BibTex RIS Kaynak Göster

Türkiye’deki Başlıca Ekonomi Serilerinin ARFIMA Modelleri ile Tahmini ve Öngörülebilirliği

Yıl 2006, Sayı: 11, 120 - 149, 01.06.2006

Öz

Bu çalışmada Türkiye’nin 1987.1-2005.8 dönemini kapsayan 224 veriden oluşan bazı önemli değişkenlerin oluşturduğu serilerin ARFIMA uzun hafızalı ekonometrik model çerçevesinde analizleri yapılarak, bu serilerin ARFIMA modeline uygunluğu incelenmiştir. Reel altın fiyatları (AltınR), enflasyon (Enf), altı aylık faiz oranları (Faiz6) ve reel para arzından (RM2) oluşan seriler ARFIMA modeline göre test edilerek sonuçlar üç tahmin yöntemine göre yorumlanmıştır. Buna göre Maksimum Olabilirlik ve Modifiye Profilli Olabilirlik yöntemleri ile yapılan tahminlerde bütün serilerin uzun hafızalı olduğu ve kullanılan yöntemin doğru olduğu sonucu çıkmaktadır. Oysa Doğrusal Olmayan En Küçük Kareler yöntemi ile yapılan tahminde Enf serisi dışındaki serilerin uzun hafızalı olmadığı, Enf serisinin ise bu tahmin yöntemine göre de uzun hafızalı olduğu ve kullanılan yöntemin doğru olduğu şeklinde bir sonuç ortaya çıkmaktadır. Tahmin sonuçlarına dayanarak Enf serisinin kesin olarak uzun hafızalı olduğu tespit edilmiştir

Kaynakça

  • Agiakloglou, C., P. Newbold ve M. Wohar, 1992, Bias in an Estimator of the Fractional
  • Difference Parameter, Journal of Time Series Analysis, 14, 235-246.
  • Aklan, Hüsnü, 1996, Altın: Dünya ve Türkiye Gerçekleri ve Bankacılık Sektörü, Bankacılar Dergisi, s:16.
  • Baillie, R.T., 1996, Long Memory Processes and Fractional Integration in Econometrics, Journal of Econometrics, 73, 5-59.
  • Bank of Sweden, 2003, Time-Series Econometrics: Cointegration and Autoregressive
  • Conditional Heteroskedasticity, Advanced Information on the Bank of Sweden Prize in Economic Sciences inMemory of Alfred Nobel, The Royal Swedish Academy of Sci- ences.
  • Beran, J., 1995, Maximum Likelihood Estimation of the Differencing Parameter for Invert- ible Short and Long Memory Autoregressive Integrated Moving Average Models, J. R. Statist. Soc. B, 57, No. 4, 659-672.
  • Bhardwaj, G. ve N.R. Swanson, 2003, An Empirical Investigation of the Usefulness of ARFIMA Models For Predicting Macroeconomic and Financial Time Series, Working Pa- per, Rutgers University.
  • Bos, C.S., P.H. Franses ve M. Ooms, 2002, Inflation, Forecast Intervals and Long
  • Memory Regression Models, International Journal of Forecasting, 18, 243-264.
  • Bowerman, BruceL. ve O’Connel, Richard T.. Forecasting&Time Series, Boston: Duxbury Ba- sım 340.
  • Box. G., ve G. Jenkins, 1976, Time Series Analysis, Forecastingand Control, Holden Day, SanFrancisco.
  • Cheung, Y.-W., 1993, Tests for Fractional Integration: A Monte Carlo Investigation, Journal of Time Series Analysis, 14, 331-345.
  • Clements, M.P. ve D.F. Hendry,1998, Forecasting Economic Time Series. Cambridge: Cam- bridge University Press. (ISBN 0-521-634806).
  • Clements, M.P. ve J. Smith, 2002, Evaluating Multivariate Forecast Densities: A Compari- son of Two Approaches, International Journal of Forecasting,18, 397-407.
  • Corradi, V. ve N.R. Swanson, 2002, A Consistent Test for Out of Sample Nonlinear Predic- tive Ability, Journal of Econometrics, 110, 353-381. 23.
  • Diebold, F. ve A Inoue, 2001, Long Memory and Regime Switching, Journal of Economet- rics, 105, 131-159.
  • Ding, Z, C.W.J. Granger ve R.F. Engle, 1993, A Long Memory Property of Stock Returns and a New Model, Journal of Empirical Finance, 1, 83-106.
  • Dittman, I. ve C.W.J. Granger, 2002, Properties of Nonlinear Transformations of Frac- tionally Integrated Processes, Journal of Econometrics, 110, 113-133.
  • Doornik, J.A. ve D.F. Hendry, 2001, GiveWin: An Interface to Empirical Modelling (2nd edition), London: Timberlake Consultants Press. (ISBN 0-9533394-3-2) (1st ed. 1996, 2nd ed. 1999).
  • Doornik, J.A. ve M. Ooms, 2003, Computational Aspects of Maximum Likelihood Estimation of Autoregressive Fractionally Integrated Moving Average Models, Computational Statistics and DataAnalysis, 42, 333-348.
  • Doornik, J.A. ve M. Ooms, 2004, Inference and Forecasting for ARFIMA Models With an Application to US and UK Inflation, Studies in Nonlinear Dynamics&Econometrics.(Vol 8: 2, 2004)
  • Harvey, D.I., S.J. Leybourne ve P. Newbold, 1997, Tests for Forecast Encompassing, Journal of Business and Economic Statistics, 16, 254-259.
  • Hauser, M.A., 1999, Maximum Likelihood Estimatörs for ARMA and ARFIMA Models: A monte Carlo Study, Journal of Statistical Planning and Inference 80, 229-255
  • Hendry, D.F. ve J.A., Doornik, 2001, Empirical Econometric Modelling Using PcGive Volumes I, II and III London: Timberlake Consultants Press. (Vol I: 2nd ed. 1999, 1st ed. 1996; version 8: 1994, version 7: 1992) (Vol II: 2nd ed. 1999, 1st ed. 1997; version 8: 1994).
  • Hosking, J., 1981, Fractional Differencing, Biometrica, 68, 165-76.
  • Keyder, N., 2002, Para Teori- Politika-Uygulama, Ankara: Bizim Büro Basımevi, 8. Baskı, 189.
  • Kutlar A., 2000, Ekonometrik Zaman Serileri, Ankara: Gazi Kitabevi, 49.
  • Kutlar A., 2005, Uygulamalı Ekonometri, Ankara: Nobel Basım Dağıtım, 251-294.
  • Parasız, İ., 2002, Enflasyon Kriz Ayarlamalar, Bursa: Ezgi Kitabevi, 2. Baskı, 112.
  • Parasız, İ., 2005, Para Banka ve Finansal Piyasalar, Bursa: Ezgi Kitabevi, 8. Baskı,63.
  • Robinson, P., 1994, Time Series With Strong Depence, In C.A. Sims (Ed.), Advances in Econometrics, Sixt World Congress: Cambridge University, 47-95
  • Robinson, P., 1995, Log-Periodogram Regression of Time Series with Long Range
  • Dependence, The Annals of Statistics, 23, 1048- 1072.
  • Sowell, F.B., 1992, Maximum Likelihood Estimation of Stationary Univariate Fractionally Integrated Time Series Models, Journal of Econometrics, 53, 165-188. 25.
  • Aydın, S, ve K. Metin Özcan, 2005, “Faiz Oranları OynaklığınınModellenmesinde Ardışık Bağlanımlı Koşullu DeğişenVaryans YaklaşımlarınınKarşılaştırılarak Değerlendirilmesi” ODTÜ Gelişme Dergisi, 32 (Haziran), 1-20.
  • Şahin, H., 1998, Türkiye Ekonomisi, Bursa: Ezgi Kitabevi, 5. Baskı, 294.
  • Yıldırım, K. ve D. Karaman, 2003, Makroekonomi, Eskişehir: Eğitim, Sağlık ve Bilimsel Araş- tırma Çalışmaları Vakfı, 59.
  • Çarıkçı, E., “Türkiye’de Ekonomik Gelişmeler (20 Ocak 2004)”, http://www.cankaya.edu.tr/turkce/yayinlar/h2g1.html (03.11.2005)
  • Demir, R., “Türkiye Kuyumculuk Sektöründe Durum Analizi”, http://www.turkishtime.org/sector_2/118_tr.asp (26.12.2005)
  • Demirgil, H., “Türkiye’de Para Politikaları”, 10.06.2003, http://groups.yahoo.com/group/ueuluslararasiiktisat/message/79 (26.12.2005)
  • Özker, A. N., “Son Dönem Kamu Kesimi Borçlanma Gereği Rasyoları ve Bütçenin Monetizasyonu”, http://www.academical.org/dergi/MAKALE/9_10sayi/s9ozker1.htm, Akademik Araştırmalar Dergisi Sayı: 9-10 (12.11.2005)

Estimation and Predictability of Economic Series in Turkey with ARFIMA Models

Yıl 2006, Sayı: 11, 120 - 149, 01.06.2006

Öz

In this study, economic series of certain significant variables with a data
base of 224, covering the period of 1987.1-2005.8 in Turkey are analysed and an assesment
is made with respect to their consistency with ARFIMA long memory
econometric model. The series were composed of real gold prices (AltınR), inflation
(Enf), 6 months interest rates (Faiz6) and real money supply (RM2) and after being
tested under ARFIMA model, the results were interpreted by using three different
methods of estimation. Estimations made in accordance with Maximum Likelihood
and Modified Modified Profile Likelihood methods lead us to conclude that all of the
series were long memory and the method used was proper. Howover, estimation made
by using Non-linear Least Squares method, we found out that expect for Enf other
series were not long memory; whereas for Enf series this method was proper. Our
results clearly indicated that Enf series was long memory.

Kaynakça

  • Agiakloglou, C., P. Newbold ve M. Wohar, 1992, Bias in an Estimator of the Fractional
  • Difference Parameter, Journal of Time Series Analysis, 14, 235-246.
  • Aklan, Hüsnü, 1996, Altın: Dünya ve Türkiye Gerçekleri ve Bankacılık Sektörü, Bankacılar Dergisi, s:16.
  • Baillie, R.T., 1996, Long Memory Processes and Fractional Integration in Econometrics, Journal of Econometrics, 73, 5-59.
  • Bank of Sweden, 2003, Time-Series Econometrics: Cointegration and Autoregressive
  • Conditional Heteroskedasticity, Advanced Information on the Bank of Sweden Prize in Economic Sciences inMemory of Alfred Nobel, The Royal Swedish Academy of Sci- ences.
  • Beran, J., 1995, Maximum Likelihood Estimation of the Differencing Parameter for Invert- ible Short and Long Memory Autoregressive Integrated Moving Average Models, J. R. Statist. Soc. B, 57, No. 4, 659-672.
  • Bhardwaj, G. ve N.R. Swanson, 2003, An Empirical Investigation of the Usefulness of ARFIMA Models For Predicting Macroeconomic and Financial Time Series, Working Pa- per, Rutgers University.
  • Bos, C.S., P.H. Franses ve M. Ooms, 2002, Inflation, Forecast Intervals and Long
  • Memory Regression Models, International Journal of Forecasting, 18, 243-264.
  • Bowerman, BruceL. ve O’Connel, Richard T.. Forecasting&Time Series, Boston: Duxbury Ba- sım 340.
  • Box. G., ve G. Jenkins, 1976, Time Series Analysis, Forecastingand Control, Holden Day, SanFrancisco.
  • Cheung, Y.-W., 1993, Tests for Fractional Integration: A Monte Carlo Investigation, Journal of Time Series Analysis, 14, 331-345.
  • Clements, M.P. ve D.F. Hendry,1998, Forecasting Economic Time Series. Cambridge: Cam- bridge University Press. (ISBN 0-521-634806).
  • Clements, M.P. ve J. Smith, 2002, Evaluating Multivariate Forecast Densities: A Compari- son of Two Approaches, International Journal of Forecasting,18, 397-407.
  • Corradi, V. ve N.R. Swanson, 2002, A Consistent Test for Out of Sample Nonlinear Predic- tive Ability, Journal of Econometrics, 110, 353-381. 23.
  • Diebold, F. ve A Inoue, 2001, Long Memory and Regime Switching, Journal of Economet- rics, 105, 131-159.
  • Ding, Z, C.W.J. Granger ve R.F. Engle, 1993, A Long Memory Property of Stock Returns and a New Model, Journal of Empirical Finance, 1, 83-106.
  • Dittman, I. ve C.W.J. Granger, 2002, Properties of Nonlinear Transformations of Frac- tionally Integrated Processes, Journal of Econometrics, 110, 113-133.
  • Doornik, J.A. ve D.F. Hendry, 2001, GiveWin: An Interface to Empirical Modelling (2nd edition), London: Timberlake Consultants Press. (ISBN 0-9533394-3-2) (1st ed. 1996, 2nd ed. 1999).
  • Doornik, J.A. ve M. Ooms, 2003, Computational Aspects of Maximum Likelihood Estimation of Autoregressive Fractionally Integrated Moving Average Models, Computational Statistics and DataAnalysis, 42, 333-348.
  • Doornik, J.A. ve M. Ooms, 2004, Inference and Forecasting for ARFIMA Models With an Application to US and UK Inflation, Studies in Nonlinear Dynamics&Econometrics.(Vol 8: 2, 2004)
  • Harvey, D.I., S.J. Leybourne ve P. Newbold, 1997, Tests for Forecast Encompassing, Journal of Business and Economic Statistics, 16, 254-259.
  • Hauser, M.A., 1999, Maximum Likelihood Estimatörs for ARMA and ARFIMA Models: A monte Carlo Study, Journal of Statistical Planning and Inference 80, 229-255
  • Hendry, D.F. ve J.A., Doornik, 2001, Empirical Econometric Modelling Using PcGive Volumes I, II and III London: Timberlake Consultants Press. (Vol I: 2nd ed. 1999, 1st ed. 1996; version 8: 1994, version 7: 1992) (Vol II: 2nd ed. 1999, 1st ed. 1997; version 8: 1994).
  • Hosking, J., 1981, Fractional Differencing, Biometrica, 68, 165-76.
  • Keyder, N., 2002, Para Teori- Politika-Uygulama, Ankara: Bizim Büro Basımevi, 8. Baskı, 189.
  • Kutlar A., 2000, Ekonometrik Zaman Serileri, Ankara: Gazi Kitabevi, 49.
  • Kutlar A., 2005, Uygulamalı Ekonometri, Ankara: Nobel Basım Dağıtım, 251-294.
  • Parasız, İ., 2002, Enflasyon Kriz Ayarlamalar, Bursa: Ezgi Kitabevi, 2. Baskı, 112.
  • Parasız, İ., 2005, Para Banka ve Finansal Piyasalar, Bursa: Ezgi Kitabevi, 8. Baskı,63.
  • Robinson, P., 1994, Time Series With Strong Depence, In C.A. Sims (Ed.), Advances in Econometrics, Sixt World Congress: Cambridge University, 47-95
  • Robinson, P., 1995, Log-Periodogram Regression of Time Series with Long Range
  • Dependence, The Annals of Statistics, 23, 1048- 1072.
  • Sowell, F.B., 1992, Maximum Likelihood Estimation of Stationary Univariate Fractionally Integrated Time Series Models, Journal of Econometrics, 53, 165-188. 25.
  • Aydın, S, ve K. Metin Özcan, 2005, “Faiz Oranları OynaklığınınModellenmesinde Ardışık Bağlanımlı Koşullu DeğişenVaryans YaklaşımlarınınKarşılaştırılarak Değerlendirilmesi” ODTÜ Gelişme Dergisi, 32 (Haziran), 1-20.
  • Şahin, H., 1998, Türkiye Ekonomisi, Bursa: Ezgi Kitabevi, 5. Baskı, 294.
  • Yıldırım, K. ve D. Karaman, 2003, Makroekonomi, Eskişehir: Eğitim, Sağlık ve Bilimsel Araş- tırma Çalışmaları Vakfı, 59.
  • Çarıkçı, E., “Türkiye’de Ekonomik Gelişmeler (20 Ocak 2004)”, http://www.cankaya.edu.tr/turkce/yayinlar/h2g1.html (03.11.2005)
  • Demir, R., “Türkiye Kuyumculuk Sektöründe Durum Analizi”, http://www.turkishtime.org/sector_2/118_tr.asp (26.12.2005)
  • Demirgil, H., “Türkiye’de Para Politikaları”, 10.06.2003, http://groups.yahoo.com/group/ueuluslararasiiktisat/message/79 (26.12.2005)
  • Özker, A. N., “Son Dönem Kamu Kesimi Borçlanma Gereği Rasyoları ve Bütçenin Monetizasyonu”, http://www.academical.org/dergi/MAKALE/9_10sayi/s9ozker1.htm, Akademik Araştırmalar Dergisi Sayı: 9-10 (12.11.2005)
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA89MS67KH
Bölüm Makaleler
Yazarlar

Aziz Kutlar Bu kişi benim

Tuba Turgut Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2006
Yayımlandığı Sayı Yıl 2006 Sayı: 11

Kaynak Göster

APA Kutlar, A., & Turgut, T. (2006). Türkiye’deki Başlıca Ekonomi Serilerinin ARFIMA Modelleri ile Tahmini ve Öngörülebilirliği. Kocaeli Üniversitesi Sosyal Bilimler Dergisi(11), 120-149.

**