Derleme
BibTex RIS Kaynak Göster

BEYNİMİZİN MÜZİK FİZYOLOJİSİ

Yıl 2017, Cilt: 12 Sayı: 1, 35 - 44, 04.04.2017
https://doi.org/10.17517/ksutfd.296621

Öz




               Özet:




                Müzik, insanoğlu
var olduğundan bu yana kitle iletişimi için görsel ve işitsel bir medya görevi
görmüştür. Özellikle müzikle tedavinin binlerce yıllık bir geçmişi vardır ve
günümüzde dünyaca kabul görmüş ayrı bir uzmanlık alanı olarak karşımıza
çıkmaktadır.



                Son 20-25 yılda müziğin;
nörotransmitterler, hormonlar, sitokinler, lenfositler, vital bulgular ve
immünoglobülinler üzerindeki etkileri hakkında pek çok çalışma yapılmıştır ve özellikle
son on yıl içinde de hastalarda müziğin psikolojik ve nörolojik etkilerini
inceleyen ve müziğin sağlığa olan faydalarıyla ilgili artan bir çalışma vardır.
Şimdiye kadar yapılan araştırmalar, bağışıklık cevabı ile psikolojik ve
nörolojik hastalıklardaki müziğin etkisinin özellikle stres yolları üzerindeki
önemli etkisinden kaynaklandığını işaret etmektedir. Bununla birlikte, bu
araştırmaların karşılaştığı çeşitli zorlukları vardır: a) Müziğin nörolojik ve
immünolojik etkisinin tam olarak sağlanması için muhtemel mekanizmalar hakkında
çok az bilgi vardır; b) Çalışmalar, söz konusu biyolojik belirteçlerin vücudun
diğer fizyolojik veya metabolik aktiviteleri ile olan etkileşimini göz önüne almaksızın,
biyolojik belirteçleri izole etmeye ve bu da müziğin etkisinin belirsiz bir
şekilde anlaşılmasına yol açmaktadır; c) Müzikal geçişlerin hangi yönlerinin
biyolojik belirteçlerdeki değişikliklerden sorumlu olduğu belirlenmeksizin
geniş bir faaliyet yelpazesini kapsayan farklı stres türleri ve müzik arasında
yapılan ayrımlar açık bir şekilde yeterince tanımlanmamaktadır. Bu çerçevede,
araştırmalarda müzikal ve stresle ilgili değişkenlerin düzenli bir
taksonomisinin geliştirilmesi ve vücut üzerindeki etkisine karışan geniş
yolların izlenmesine yönelik bir çerçeve sağlayan, yeni bir modellemenin
oluşturulması kaçınılmazdır.



                Mevcut çalışmada
son yıllarda bu konuda yapılmış olan ve müziğin tedavi edici etkisi ile bazı
hastalıkları tetikleyici rolü ve bunların muhtemel mekanizmaları üzerinde
durulmuştur.




                Anahtar
Kelimeler:
Müzik, Fizyoloji, Beyin, Epilepsi, Terapi.




 




 



                Abstract:




                Music has been a
visual and audiovisual media for mass communication since mankind existed.
Therapy with music, in particular, has thousands of years of history, and today
comes as a distinctly accepted field of expertise.



                Music in the last
20-25 years; many studies have been carried out on neurotransmitters, hormones,
cytokines, lymphocytes, vital findings and immunoglobulins, and especially in
the past decade there has been an increasing study on psychological and
neurological effects of music in patients and the health benefits of music.
Studies up to now indicate that the effect of the immune response and the music
in psychological and neurological disorders are mainly due to the significant
effect on stress pathways. However, these investigations face several
difficulties: a) There is little information about possible mechanisms to
provide neurological and immunological effects of music completely; b) Studies
have attempted to isolate biological indicators, notwithstanding the
interaction of biological indicators with other physiological or metabolic
activities of the body, which leads to an unclear understanding of the effect
of music; c) The distinctions between different types of stress and music,
including a wide spectrum of activities, without determining which aspects of
musical passages are responsible for changes in biological markers, are not
clearly defined. In this context, it is inevitable to establish a new model
that will provide a framework for the development of a regular taxonomy of
musical and stress-related variables in research and for monitoring the broader
pathways involved in the influence on the body.



                The present study
focuses on the therapeutic effect of music and its role in triggering certain
diseases and their possible mechanisms in recent years.




    Key Words: Music, Physiology, Brain, Epilepsy, Therapy.




Kaynakça

  • 1. Azizi SA. Brain to music to brain! Neuroscience Letters 2009; 459: 1–2.
  • 2. Ünal FS. Müziğin ses olarak insana fizyolojik etkisi. Kültür Evreni Dergisi 2014; 6(22):118-125, http://www.kulturevreni.com/22-118.pdf.
  • 3. Lök N ve Bademli K. Alzheimer hastalarında müzik terapinin etkinliği: Sistematik derleme. Psikiyatride Güncel Yaklaşımlar 2016; 8(3): 266-274
  • 4. Sezer F. Öfke ve psikolojik belirtiler üzerine müziğin etkisi. Uluslararası İnsan Bilimleri Dergisi, 2011; 8(1): 1472-1493.
  • 5. Erişim: https://www.ncbi.nlm.nih.gov/pubmed/
  • 6. Erişim: https://www.scopus.com/
  • 7. Karamızrak N. Ses ve Müziğin Organları İyileştirici Etkisi. Koşuyolu Heart Journal 2014; 17(1): 54-57.
  • 8. Covington H, Crosby C. Music therapy as a nursing intervention. J Psychosoc Nurs Ment Health Serv 1997; 35:34-7.
  • 9. White JM. State of the science of music interventions. Critical care and perioperative practice. Crit Care Nurs Clin North Am 2000; 12: 219-25.
  • 10. Covington H. Therapeutic music for patients with psychiatric disorders. Holist Nurs Pract 2001; 15:59-69.
  • 11. Selvendran S, Aggarwal N, Vassiliou V. Tuning the heart with music. J R Soc Med 2015; 108: 462-4.
  • 12. Mofredj A, Alaya S, Tassaioust K, Bahloul H, Mrabet A. Music therapy, a review of the potential therapeutic benefits for the critically ill. J Crit Care 2016; 35: 195-9.
  • 13. Ko YL and Lin PC. The effect of using a relaxation tape on pulse, respiration, blood pressure and anxiety levels of surgical patients, Journal of Clinical Nursing 2012; 21 (5-6): 689–697.
  • 14. Trappe HJ. The effects of music on the cardiovascular system and cardiovascular health. Heart 2010; 96: 1868-71.
  • 15. Uggla L, Bonde LO, Svahn B, Remberger M, Wrangsjö B, Gustafsson B. Music therapy can lower the heart rates of severely sick children. Acta Paediatr 2016; 105: 1225-30.
  • 16. Abedi B, Abbasi A, Goshvarpour A. Investigating the effect of traditional Persian music on ECG signals in young women using wavelet transform and neural networks. Anatol J Cardiol 2017; 17 (1). doi: 10.14744/AnatolJCardiol.2016.7436.
  • 17. Malik M and Camm AJ. Components of heart rate variability—what they really mean and what we reallymeasure. The American Journal of Cardiology1993; 72 (11): 821–822.
  • 18. Miura K, MatsumuraK, NakamuraY, Kurokawa H, Kajiyama M, Takata Y. Suppression of cardiac sympathetic nervous system during dental surgery in hypertensive patients. Hypertension Research 2000; 23(3): 207–212.
  • 19. Vanderlei LCM, Pastre CM, HoshiRA, de Carvalho TD, de Godoy MF. Basic notions of heart rate variability and its clinical applicability. Brazilian Journal of Cardiovascular Surgery 2009; 24 (2): 205–217.
  • 20. Valenti VE. The recent use of heart rate variability for research. Journal of Human Growth and Development 2015; 25(2): 137–140.
  • 21. Santana MDR, Martiniano EC, Monteiro LRL, Valenti VE, Garner DM, Sorpreso ICE, Abreu LC. Musical auditory stimulation ınfluences heart rate autonomic responses to endodontic treatment. Evidence-Based Complementary and Alternative Medicine 2017; 1-7 (https://doi.org/10.1155/2017/4847869).
  • 22. Zatorre RJ. Pitch perception of complex tones and human temporal-lobe function. J Acoust Soc Am 1988; 84(2): 566-72.
  • 23. Peretz I, Brain specialization for music. New evidence from congenital amusia. Ann NY Acad Sci 2001; 930(6):153-65.
  • 24. Tramo MJ, Cariani PA. Neurobiology of harmony perception. In: Peretz I, Zatorre RJ, eds. The Cognitive Neuroscience of Music. New York: Oxford University Press; 2003. p. 127–151.
  • 25. Wilson SJ, Pressing JL, Wales RJ. Modelling rhythmic function in a musician post-stroke. Neuropsychologia 2002; 40(8): 1494-505.
  • 26. Janata P, Grafton ST. Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nature Neuroscience 2003; 6: 682 – 687.
  • 27. Tervaniemi M, Medvedev SV, Alho K, Pakhomov SV, Roudas MS, Van Zuijen TL, et al. Lateralized automatic auditory processing of phonetic versus musical information: a PET study. Hum Brain Mapp 2000; 10 (2): 74–79.
  • 28. Stewart, L, von Kriegstein K, Warren JD, Griffiths TD. Music and the brain: disorders of musical listening. Brain 2006; 129: 2533–2553.
  • 29. Zatorre RJ, Samson S. Role of the right temporal neocortex in retention of pitch in auditory short-term memory, Brain (A Journal of Neurology; Oxford University Press), 1991; 2403-2417.
  • 30. Griffiths TD, Johnsrude I, Dean JL, Green GGR. A common neural substrate for the analysis of pitch and duration pattern in segmented sound? NeuroReport 1999; 10: 3825-3830.
  • 31. Radvansky GA, Fleming KJ, Simmons JA. Timbre reliance in nonmusicians’ and musicians’ memory for melodies. Music Perception, 1995; 13: 127–140.
  • 32. Zatorre RJ, Halpern AR, Perry DW, Meyer E, Evans AC. Hearing in the Mind's Ear: A PET Investigation of Musical Imagery and Perception, Journal of Cognitive Neuroscience 1996; 8(1): 29-46.
  • 33. Blood AJ, Zatorre RJ. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci USA 2001; 98(20):11818-11823.
  • 34. Bigand E, Poulin-Charronnat B. Are we "experienced listeners"? A review of the musical capacities that do not depend on formal musical training. Cognition 2006; 100(1): 100-30.
  • 35. Demirkale SY, Aşcıgil M. Sağlıklı kentler ve yapılarla ilgili Türkiye’nin gürültü politikası. VIII. Ulusal Tesisat Mühendisliği Kongresi, 25-28/10/2007, TESKON 2007.
  • 36. MEB. Gürültünün etkileri. Millî Eğitim Bakanlığı, Aile ve Tüketici Hizmetleri, Ankara, 2012; 1-25.
  • 37. Loewy J, Hallan C, Friedman E, Martinez C. Sleep/sedation in children undergoing EEG testing: a comparison of chloral hydrate and music therapy. Am J Electroneurodiagnostic Technol 2006; 46(4): 343-355.
  • 38. Cepeda MS, Carr DB, Lau J, Alvarez H. Music for pain relief. In: The Cochrane Collaboration, Cepeda MS, ed. Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley & Sons, Ltd; 2006. http://onlinelibrary.wiley.com.proxy.library.vanderbilt.edu/o/cochrane/clsysrev/articles/CD004843/abstract.html. Accessed November 3, 2010.
  • 39. Bradt J, Dileo C. Music for stress and anxiety reduction in coronary heart disease patients. In: The Cochrane Collaboration, Bradt J, ed. Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley&Sons, Ltd; 2009. http: // onlinelibrary. wiley. com. proxy. library. vanderbilt. edu/ o/ cochrane/ clsysrev/ articles/ CD006577/ abstract. html. Accessed November 2, 2010.
  • 40. Conrad C, Niess H, Karl-Walter J, Christiane JB, Wolfgang HH, Lorenz W. Overture for growth hormone: Requiem for interleukin-6? Crit Care Med 2007. http://www.ncbi.nlm.nih.gov.proxy.library. vanderbilt.edu/pubmed/18090379. Accessed November 3, 2010.
  • 41. Rubel E, Popper A, Fay R. Development of the auditory system. New York: Springer; 1998.
  • 42. Graziani LJ, Weitzman ED, Velasco MS. Neurologic maturation and auditory evoked responses in low birth weight infants. Pediatrics 1968; 41(2): 483-494.
  • 43. Starr A, Amlie RN, Martin WH, Sanders S. Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics. 1977; 60(6): 831-839.
  • 44. Deliege I, Sloboda J. Musical beginnings: Origins and development of musical competence. New York, Oxford; 1996.
  • 45. Trehub SE. The developmental origins of musicality. Nat Neurosci 2003; 6(7): 669-673.
  • 46. Toker E, Kömürcü N. Effect of Turkish classical music on prenatal anxiety and satisfaction: A randomized controlled trial in pregnant women with pre-eclampsia. Complementary Therapies in Medicine 2017; 30: 1–9.
  • 47. Grimwade JC, Walker DW, Bartlett M, Gordon S, Wood C. Human fetal heart rate change and movement in response to sound and vibration. Am J Obstet Gynecol 1971; 109, 86-90.
  • 48. Goodlin RC, Lowe EW. Multiphasic fetal monitoring. Am J Obstet Gynecol 1974; 119, 340-357.
  • 49. Trudinger BJ, Boylan P. Antepartum fetal heart rate monitoring: value of sound stimulation. Obstet Gynecol 1980; 55, 265-268.
  • 50. Lecanuet JP, Granier-Deferre C, Cohen H, Le Houezec R, Busnel MC. Fetal responses to acoustic stimulation depends on heart rate variability pattern, stimulus intensity and repetition. Early Hum Dev 1986; 13, 269-283.
  • 51. Shahidullah S, Hepper, PG. The developmental origins of fetal responsiveness to an acoustic stimulus. J Infant Reprod Psychol 1993; 11, 135-142.
  • 52. Shahidullah S, Hepper PG. Frequency discrimination by the fetus. Early Hum Dev 1994; 36(1): 13-26.
  • 53. Kisilevsky S, Hains SMJ, Jacquet AY, Granier-Deferre C, Lecanuet JP. Maturation of fetal responses to music. Dev Sci 2004; 7(5): 550-559.
  • 54. Jardri R, Pins D, Houfflin-Debarge V, Chaffiotte C, Rocourt N, Pruvo JP, et al. Fetal cortical activation to sound at 33 weeks of gestation: a functional MRI study. Neuroimage. 2008;42(1):10-18.
  • 55. Cheour M, Ceponiene´ R, Leppa¨nen P, et al. The auditory sensory memory trace decays rapidly in newborns. Scand J Psychol 2002;43(1):33-39.
  • 56. Pittau F, Tinuper P, Bisulli F, Naldi I, Cortelli P, Bisulli A, et al. Videopolygraphic and functional MRI study of musicogenic epilepsy. A case report and literatüre review. Epilepsy Behav. 2008; 13: 685–692.
  • 57. Mrocz IA, Karni A, Haut S, Lantos G, Liu G. fMRI of triggerable aurae in musicogenic epilepsy. Neurology 2003; 60: 705–709.
  • 58. Diekmann V, Hoppner AC. Cortical network dysfunction in musicogenic epilepsy reflecting the role of snowballing emotional processes in seizure generation: an fMRIEEG study. Epileptic Disord 2014; 16 (1): 31–44.
  • 59. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W. et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 2010; 51: 676–685.
  • 60. Maguire MJ. Music and epilepsy: A critical review. Epilepsia 2012; 53(6): 947–961.
  • 61. Al-Tajir G., Starr MS. Anticonvulsant action of SCH 23390 in the striatum of the rat. Eur J Pharmacol. 1990; 191: 329–336.
  • 62. Starr MS. The role of dopamine in epilepsy. Synapse 1996; 22: 159–194.
  • 63. Deransart C, Riban VLTB, Marescaux C, Depaulis A. Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat. Neuroscience 2000; 100: 335–344.
  • 64. Bozzi Y, Vallone D, Borrelli E. Neuroprotective role of dopamine against hippocampal cell death. J Neurosci 2000; 20: 8643–8649.
  • 65. Kaneyuki H, Yokoo H, Tsuda A, Yoshida M, Mizuki Y, Yamada, M. Psychological stress increases dopamine turnover selectively in mesoprefrontal dopamine neurons of rats: reversal by diazepam. Brain Res. 1991; 557: 154–161.
  • 66. Fujinawa A, Kawai I, Ohashi H, Kimura S. A case of musicogenic epilepsy. Folia Psychiatr Neurol 1977; 31: 463–472.
  • 67. Vizioli R. Musicogenic epilepsy. Int J Neurosci 1989; 47: 159–164.
  • 68. Poskanzer DC, Brown AE, Miller H. Musicogenic epilepsy caused only by a discrete frequency band of church bells. Brain 1962; 85: 77.
  • 69. Vercelletto P. Case of musicogenic epilepsy; presentation of a case of temporal seizures and discussion on the origin. Rev Neurol 1953; 88: 379–382.
  • 70. Brien SE, Murray TJ. Musicogenic epilepsy. Can Med Assoc J 1984; 13:1255–1258.
  • 71. Ogunyemi AO, Breen H. Seizures induced by music. Behav Neurol 1993; 6:15–18.
  • 72. Sutherling WW, Hershman LM, Miller JQ, Lee SI. Seizures induced by playing music. Neurology 1980; 30: 1001–1004.
  • 73. Le Chevalier B, Eustache F, Rossa Y. Music and its association with epileptic disorders. In: Altenmüller E, Finger S, Boller F, eds. Music, Neurology and Neuroscience: Evolution, the Musical Brain, Medical Conditions and Therapies. 1st ed. Amsterdam, Nederlands: Elseiver; 2015. Vol. 217, p. 107-120.
  • 74. Wieser HG, Wittlieb-Veerport E. Tone discrimination in patients with temporal lobe lesions. In: Steinberg R, ed. Music and the mind machine: the psychophysiology and psychopathology of the sense of music. Berlin: Springer; 1995. p. 115–26.
  • 75. Wieser HG, Hungerbuhler H, Siegel AM, Buck A. Musicogenic epilepsy: review of the literature and case report with ictal single photon emission computed tomography. Epilepsia 1997; 38:200–7.
  • 76. Alajouanine T. Aphasia and artistic realization. Brain 1948; 71: 229–41.
  • 77. Lennox WG. Epilepsy and related disorders. In: J and A Churchill eds., First Edition, Later Printing edition, London: Little, Brown and Company; 1960. p. 362.
  • 78. Fang R, Ye S, Huangfu J, Calimag DP. Music therapy is a potential intervention for cognition of Alzheimer’s Disease: a mini-review. Translational Neurodegeneration 2017; 6: 1-8.
  • 79. Fachner J. Jazz, improvisation and a social pharmacology of music. Music Therapy Today 2003; Vol. IV (3): 1-26.
  • 80. Ün İ. Farmakoloji ile müzik arasında olası etkileşimlerin araştırılması. Lokman Hekim Dergisi, 2016; 6(3):159-164.
  • 81. Ozsarac M, Aksay E, Kiyan S, Unek O, Gulec FF. De novo cerebral arteriovenous malformation: Pink Floyd’s song “Brick in the Wall” as a warning sign. J Emerg Med 2012; 43 (1): 17–20.
  • 82. Griffiths TD. Musical hallucinosis in acquired deafness. Phenomenology and brain substrate. Brain 2000; 123: 2065–2076.
  • 83. Kumar S, Sedley W, Barnes GR, Teki S, Friston KJ, Griffiths TD. Neural bases of musical hallucinations. J Neurol Neurosurg Psychiatry 2014; 85(8): e3. DOI:10.1136/jnnp-2014-308883.37
  • 84. Peters AS, Re´mi J, Vollmar C, Gonzalez-Victores JA, Cunha JP, Noachtar S. Dysprosody during epileptic seizures lateralizes to the nondominant hemisphere. Neurology 2011; 77 (15): 1482–1486.
  • 85. Campbell D, Mozart Etkisi, Kuraldışı Yayıncılık, İstanbul; 2002; 156-343.

MUSIC PHYSIOLOGY OF OUR BRAIN

Yıl 2017, Cilt: 12 Sayı: 1, 35 - 44, 04.04.2017
https://doi.org/10.17517/ksutfd.296621

Öz

Music has been a visual
and audiovisual media for mass communication since mankind existed. Therapy
with music, in particular, has thousands of years of history, and today comes
as a distinctly accepted field of expertise.

Music in the last 20-25
years; many studies have been carried out on neurotransmitters, hormones,
cytokines, lymphocytes, vital findings and immunoglobulins, and especially in
the past decade there has been an increasing study on psychological and
neurological effects of music in patients and the health benefits of music.
Studies up to now indicate that the effect of the immune response and the music
in psychological and neurological disorders are mainly due to the significant
effect on stress pathways. However, these investigations face several
difficulties: a) There is little information about possible mechanisms to
provide neurological and immunological effects of music completely; b) Studies
have attempted to isolate biological indicators, notwithstanding the
interaction of biological indicators with other physiological or metabolic
activities of the body, which leads to an unclear understanding of the effect
of music; c) The distinctions between different types of stress and music,
including a wide spectrum of activities, without determining which aspects of
musical passages are responsible for changes in biological markers, are not
clearly defined. In this context, it is inevitable to establish a new model
that will provide a framework for the development of a regular taxonomy of
musical and stress-related variables in research and for monitoring the broader
pathways involved in the influence on the body.

The present study
focuses on the therapeutic effect of music and its role in triggering certain
diseases and their possible mechanisms in recent years.







 

Kaynakça

  • 1. Azizi SA. Brain to music to brain! Neuroscience Letters 2009; 459: 1–2.
  • 2. Ünal FS. Müziğin ses olarak insana fizyolojik etkisi. Kültür Evreni Dergisi 2014; 6(22):118-125, http://www.kulturevreni.com/22-118.pdf.
  • 3. Lök N ve Bademli K. Alzheimer hastalarında müzik terapinin etkinliği: Sistematik derleme. Psikiyatride Güncel Yaklaşımlar 2016; 8(3): 266-274
  • 4. Sezer F. Öfke ve psikolojik belirtiler üzerine müziğin etkisi. Uluslararası İnsan Bilimleri Dergisi, 2011; 8(1): 1472-1493.
  • 5. Erişim: https://www.ncbi.nlm.nih.gov/pubmed/
  • 6. Erişim: https://www.scopus.com/
  • 7. Karamızrak N. Ses ve Müziğin Organları İyileştirici Etkisi. Koşuyolu Heart Journal 2014; 17(1): 54-57.
  • 8. Covington H, Crosby C. Music therapy as a nursing intervention. J Psychosoc Nurs Ment Health Serv 1997; 35:34-7.
  • 9. White JM. State of the science of music interventions. Critical care and perioperative practice. Crit Care Nurs Clin North Am 2000; 12: 219-25.
  • 10. Covington H. Therapeutic music for patients with psychiatric disorders. Holist Nurs Pract 2001; 15:59-69.
  • 11. Selvendran S, Aggarwal N, Vassiliou V. Tuning the heart with music. J R Soc Med 2015; 108: 462-4.
  • 12. Mofredj A, Alaya S, Tassaioust K, Bahloul H, Mrabet A. Music therapy, a review of the potential therapeutic benefits for the critically ill. J Crit Care 2016; 35: 195-9.
  • 13. Ko YL and Lin PC. The effect of using a relaxation tape on pulse, respiration, blood pressure and anxiety levels of surgical patients, Journal of Clinical Nursing 2012; 21 (5-6): 689–697.
  • 14. Trappe HJ. The effects of music on the cardiovascular system and cardiovascular health. Heart 2010; 96: 1868-71.
  • 15. Uggla L, Bonde LO, Svahn B, Remberger M, Wrangsjö B, Gustafsson B. Music therapy can lower the heart rates of severely sick children. Acta Paediatr 2016; 105: 1225-30.
  • 16. Abedi B, Abbasi A, Goshvarpour A. Investigating the effect of traditional Persian music on ECG signals in young women using wavelet transform and neural networks. Anatol J Cardiol 2017; 17 (1). doi: 10.14744/AnatolJCardiol.2016.7436.
  • 17. Malik M and Camm AJ. Components of heart rate variability—what they really mean and what we reallymeasure. The American Journal of Cardiology1993; 72 (11): 821–822.
  • 18. Miura K, MatsumuraK, NakamuraY, Kurokawa H, Kajiyama M, Takata Y. Suppression of cardiac sympathetic nervous system during dental surgery in hypertensive patients. Hypertension Research 2000; 23(3): 207–212.
  • 19. Vanderlei LCM, Pastre CM, HoshiRA, de Carvalho TD, de Godoy MF. Basic notions of heart rate variability and its clinical applicability. Brazilian Journal of Cardiovascular Surgery 2009; 24 (2): 205–217.
  • 20. Valenti VE. The recent use of heart rate variability for research. Journal of Human Growth and Development 2015; 25(2): 137–140.
  • 21. Santana MDR, Martiniano EC, Monteiro LRL, Valenti VE, Garner DM, Sorpreso ICE, Abreu LC. Musical auditory stimulation ınfluences heart rate autonomic responses to endodontic treatment. Evidence-Based Complementary and Alternative Medicine 2017; 1-7 (https://doi.org/10.1155/2017/4847869).
  • 22. Zatorre RJ. Pitch perception of complex tones and human temporal-lobe function. J Acoust Soc Am 1988; 84(2): 566-72.
  • 23. Peretz I, Brain specialization for music. New evidence from congenital amusia. Ann NY Acad Sci 2001; 930(6):153-65.
  • 24. Tramo MJ, Cariani PA. Neurobiology of harmony perception. In: Peretz I, Zatorre RJ, eds. The Cognitive Neuroscience of Music. New York: Oxford University Press; 2003. p. 127–151.
  • 25. Wilson SJ, Pressing JL, Wales RJ. Modelling rhythmic function in a musician post-stroke. Neuropsychologia 2002; 40(8): 1494-505.
  • 26. Janata P, Grafton ST. Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nature Neuroscience 2003; 6: 682 – 687.
  • 27. Tervaniemi M, Medvedev SV, Alho K, Pakhomov SV, Roudas MS, Van Zuijen TL, et al. Lateralized automatic auditory processing of phonetic versus musical information: a PET study. Hum Brain Mapp 2000; 10 (2): 74–79.
  • 28. Stewart, L, von Kriegstein K, Warren JD, Griffiths TD. Music and the brain: disorders of musical listening. Brain 2006; 129: 2533–2553.
  • 29. Zatorre RJ, Samson S. Role of the right temporal neocortex in retention of pitch in auditory short-term memory, Brain (A Journal of Neurology; Oxford University Press), 1991; 2403-2417.
  • 30. Griffiths TD, Johnsrude I, Dean JL, Green GGR. A common neural substrate for the analysis of pitch and duration pattern in segmented sound? NeuroReport 1999; 10: 3825-3830.
  • 31. Radvansky GA, Fleming KJ, Simmons JA. Timbre reliance in nonmusicians’ and musicians’ memory for melodies. Music Perception, 1995; 13: 127–140.
  • 32. Zatorre RJ, Halpern AR, Perry DW, Meyer E, Evans AC. Hearing in the Mind's Ear: A PET Investigation of Musical Imagery and Perception, Journal of Cognitive Neuroscience 1996; 8(1): 29-46.
  • 33. Blood AJ, Zatorre RJ. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci USA 2001; 98(20):11818-11823.
  • 34. Bigand E, Poulin-Charronnat B. Are we "experienced listeners"? A review of the musical capacities that do not depend on formal musical training. Cognition 2006; 100(1): 100-30.
  • 35. Demirkale SY, Aşcıgil M. Sağlıklı kentler ve yapılarla ilgili Türkiye’nin gürültü politikası. VIII. Ulusal Tesisat Mühendisliği Kongresi, 25-28/10/2007, TESKON 2007.
  • 36. MEB. Gürültünün etkileri. Millî Eğitim Bakanlığı, Aile ve Tüketici Hizmetleri, Ankara, 2012; 1-25.
  • 37. Loewy J, Hallan C, Friedman E, Martinez C. Sleep/sedation in children undergoing EEG testing: a comparison of chloral hydrate and music therapy. Am J Electroneurodiagnostic Technol 2006; 46(4): 343-355.
  • 38. Cepeda MS, Carr DB, Lau J, Alvarez H. Music for pain relief. In: The Cochrane Collaboration, Cepeda MS, ed. Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley & Sons, Ltd; 2006. http://onlinelibrary.wiley.com.proxy.library.vanderbilt.edu/o/cochrane/clsysrev/articles/CD004843/abstract.html. Accessed November 3, 2010.
  • 39. Bradt J, Dileo C. Music for stress and anxiety reduction in coronary heart disease patients. In: The Cochrane Collaboration, Bradt J, ed. Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley&Sons, Ltd; 2009. http: // onlinelibrary. wiley. com. proxy. library. vanderbilt. edu/ o/ cochrane/ clsysrev/ articles/ CD006577/ abstract. html. Accessed November 2, 2010.
  • 40. Conrad C, Niess H, Karl-Walter J, Christiane JB, Wolfgang HH, Lorenz W. Overture for growth hormone: Requiem for interleukin-6? Crit Care Med 2007. http://www.ncbi.nlm.nih.gov.proxy.library. vanderbilt.edu/pubmed/18090379. Accessed November 3, 2010.
  • 41. Rubel E, Popper A, Fay R. Development of the auditory system. New York: Springer; 1998.
  • 42. Graziani LJ, Weitzman ED, Velasco MS. Neurologic maturation and auditory evoked responses in low birth weight infants. Pediatrics 1968; 41(2): 483-494.
  • 43. Starr A, Amlie RN, Martin WH, Sanders S. Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics. 1977; 60(6): 831-839.
  • 44. Deliege I, Sloboda J. Musical beginnings: Origins and development of musical competence. New York, Oxford; 1996.
  • 45. Trehub SE. The developmental origins of musicality. Nat Neurosci 2003; 6(7): 669-673.
  • 46. Toker E, Kömürcü N. Effect of Turkish classical music on prenatal anxiety and satisfaction: A randomized controlled trial in pregnant women with pre-eclampsia. Complementary Therapies in Medicine 2017; 30: 1–9.
  • 47. Grimwade JC, Walker DW, Bartlett M, Gordon S, Wood C. Human fetal heart rate change and movement in response to sound and vibration. Am J Obstet Gynecol 1971; 109, 86-90.
  • 48. Goodlin RC, Lowe EW. Multiphasic fetal monitoring. Am J Obstet Gynecol 1974; 119, 340-357.
  • 49. Trudinger BJ, Boylan P. Antepartum fetal heart rate monitoring: value of sound stimulation. Obstet Gynecol 1980; 55, 265-268.
  • 50. Lecanuet JP, Granier-Deferre C, Cohen H, Le Houezec R, Busnel MC. Fetal responses to acoustic stimulation depends on heart rate variability pattern, stimulus intensity and repetition. Early Hum Dev 1986; 13, 269-283.
  • 51. Shahidullah S, Hepper, PG. The developmental origins of fetal responsiveness to an acoustic stimulus. J Infant Reprod Psychol 1993; 11, 135-142.
  • 52. Shahidullah S, Hepper PG. Frequency discrimination by the fetus. Early Hum Dev 1994; 36(1): 13-26.
  • 53. Kisilevsky S, Hains SMJ, Jacquet AY, Granier-Deferre C, Lecanuet JP. Maturation of fetal responses to music. Dev Sci 2004; 7(5): 550-559.
  • 54. Jardri R, Pins D, Houfflin-Debarge V, Chaffiotte C, Rocourt N, Pruvo JP, et al. Fetal cortical activation to sound at 33 weeks of gestation: a functional MRI study. Neuroimage. 2008;42(1):10-18.
  • 55. Cheour M, Ceponiene´ R, Leppa¨nen P, et al. The auditory sensory memory trace decays rapidly in newborns. Scand J Psychol 2002;43(1):33-39.
  • 56. Pittau F, Tinuper P, Bisulli F, Naldi I, Cortelli P, Bisulli A, et al. Videopolygraphic and functional MRI study of musicogenic epilepsy. A case report and literatüre review. Epilepsy Behav. 2008; 13: 685–692.
  • 57. Mrocz IA, Karni A, Haut S, Lantos G, Liu G. fMRI of triggerable aurae in musicogenic epilepsy. Neurology 2003; 60: 705–709.
  • 58. Diekmann V, Hoppner AC. Cortical network dysfunction in musicogenic epilepsy reflecting the role of snowballing emotional processes in seizure generation: an fMRIEEG study. Epileptic Disord 2014; 16 (1): 31–44.
  • 59. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W. et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 2010; 51: 676–685.
  • 60. Maguire MJ. Music and epilepsy: A critical review. Epilepsia 2012; 53(6): 947–961.
  • 61. Al-Tajir G., Starr MS. Anticonvulsant action of SCH 23390 in the striatum of the rat. Eur J Pharmacol. 1990; 191: 329–336.
  • 62. Starr MS. The role of dopamine in epilepsy. Synapse 1996; 22: 159–194.
  • 63. Deransart C, Riban VLTB, Marescaux C, Depaulis A. Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat. Neuroscience 2000; 100: 335–344.
  • 64. Bozzi Y, Vallone D, Borrelli E. Neuroprotective role of dopamine against hippocampal cell death. J Neurosci 2000; 20: 8643–8649.
  • 65. Kaneyuki H, Yokoo H, Tsuda A, Yoshida M, Mizuki Y, Yamada, M. Psychological stress increases dopamine turnover selectively in mesoprefrontal dopamine neurons of rats: reversal by diazepam. Brain Res. 1991; 557: 154–161.
  • 66. Fujinawa A, Kawai I, Ohashi H, Kimura S. A case of musicogenic epilepsy. Folia Psychiatr Neurol 1977; 31: 463–472.
  • 67. Vizioli R. Musicogenic epilepsy. Int J Neurosci 1989; 47: 159–164.
  • 68. Poskanzer DC, Brown AE, Miller H. Musicogenic epilepsy caused only by a discrete frequency band of church bells. Brain 1962; 85: 77.
  • 69. Vercelletto P. Case of musicogenic epilepsy; presentation of a case of temporal seizures and discussion on the origin. Rev Neurol 1953; 88: 379–382.
  • 70. Brien SE, Murray TJ. Musicogenic epilepsy. Can Med Assoc J 1984; 13:1255–1258.
  • 71. Ogunyemi AO, Breen H. Seizures induced by music. Behav Neurol 1993; 6:15–18.
  • 72. Sutherling WW, Hershman LM, Miller JQ, Lee SI. Seizures induced by playing music. Neurology 1980; 30: 1001–1004.
  • 73. Le Chevalier B, Eustache F, Rossa Y. Music and its association with epileptic disorders. In: Altenmüller E, Finger S, Boller F, eds. Music, Neurology and Neuroscience: Evolution, the Musical Brain, Medical Conditions and Therapies. 1st ed. Amsterdam, Nederlands: Elseiver; 2015. Vol. 217, p. 107-120.
  • 74. Wieser HG, Wittlieb-Veerport E. Tone discrimination in patients with temporal lobe lesions. In: Steinberg R, ed. Music and the mind machine: the psychophysiology and psychopathology of the sense of music. Berlin: Springer; 1995. p. 115–26.
  • 75. Wieser HG, Hungerbuhler H, Siegel AM, Buck A. Musicogenic epilepsy: review of the literature and case report with ictal single photon emission computed tomography. Epilepsia 1997; 38:200–7.
  • 76. Alajouanine T. Aphasia and artistic realization. Brain 1948; 71: 229–41.
  • 77. Lennox WG. Epilepsy and related disorders. In: J and A Churchill eds., First Edition, Later Printing edition, London: Little, Brown and Company; 1960. p. 362.
  • 78. Fang R, Ye S, Huangfu J, Calimag DP. Music therapy is a potential intervention for cognition of Alzheimer’s Disease: a mini-review. Translational Neurodegeneration 2017; 6: 1-8.
  • 79. Fachner J. Jazz, improvisation and a social pharmacology of music. Music Therapy Today 2003; Vol. IV (3): 1-26.
  • 80. Ün İ. Farmakoloji ile müzik arasında olası etkileşimlerin araştırılması. Lokman Hekim Dergisi, 2016; 6(3):159-164.
  • 81. Ozsarac M, Aksay E, Kiyan S, Unek O, Gulec FF. De novo cerebral arteriovenous malformation: Pink Floyd’s song “Brick in the Wall” as a warning sign. J Emerg Med 2012; 43 (1): 17–20.
  • 82. Griffiths TD. Musical hallucinosis in acquired deafness. Phenomenology and brain substrate. Brain 2000; 123: 2065–2076.
  • 83. Kumar S, Sedley W, Barnes GR, Teki S, Friston KJ, Griffiths TD. Neural bases of musical hallucinations. J Neurol Neurosurg Psychiatry 2014; 85(8): e3. DOI:10.1136/jnnp-2014-308883.37
  • 84. Peters AS, Re´mi J, Vollmar C, Gonzalez-Victores JA, Cunha JP, Noachtar S. Dysprosody during epileptic seizures lateralizes to the nondominant hemisphere. Neurology 2011; 77 (15): 1482–1486.
  • 85. Campbell D, Mozart Etkisi, Kuraldışı Yayıncılık, İstanbul; 2002; 156-343.
Toplam 85 adet kaynakça vardır.

Ayrıntılar

Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

MEHMET Boşnak

AKİF HAKAN Kurt

SELMA Yaman Bu kişi benim

Yayımlanma Tarihi 4 Nisan 2017
Gönderilme Tarihi 7 Mart 2017
Kabul Tarihi 4 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 12 Sayı: 1

Kaynak Göster

AMA Boşnak M, Kurt AH, Yaman S. MUSIC PHYSIOLOGY OF OUR BRAIN. KSÜ Tıp Fak Der. Nisan 2017;12(1):35-44. doi:10.17517/ksutfd.296621