YÜKSEK MERTEBE KAYMA DEFORMASYON TEORİSİ KAPSAMINDA POROZ ORTOTROPİK TABAKALI PLAKLARIN BURUKULMA ANALİZİ
Yıl 2023,
Cilt: 11 Sayı: 2, 408 - 422, 01.06.2023
Ferruh Turan
,
Suna Ulu
,
Yıldız Ünal
Öz
Bu çalışmada, yüksek mertebe kayma deformasyon teorisi kullanılarak poroz ortotropik tabakalı plakların burkulma davranışı araştırılmaktadır. Plağın tek ve iki eksenli basınca maruz kaldığı ve plak kalınlığı boyunca özel fonksiyonlarla tanımlanan üç farklı porozite dağılımı dikkate alınmaktadır. Stabilite denklemleri virtüel iş prensibiyle türetilmektedir ve elde edilen kısmi türevli diferansiyel denklemlere Galerkin yöntemi uygulanarak kritik burkulma yükü ifadesi elde edilmektedir. Türetilen kritik burkulma yükü ifadesiyle elde edilen sonuçlar, literatürdeki uygun sonuçlarla kıyaslanarak doğrulanmaktadır. Kritik burkulma yükünün kayma deformasyonuna, poroziteye, ortotropiye, yükleme faktörüne ve farklı geometrik özelliklere duyarlılığını gözlemlemek için parametrik bir analiz yapılmaktadır.
Kaynakça
- [1] F. Turan, M. F. Başoğlu, and Z. Zerin, "Analytical solution for bending and buckling response of laminated non-homogeneous plates using a simplified-higher order theory," Challenge Journal of Structural Mechanics, vol. 3, no. 1, pp. 1-16, 2017.
- [2] K. Magnucki, M. Malinowski, and J. Kasprzak, "Bending and buckling of a rectangular porous plate," Steel and Composite Structures, vol. 6, no. 4, pp. 319-333, 2006.
- [3] E. Magnucka-Blandzi, "Axi-symmetrical deflection and buckling of circular porous-cellular plate," Thin-Walled Structures, vol. 46, no. 3, pp. 333-337, 2008.
- [4] M. Jabbari, E. F. Joubaneh, A. R. Khorshidvand, and M. R. Eslami, "Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression," International Journal of Mechanical Sciences, vol. 70, pp. 50-56, 2013.
- [5] A. Mojahedin, E. F. Joubaneh, and M. Jabbari, "Thermal and mechanical stability of a circular porous plate with piezoelectric actuators," Acta Mechanica, vol. 225, no. 12, pp. 3437-3452, 2014.
- [6] E. Farzaneh Joubaneh, A. Mojahedin, A. R. Khorshidvand, and M. Jabbari, "Thermal buckling analysis of porous circular plate with piezoelectric sensor-actuator layers under uniform thermal load," J. Sandw. Struct. Mater., vol. 17, no. 1, pp. 3-25, 2015.
- [7] M. Jabbari, M. Hashemitaheri, A. Mojahedin, and M. R. Eslami, "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials," Journal of Thermal Stresses, vol. 37, no. 2, pp. 202-220, 2014.
- [8] A. Gupta and M. Talha, "Stability characteristics of porous functionally graded plate in thermal environment," IOP Conf. Ser. Mater. Sci. Eng., vol. 330, no. 1, p. 012011, 2018.
- [9] M. Malikan, F. Tornabene, and R. Dimitri, "Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals," Mater. Res. Express, vol. 5, no. 9, 2018.
- [10] M. Panah, A. R. Khorshidvand, S. M. Khorsandijou, and M. Jabbari, "Pore pressure and porosity effects on bending and thermal postbuckling behavior of FG saturated porous circular plates," Journal of Thermal Stresses, vol. 42, no. 9, pp. 1083-1109, 2019.
- [11] F. Kiarasi, M. Babaei, K. Asemi, R. Dimitri, and F. Tornabene, "Three-dimensional buckling analysis of functionally graded saturated porous rectangular plates under combined loading conditions," Appl. Sci., vol. 11, no. 21, pp. 1-21, 2021.
- [12] J. N. Reddy, "A simple higher-order theory for laminated composite plates," J Appl Mech Trans ASME, vol. 51, no. 4, pp. 745-752, 1984.
- [13] M. Touratier, "An efficient standard plate theory," International Journal of Engineering Science, vol. 29, no. 8, pp. 901-916, 1991.
- [14] K. P. Soldatos, "A transverse shear deformation theory for homogeneous monoclinic plates," Acta Mechanica, vol. 94, no. 3-4, pp. 195-220, 1992.
- [15] M. Karama, K. S. Afaq, and S. Mistou, "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity," International Journal of Solids and Structures, vol. 40, no. 6, pp. 1525-1546, 2003.
- [16] M. Aydogdu, "A new shear deformation theory for laminated composite plates," Composite Structures, vol. 89, no. 1, pp. 94-101, 2009.
- [17] H. T. Thai and D. H. Choi, "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates," Composite Structures, vol. 101, pp. 332-340, 2013.
- [18] H. T. Thai and D. H. Choi, "A simple first-order shear deformation theory for laminated composite plates," Composite Structures, vol. 106, pp. 754-763, 2013.
- [19] A. Mahi, E. A. Adda Bedia, and A. Tounsi, "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates," Applied Mathematical Modelling, vol. 39, no. 9, pp. 2489-2508, 2015.
- [20] A. Mojahedin, M. Jabbari, A. R. Khorshidvand, and M. R. Eslami, "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory," Thin-Walled Structures, vol. 99, pp. 83-90, 2016.
- [21] A. Gupta and M. Talha, "Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates," Mechanics Based Design of Structures and Machines, vol. 46, no. 6, pp. 693-711, 2018.
- [22] S. Coskun, J. Kim, and H. Toutanji, "Bending, free vibration, and buckling analysis of functionally graded porous micro-plates using a general third-order plate theory," J. Compos. Sci., vol. 3, no. 1, pp. 1-22, 2019.
- [23] T. H. L. Bekkaye et al., "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory," Comput. Concr., vol. 26, no. 5, pp. 439-450, 2020.
- [24] A. R. Khorshidvand and A. R. Damercheloo, "Bending, axial buckling and shear buckling analyses of FG-porous plates based on a refined plate theory," Aust. J. Mech. Eng., pp. 1-20, 2021.
- [25] M. Dhuria, N. Grover, and K. Goyal, "Influence of porosity distribution on static and buckling responses of porous functionally graded plates," Structures, vol. 34, pp. 1458-1474, 2021.
- [26] A. M. Zenkour and M. H. Aljadani, "Buckling Response of Functionally Graded Porous Plates Due to a Quasi-3D Refined Theory," Mathematics, vol. 10, no. 4, pp. 1-20, 2022.
- [27] R. Kumar, A. Lal, B. N. Singh, and J. Singh, "Numerical simulation of the thermomechanical buckling analysis of bidirectional porous functionally graded plate using collocation meshfree method," Proc. Inst. Mech. Eng. Part L J. Mat. Des. Appl., vol. 236, no. 4, pp. 787-807, 2022.
- [28] N. D. Phan and J. N. Reddy, "Analysis of laminated composite plates using a higher‐order shear deformation theory," International Journal for Numerical Methods in Engineering, vol. 21, no. 12, pp. 2201-2219, 1985.
- [29] J. N. Reddy and N. D. Phan, "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory," Journal of Sound and Vibration, vol. 98, no. 2, pp. 157-170, 1985.
- [30] A. K. Noor, "Stability of multilayered composite plates," Fibre Science and Technology, vol. 8, no. 2, pp. 81-89, 1975.
- [31] Y. Yuan, K. Zhao, and K. Xu, "Enhancing the static behavior of laminated composite plates using a porous layer," Structural Engineering and Mechanics, vol. 72, no. 6, pp. 763-774, 2019.
- [32] Y. Z. Yüksel and Ş. D. Akbaş, "Hygrothermal stress analysis of laminated composite porous plates," Structural Engineering and Mechanics, vol. 80, no. 1, pp. 1-13, 2021.
- [33] F. Pathan, S. Singh, S. Natarajan, and G. Watts, "An analytical solution for the static bending of smart laminated composite and functionally graded plates with and without porosity," Archive of Applied Mechanics, vol. 92, no. 3, pp. 903-931, 2022.
Buckling Analysis of Porous Orthotropic Laminated Plates Within Higher-Order Shear Deformation Theory
Yıl 2023,
Cilt: 11 Sayı: 2, 408 - 422, 01.06.2023
Ferruh Turan
,
Suna Ulu
,
Yıldız Ünal
Öz
This study investigates the buckling behavior of porous orthotropic laminated plates using high-order shear deformation theory. The plate is under uniaxial and biaxial compressive loadings. Three different porosity distributions defined by specific functions throughout the plate thickness are considered. The stability equations are derived by the virtual work principle, and the critical buckling load relation is obtained by applying the Galerkin method to the partial differential equations obtained. The results obtained with the derived critical buckling load expression are verified by comparing with the appropriate results in the literature. A parametric analysis is performed to observe the sensitivity of the critical buckling load to shear deformation, porosity, orthotropy, loading factor, and different geometric properties.
Kaynakça
- [1] F. Turan, M. F. Başoğlu, and Z. Zerin, "Analytical solution for bending and buckling response of laminated non-homogeneous plates using a simplified-higher order theory," Challenge Journal of Structural Mechanics, vol. 3, no. 1, pp. 1-16, 2017.
- [2] K. Magnucki, M. Malinowski, and J. Kasprzak, "Bending and buckling of a rectangular porous plate," Steel and Composite Structures, vol. 6, no. 4, pp. 319-333, 2006.
- [3] E. Magnucka-Blandzi, "Axi-symmetrical deflection and buckling of circular porous-cellular plate," Thin-Walled Structures, vol. 46, no. 3, pp. 333-337, 2008.
- [4] M. Jabbari, E. F. Joubaneh, A. R. Khorshidvand, and M. R. Eslami, "Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression," International Journal of Mechanical Sciences, vol. 70, pp. 50-56, 2013.
- [5] A. Mojahedin, E. F. Joubaneh, and M. Jabbari, "Thermal and mechanical stability of a circular porous plate with piezoelectric actuators," Acta Mechanica, vol. 225, no. 12, pp. 3437-3452, 2014.
- [6] E. Farzaneh Joubaneh, A. Mojahedin, A. R. Khorshidvand, and M. Jabbari, "Thermal buckling analysis of porous circular plate with piezoelectric sensor-actuator layers under uniform thermal load," J. Sandw. Struct. Mater., vol. 17, no. 1, pp. 3-25, 2015.
- [7] M. Jabbari, M. Hashemitaheri, A. Mojahedin, and M. R. Eslami, "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials," Journal of Thermal Stresses, vol. 37, no. 2, pp. 202-220, 2014.
- [8] A. Gupta and M. Talha, "Stability characteristics of porous functionally graded plate in thermal environment," IOP Conf. Ser. Mater. Sci. Eng., vol. 330, no. 1, p. 012011, 2018.
- [9] M. Malikan, F. Tornabene, and R. Dimitri, "Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals," Mater. Res. Express, vol. 5, no. 9, 2018.
- [10] M. Panah, A. R. Khorshidvand, S. M. Khorsandijou, and M. Jabbari, "Pore pressure and porosity effects on bending and thermal postbuckling behavior of FG saturated porous circular plates," Journal of Thermal Stresses, vol. 42, no. 9, pp. 1083-1109, 2019.
- [11] F. Kiarasi, M. Babaei, K. Asemi, R. Dimitri, and F. Tornabene, "Three-dimensional buckling analysis of functionally graded saturated porous rectangular plates under combined loading conditions," Appl. Sci., vol. 11, no. 21, pp. 1-21, 2021.
- [12] J. N. Reddy, "A simple higher-order theory for laminated composite plates," J Appl Mech Trans ASME, vol. 51, no. 4, pp. 745-752, 1984.
- [13] M. Touratier, "An efficient standard plate theory," International Journal of Engineering Science, vol. 29, no. 8, pp. 901-916, 1991.
- [14] K. P. Soldatos, "A transverse shear deformation theory for homogeneous monoclinic plates," Acta Mechanica, vol. 94, no. 3-4, pp. 195-220, 1992.
- [15] M. Karama, K. S. Afaq, and S. Mistou, "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity," International Journal of Solids and Structures, vol. 40, no. 6, pp. 1525-1546, 2003.
- [16] M. Aydogdu, "A new shear deformation theory for laminated composite plates," Composite Structures, vol. 89, no. 1, pp. 94-101, 2009.
- [17] H. T. Thai and D. H. Choi, "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates," Composite Structures, vol. 101, pp. 332-340, 2013.
- [18] H. T. Thai and D. H. Choi, "A simple first-order shear deformation theory for laminated composite plates," Composite Structures, vol. 106, pp. 754-763, 2013.
- [19] A. Mahi, E. A. Adda Bedia, and A. Tounsi, "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates," Applied Mathematical Modelling, vol. 39, no. 9, pp. 2489-2508, 2015.
- [20] A. Mojahedin, M. Jabbari, A. R. Khorshidvand, and M. R. Eslami, "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory," Thin-Walled Structures, vol. 99, pp. 83-90, 2016.
- [21] A. Gupta and M. Talha, "Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates," Mechanics Based Design of Structures and Machines, vol. 46, no. 6, pp. 693-711, 2018.
- [22] S. Coskun, J. Kim, and H. Toutanji, "Bending, free vibration, and buckling analysis of functionally graded porous micro-plates using a general third-order plate theory," J. Compos. Sci., vol. 3, no. 1, pp. 1-22, 2019.
- [23] T. H. L. Bekkaye et al., "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory," Comput. Concr., vol. 26, no. 5, pp. 439-450, 2020.
- [24] A. R. Khorshidvand and A. R. Damercheloo, "Bending, axial buckling and shear buckling analyses of FG-porous plates based on a refined plate theory," Aust. J. Mech. Eng., pp. 1-20, 2021.
- [25] M. Dhuria, N. Grover, and K. Goyal, "Influence of porosity distribution on static and buckling responses of porous functionally graded plates," Structures, vol. 34, pp. 1458-1474, 2021.
- [26] A. M. Zenkour and M. H. Aljadani, "Buckling Response of Functionally Graded Porous Plates Due to a Quasi-3D Refined Theory," Mathematics, vol. 10, no. 4, pp. 1-20, 2022.
- [27] R. Kumar, A. Lal, B. N. Singh, and J. Singh, "Numerical simulation of the thermomechanical buckling analysis of bidirectional porous functionally graded plate using collocation meshfree method," Proc. Inst. Mech. Eng. Part L J. Mat. Des. Appl., vol. 236, no. 4, pp. 787-807, 2022.
- [28] N. D. Phan and J. N. Reddy, "Analysis of laminated composite plates using a higher‐order shear deformation theory," International Journal for Numerical Methods in Engineering, vol. 21, no. 12, pp. 2201-2219, 1985.
- [29] J. N. Reddy and N. D. Phan, "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory," Journal of Sound and Vibration, vol. 98, no. 2, pp. 157-170, 1985.
- [30] A. K. Noor, "Stability of multilayered composite plates," Fibre Science and Technology, vol. 8, no. 2, pp. 81-89, 1975.
- [31] Y. Yuan, K. Zhao, and K. Xu, "Enhancing the static behavior of laminated composite plates using a porous layer," Structural Engineering and Mechanics, vol. 72, no. 6, pp. 763-774, 2019.
- [32] Y. Z. Yüksel and Ş. D. Akbaş, "Hygrothermal stress analysis of laminated composite porous plates," Structural Engineering and Mechanics, vol. 80, no. 1, pp. 1-13, 2021.
- [33] F. Pathan, S. Singh, S. Natarajan, and G. Watts, "An analytical solution for the static bending of smart laminated composite and functionally graded plates with and without porosity," Archive of Applied Mechanics, vol. 92, no. 3, pp. 903-931, 2022.