.
  • [17] U.S. Food & Drug Administration., 2024. Code of Federal Regulations. CFR - Code of Federal Regulations Title 21.
  • [18] Ruggiero E., Katherine Y., Persson SM., Delpivo C., Wohlleben W., 2022. Food contact of paper and plastic products containing SiO2, Cu-Phthalocyanine, Fe2O3, CaCO3: Ranking factors that control the similarity of form and rate of release. NanoImpact, 25 pp. 100372. https://doi.org/10.1016/J.IMPACT.2021.100372.
  • [19] Zhang Z., Kappenstein O., Ebner I., Ruggiero E., Müller P., Luch A., Wohlleben Wendel., Haase Andrea., 2020. Investigating ion-release from nanocomposites in food simulant solutions: Case studies contrasting kaolin, CaCO3 and Cu-phthalocyanine. Food Packaging and Shelf Life, 26 pp. 100560. https://doi.org/10.1016/J.FPSL.2020.100560.
  • [20] Lu Y., Luo Q., Chu Y., Tao N., Deng S., Wang L., Li L., 2022. Application of Gelatin in Food Packaging: A Review. Polymers, 14 pp. 436. https://doi.org/10.3390/POLYM14030436.
  • [21] Liu F, Chiou B.S., Avena-Bustillos RJ., Zhang Y., Li Y., McHugh T.H., Zhong F., 2017. Study of combined effects of glycerol and transglutaminase on properties of gelatin films. Food Hydrocolloids, 65 pp. 1–9. https://doi.org/10.1016/J.FOODHYD.2016.10.004.
  • [22] Lukasik K.V., Ludescher RD., 2006. Molecular mobility in water and glycerol plasticized cold- and hot-cast gelatin films. Food Hydrocolloids, 20 pp. 96–105. https://doi.org/10.1016/J.FOODHYD.2005.03.007.
  • [23] Bandeira SF., Da Silva RDSG., De Moura JMotta., de Almeida PLA., 2015. Modified Gelatin Films from Croaker Skins: Effects of pH, and Addition of Glycerol and Chitosan. Journal of Food Process Engineering, 38 pp. 613–620. https://doi.org/10.1111/JFPE.12191.
  • [24] Said N.S., Sarbon Norizah Mhd., 2022. Physical and Mechanical Characteristics of Gelatin-Based Films as a Potential Food Packaging Material: A Review. Membranes, 12 pp. 442. https://doi.org/10.3390/MEMBRANES12050442.
  • [25] Lee Y.L., Hsiao C.Y., Chang C.H., Yang Y.M., 2003. Effects of sensing temperature on the gas sensing properties of copper phthalocyanine and copper tetra-tert-butyl phthalocyanine films. Sensors and Actuators B: Chemical, 94 pp.169–175. https://doi.org/10.1016/S0925-4005(03)00329-0.
  • [26] Baş H., Kahriman N., Biyiklioğlu Z., 2020. Synthesis and electrochemical properties of copper(II), manganese(III) phthalocyanines bearing chalcone groups at peripheral or nonperipheral positions. Turkish Journal of Chemistry, 44 pp. 1549–1555. https://doi.org/10.3906/kim-2006-21.
  • [27] Borker P., Salker A.V., 2006. Synthesis, characterization and photocatalytic studies of some metal phthalocyanines. Indian Journal of Chemical Technology, 13 pp. 341–346.
  • [28] Protonotariou S.V., Chaloulos P., Mandala I.G., 2024. Encapsulated Opuntia spp. fruit powder as a natural colorant in biscuit filling cream. Journal of Food Measurement and Characterization, 18 pp. 5567–5576. https://doi.org/10.1007/S11694-024-02588-6.
  • [29] He J., Wanli Z., Goksen G., Khan M.R., Ahmad N., Cong X., 2024. Functionalized sodium alginate composite films based on double-encapsulated essential oil of wampee nanoparticles: a green preservation material. Food Chemistry: X, 24 pp. 101842. https://doi.org/10.1016/J.FOCHX.2024.101842.
  • [30] Yılmaz Y., Bayıl S., 2019. PB15 kodlu pigmentler; sentezi, karakterizasyonu ve endüstriyel uygulamaları. KSÜ Tarım ve Doğa Dergisi, 22 pp. 466-472. https://doi.org/10.18016/ksutarimdoga.vi.497752.
  • [31] Cetinkaya T., Bildik F., Altay F., Ceylan Z., 2024. Gelatin nanofibers with black elderberry, Au nanoparticles and SnO2 as intelligent packaging layer used for monitoring freshness of Hake fish. Food Chemistry, 437 pp. 137843. https://doi.org/10.1016/J.FOODCHEM.2023.137843.
  • [32] Mclelan M.R., Lind L.R., Kime R.W., 1995. Hue Angle Determinations and Statistical Analysis for Multiquadrant Hunter L,a,b Data. Journal of Food Quality, 18 pp. 235–240. https://doi.org/10.1111/j.1745-4557.1995.tb00377.x.
  • [33] Francis F.J., 1985. Blueberries as a Colorant Ingredient in Food Products. Journal of Food Science, 50 pp. 754–756. https://doi.org/10.1111/j.1365-2621.1985.tb13789.x.
  • [34] Jamila dSA., Canabarro N.I., Boeira C.P., Melo P.T.S., Aouada M.R.D.M., da Rosa C.S., 2023. Design of Biodegradable Films Using Pecan Nut Cake Extracts for Food Packing. Foods, 12 pp. 1405. https://doi.org/10.3390/FOODS12071405.
  • [35] Anter KF., 2000. What colour is the red house? : perceived colour of painted facades. Dept. of Architectural Forms, Institution of Architecture, Royal Institute of Technology (KTH): 338, Stockholm.
  • [36] Suderman N., MIN Isa., Sarbon NM., 2018. Characterization on the mechanical and physical properties of chicken skin gelatin films in comparison to mammalian gelatin films. IOP Conference Series: Materials Science and Engineering, 440 pp. 012033. https://doi.org/10.1088/1757-899X/440/1/012033.
  • [37] Yang J.L., Zhang Z., Schlarb A.K., Friedrich K., 2006. On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance. Polymer, 47 pp. 6745–6758. https://doi.org/10.1016/J.POLYMER.2006.07.060.
  • [38] Alanalp M.B., Durmus A., 2025. Easy synthesis of self-healing thermoplastic elastomer (TPE) via functionalization of styrene block copolymer (SEBS) with a cyclic amine compound in melt state and rheological assessment of non-covalent dynamic interactions. Polymer, 320 pp. 128083. https://doi.org/10.1016/J.POLYMER.2025.128083.
  • [39] Georgiopoulos P., Kontou E., Christopoulos A., 2015. Short-term creep behavior of a biodegradable polymer reinforced with wood-fibers. Composites Part B: Engineering, 80 pp. 134–144. https://doi.org/10.1016/J.COMPOSITESB.2015.05.046.
  • [40] Eftekhari M., Fatemi A., 2016. Creep behavior and modeling of neat, talc-filled, and short glass fiber reinforced thermoplastics. Composites Part B: Engineering, 97 pp. 68–83. https://doi.org/10.1016/J.COMPOSITESB.2016.04.043.
  • [41] Martucci J.F, Ruseckaite R.A., Vázquez A., 2006. Creep of glutaraldehyde-crosslinked gelatin films. Materials Science and Engineering: A, 435–436 pp. 681–686. https://doi.org/10.1016/J.MSEA.2006.07.097.
  • [42] Hernandez-Perez, P., Flores-Silva PC., Velazquez G., Morales-Sanchez E., Rodríguez-Fernández O., Hernández-Hernández E., Mendez-Montealvo G., Sifuentes-Nieves I., 2021. Rheological performance of film-forming solutions made from plasma-modified starches with different amylose/amylopectin content. Carbohydrate Polymers, 255 pp.117349. https://doi.org/10.1016/J.CARBPOL.2020.117349.
  • [43] Kasgoz A., Akın D., Durmus A., 2016. Quantifying Structural and Solid-State Viscoelastic Properties of Poly(propylene) (PP)/Poly(oxymethylene) (POM) Blend Films. Macromolecular Materials and Engineering, 301 pp. 1402–1414. https://doi.org/10.1002/MAME.201600109.
  • [44] Porayanee M., Katemake P., Duangmal K., 2015. Effect of gelatin concentrations and glucose syrup to sucrose ratios on textural and optical properties of gelatin gel Journal of Food Science and Agricultural Technology, 1 pp. 26–30.
  • [45] Rivero S., García M.A., Pinotti A., 2010. Correlations between structural, barrier, thermal and mechanical properties of plasticized gelatin films. Innovative Food Science & Emerging Technologies, 11 pp. 369–375. https://doi.org/10.1016/J.IFSET.2009.07.005.
  • [46] Wittaya T., 2012. Protein-Based Edible Films: Characteristics and Improvement of Properties. Structure and Function of Food Engineering. IntechOpen, London, England. https://doi.org/10.5772/48167.
  • [47] Pouralkhas M., Kordjazi M., Ojagh S.M., Farsani O.A., 2023. Physicochemical and functional characterization of gelatin edible film incorporated with fucoidan isolated from Sargassum tenerrimum. Food Science & Nutrition, 11 pp. 4124–4135. https://doi.org/10.1002/FSN3.3402.
  • [48] Yap K.L., Kong I., Saleena L.A.K., Pui L.P., 2022. 3D Printed gelatin film with Garcinia atroviridis extract. Journal of Food Science and Technology, 59 pp. 4341–4351. https://doi.org/10.1007/S13197-022-05508-Y.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği, Polimer Bilimi ve Teknolojileri, Kimya Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Sibel Bayıl 0000-0003-0254-6915

Turgay Çetinkaya 0000-0003-2962-1241

Mine Begüm Alanalp 0000-0002-9029-7324

Yayımlanma Tarihi 30 Kasım 2025
Gönderilme Tarihi 4 Mart 2025
Kabul Tarihi 14 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Bayıl, S., Çetinkaya, T., & Alanalp, M. B. (2025). The Use of Copper Phthalocyanine Pigments as Blue Colorants in Gelatin Films for Aquatic Food Packaging. Kocaeli Journal of Science and Engineering, 8(2), 186-197. https://doi.org/10.34088/kojose.1650941