Research Article
BibTex RIS Cite

COVİD-19 Hastalarında Başvuru Esnasında EKG’deki Özellikler Hastane içi Olayları Öngörebilir

Year 2021, , 401 - 410, 30.08.2021
https://doi.org/10.18521/ktd.922646

Abstract

Amaç: COVID-19 hastalarında başvuru esnasındaki elektrokardiyografi (EKG) özellikleri ile tüm nedenlere bağlı hastane-içi mortalite ile tedavi üniteleri arasındaki ilişkiyi değerlendirmektir.
Gereç ve Yöntem: 15 Mart ile 17 Haziran 2020 tarihleri arasında gerçek zamanlı ters transkripsiyon polimeraz zincir reaksiyonu metodu ile şiddetli akut solunum sendromu koronavirüs 2 (SARS-CoV-2) tespit edilerek COVID-19 tanısı konulan ve hastaneye yatırılan toplam 172 ardışık hasta bu çalışmaya dahil edildi. Laboratuar parametleri ve EKG bulguları başvuru sırasında kaydedildi. Hastaneye ve yoğun bakım ünitesine (YBÜ) yatış kriterleri Türkiye Cumhuriyeti Sağlık Bakanlığı’nın geçici kılavuzuna göre belirlendi. Hastalar hastane içi mortalite durumlarına ve tedavi gördükleri birime göre gruplandırıldı.
Bulgular: Ortanca yaş mortalite grubunda ve YBÜ'de tedavi edilen hastalarda önemli ölçüde daha yüksekti (her ikisi için, p <0.05). P dispersiyonu, QRS süresi, QTc süresi ve QT dispersiyonu YBÜ’de tedavi edilen hastalarda önemli ölçüde daha uzundu (hepsi için, p <0.001). PR süresi, P dispersiyonu, QRS süresi, QT dispersiyonu ve QTc süresi mortalite grubunda önemli ölçüde daha uzundu (hepsi için p <0.05). QT dispersiyonu YBÜ başvurularını öngörürken QRS süresi COVID-19 hastalarında tüm nedenlere bağlı hastane-içi mortaliteyi öngördü.
Sonuç: Başvuru esnasındaki EKG bulguları, COVID-19 hastalarında tedavi birimleri ve tüm nedenlere bağlı hastane-içi mortalite ile bağımsız olarak ilişkilendirilebilir.

References

  • 1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506. https://doi.org/10.1016/S0140-6736 (20)30183-5.
  • 2. Eaaswarkhanth M, Al Madhoun A, Al-Mulla F. Could the D614G substitution in the SARS-CoV-2 spike(S) protein be associated with higher COVID-19 mortality? Int J Infect Dis 2020;96:459–60. https://doi.org/10.1016/j.ijid.2020.05.071.
  • 3. Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV2): Facts and myths. J Microbiol Immunol Infect 2020;53:404-12. https://doi.org/10.1016/j.jmii.2020.02.012
  • 4. Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, et al. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 2020;323:1406-7 https://doi.org/10.1001/jama.2020.2565.
  • 5. Garg S, Kim L, Whitaker M, O’Halloran A, Cummings C, Holstein R, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 - COVID-NET, 14 States, March 1-30, 2020. MMWR Morb Mortal Wkly Rep 2020;69:458-64.
  • 6. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020;12:8. doi: 10.1038/s41368-020-0074-x.
  • 7. Zhou R. Does SARS-CoV-2 cause viral myocarditis in COVID-19 patients? Eur Heart J 2020;41:2123. doi: 10.1093/eurheartj/ehaa392.
  • 8. IC Kim, JY Kim, HA Kim, S Han. COVID-19-related myocarditis in a 21-year-old female patient. Eur Heart J 2020;41:1859. doi: 10.1093/eurheartj/ehaa288.
  • 9. Inciardi RM, Adamo M, Lupi L, Cani DS, Di Pasquale M, Tomasoni D, et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J 2020;41:1821-29. doi: 10.1093/eurheartj/ehaa388.
  • 10. Argenziano MG, Bruce SL, Slater CL, Tiao JR, Baldwin MR, Barr RG, et al. Characterization and clinical course of 1000 Patients with COVID-19 in New York: retrospective case series. medRxiv 2020;2020.04.20.20072116. doi: 10.1101/2020.04.20.20072116.
  • 11. Lanza GA, De Vita A, Ravenna SE, D’Aiello A, Covino M, Franceschi F, et al. Electrocardiographic findings at presentation and clinical outcome in patients with SARS-CoV-2 infection. Europace 2020;euaa245. doi: 10.1093/europace/euaa245.
  • 12. Rautaharju PM, Ge S, Nelson JC, Marino Larsen EK, Psaty BM, Furberg CD, et al. Comparison of mortality risk for electrocardiographic abnormalities in men and women with and without coronary heart disease (from the Cardiovascular Health Study). Am J Cardiol. 2006;97:309-15. doi: 10.1016/j.amjcard.2005.08.046.
  • 13. Lund LH, Jurga J, Edner M, Benson L, Dahlström U, Linde C, et al. Prevalence, correlates, and prognostic significance of QRS prolongation in heart failure with reduced and preserved ejection fraction. Eur Heart J 2013;34:529-39. doi: 10.1093/eurheartj/ehs305.
  • 14. Ogiso M, Suzuki A, Shiga T, Nakai K, Shoda M, Hagiwara N. Effect of intravenous amiodarone on QT and T peak-T end dispersions in patients with nonischemic heart failure treated with cardiac resynchronization-defibrillator therapy and electrical storm. J Arrhythm 2015;31:1-5. doi: 10.1016/j.joa.2014.01.006.
  • 15. Glancy JM, Garratt CJ, Woods KL, de Bono DP. QT dispersion and mortality after myocardial infarction. Lancet 1995;345:945-8. doi:10.1016/ S0140-6736(95)90697-5.
  • 16. Buja G, Miorelli M, Turrini P, Melacini P, Nava A. Comparison of QT dispersion in hypertrophic cardiomyopathy between patients with and without ventricular arrhythmias and sudden death. Am J Cardiol 1993;72:973-6. doi:10.1016/0002-9149(93)91118-2.
  • 17. World Health Organization. Clinical management of severe acute respiratory infection when Novel coronavirus (2019-nCoV) infection is suspected: Interim Guidance. https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected.
  • 18. Prigent A. Monitoring renal function and limitations of renal function tests. Semin Nucl Med 2008;38:32-46. doi: 10.1053/j.semnuclmed.2007.09.003. 19.Ministry of Health. COVID-19 algoritmalar [online]; 2020 Website: https:// covid19bilgi.saglik.gov.tr/tr/algoritmalar [accessed 17April 2020].
  • 20. Bazett HC. The time relations of the blood-pressure changes after excision of the adrenal glands, with some observations on blood volume changes. J Physiol 1920;53:320-39. doi: 10.1113/jphysiol.1920.sp001881.
  • 21 Priori SG, Napolitano C, Diehl L, Schwartz PJ. Dispersion of the QT interval. A marker of therapeutic efficacy in the idiopathic long QT syndrome. Circulation 1994;89:1681-9. doi: 10.1161/01.cir.89.4.1681.
  • 22. Dilaveris PE, Gialafos EJ, Sideris SK, Theopistou AM, Andrikopoulos GK, Kyriakidis M, et al. Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. Am Heart J. 1998;135:733-8. doi: 10.1016/s0002-8703(98)70030-4.
  • 23.Antzelevitch C, Shimizu W, Yan GX, Sicouri S. Cellular basis for QT dispersion. J Electrocardiol 1998;30 Suppl:168-75. doi: 10.1016/s0022-0736(98)80070-8.
  • 24. Bogun F, Chan KK, Harvey M, Goyal R, Castellani M, Niebauer M, et al. QT dispersion in nonsustained ventricular tachycardia and coronary artery disease. Am J Cardiol 1996;77:256-9. doi: 10.1016/s0002-9149(97)89389-7.
  • 25.Han J, Goel BG. Electrophysiologic precursors of ventricular tachyarrhythmias. Arch Intern Med. 1972;129:749–55.
  • 26.Mirvis DM. Spatial variation of QT intervals in normal persons and patients with acute myocardial infarction. J Am Coll Cardiol 1985;5:625-31. doi: 10.1016/s0735-1097(85)80387-9.
  • 27. Puljevic D, Smalcelj A, Durakovic Z, Goldner V. QT dispersion, daily variations, QT interval adaptation and late potentials as risk mark‐ ers for ventricular tachycardia. Eur Heart J 1997;18:1343-9. doi: 10.1093/oxfordjournals.eurheartj.a015448.
  • 28.Barr CS, Naas A, Freeman M, Lang CC, Struthers AD. QT dispersion and sudden unexpected death in chronic heart failure. Lancet 1994;343:327-9. doi: 10.1016/s0140-6736(94)91164-9.
  • 29 Bazoukis G, Yeung C, Wui Hang Ho R, Varrias D, Papadatos S, Lee S, et al. Association of QT dispersion with mortality and arrhythmic events-A meta-analysis of observational studies. J Arrhythm 2019;36:105-15. doi: 10.1002/joa3.12253.
  • 30. Glancy JM, Garratt CJ, de Bono DP. Dynamics of QT dispersion during myocardial infarction and ischaemia. Int J Cardiol 1996;57:55-60. doi: 10.1016/s0167-5273(96)02732-5.
  • 31. Shi S, Qin M, Shen Bo, Cai Y, Liu T, Yang F, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol 2020;5:802-10. doi: 10.1001/jamacardio.2020.0950.
  • 32. Alabd AA, Fouad A, Abdel-Nasser R, Nammas W. QT interval dispersion pattern in patients with acute ischemic stroke: Does the site of infarction matter? Int J Angiol Winter 2009;18:177-81. doi: 10.1055/s-0031-1278349.
  • 33. Minisi AJ, Thames MD. Distribution of left ventricular sympathetic afferents demonstrated by reflex responses to transmural myocardial ischemia and to intracoronary and epicardial bradykinin. Circulation 1993;87:240-6. doi: 10.1161/01.cir.87.1.240.
  • 34. Kosmopoulos M, Roukoz H, Sebastian P, Kalra J, Goslar T, Bartos JA et al. Increased QT Dispersion Is Linked to Worse Outcomes in Patients Hospitalized for Out-of-Hospital Cardiac Arrest. J Am Heart Assoc 2020;9(16):e016485. doi: 10.1161/JAHA.120.016485.
  • 35. Rahar KK, Pahadiya HR, Barupal KG, Mathur CP, Lakhotia M. The QT dispersion and QTc dispersion in patients presenting with acute neurological events and its impact on early prognosis. J Neurosci Rural Pract 2016;7:61-6. doi: 10.4103/0976-3147.172173.
  • 36. Kelmanson IA. High anxiety in clinically healthy patients and increased QT dispersion: a meta-analysis. Eur J Prev Cardiol 2014;21:1568-74. doi:10.1177/2047487313501613.
  • 37. Hassan M, Mela A, Li Q, Brumback B, Fillingim RB, Conti JB, et al. The effect of acute psychological stress on QT dispersion in patients with coronary artery disease. Pacing Clin Electrophysiol 2009;32:1178-83. doi: 10.1111/j.1540-8159.2009.02462.x.
  • 38. Kors JA, van Herpen G, van Bemmel JH. QT dispersion as an attribute of T-loop morphology. Circulation 1999;99:1458-63. doi: 10.1161/01.cir.99.11.1458.
  • 39. Goldberger JJ, Cain ME, Hohnloser SH, Kadish AH, Knight BP, Lauer MS, et al. American Heart Association/american College of Cardiology Foundation/heart Rhythm Society scientific statement on noninvasive risk stratification techniques for identifying patients at risk for sudden cardiac death: a scientific statement from the American Heart Association Council on Clinical Cardiology Committee on Electrocardiography and Arrhythmias and Council on Epidemiology and Prevention. Circulation 2008;118:1497-518.
  • 40. De Vita A, Ravenna SE, Covino M, Lanza O, Franceschi F, Crea F, et al. Electrocardiographic Findings and Clinical Outcome in Patients with COVID-19 or Other Acute Infectious Respiratory Diseases. J Clin Med 2020;9:3647. doi: 10.3390/jcm9113647.
  • 41. Lanza GA, De Vita A, Ravenna SE, D'Aiello A, Covino M, Franceschi F, et al. Electrocardiographic findings at presentation and clinical outcome in patients with SARS-CoV-2 infection. Europace 2020;euaa245. doi: 10.1093/europace/euaa245.
  • 42. Kurl S, Mäkikallio TH, Rautaharju P, Kiviniemi V, Laukkanen JA. Duration of QRS complex in resting electrocardiogram is a predictor of sudden cardiac death in men. Circulation 2012;125:2588-94. doi: 10.1161/CIRCULATIONAHA.111.025577.
  • 43. Erdoğan T, Çetin M, Özyıldız AG, Özer S, Uslu A, Karakişi SO, et al. Prolonged QRS independently predicts long-term all-cause mortality in patients with narrow QRS complex undergoing coronary artery bypass grafting surgery (9-year follow-up results). Kardiochir Torakochirurgia Pol 2020;17:117-22. doi: 10.5114/kitp.2020.99073.
  • 44. Prineas RJ, Crow RS, Zhang Z. The Minnesota Code Manual of Electrocardiographic Findings. Boston, Springer 2010
  • 45. Yang A-P, Liu J-P, Tao W-Q, Li H-M. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol 2020;84:106504. https://doi. org/10.1016/j.intimp.2020.106504
  • 46. Xia X, Wen M, Zhan S, He J, Chen W. An increased neutrophil/lymphocyte ratio is an early warning signal of severe COVID-19. Nan Fang Yi Ke Da Xue Xue Bao 2020;40:333-6. doi: 10.12122/j.issn.1673-4254.2020.03.06.
  • 47. Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HHX, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect 2020;81(1):e6-e12. doi: 10.1016/j.jinf.2020.04.002.
  • 48. Drent M, Cobben NA, Henderson RF, Wouters EF, van Dieijen-Visser M. Usefulness of lactate dehydrogenase and its isoenzymes as indicators of lung damage or inflammation. Eur Respir J 1996;9:1736-42. doi: 10.1183/09031936.96.09081736.
  • 49. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 2020;180:934-43. doi: 10.1001/jamainternmed.2020.0994.
  • 50. Tecklenborg J, Clayton D, Siebert S, Coley SM. The role of the immune system in kidney disease. Clin Exp Immunol. 2018;192:142-50. doi: 10.1111/cei.13119.
  • 51. Kato S, Chmielewski M, Honda H, Pecoits-Filho R, Matsuo S, Yuzawa Y, et al. Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol 2008;3:1526-33. doi: 10.2215/CJN.00950208.
  • 52. Güner R, Hasanoğlu İ, Kayaaslan B, Aypak A, Kalem AK, Eser F, et al. COVID-19 experience of the major pandemic response center in the capital: Results of the pandemic's first month in Turkey. Turk J Med Sci 2020;50:1801-9. doi: 10.3906/sag-2006-164.
  • 53. Bhargava A, Fukushima EA, Levine M, Zhao W, Tanveer F, Szpunar SM, et al. Predictors for Severe COVID-19 Infection. Clin Infect Dis 2020;71:1962-68. doi: 10.1093/cid/ciaa674.

Features on ECG During Admission May Predict in-hospital Events for COVID-19 Patients

Year 2021, , 401 - 410, 30.08.2021
https://doi.org/10.18521/ktd.922646

Abstract

Objective: To evaluate the association of ECG features obtained on admission with treating units and in-hospital all-cause mortality in COVID-19 patients.
Methods: A total of 172 consecutive hospitalized patients with COVID-19 diagnosed by detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with real-time reverse-transcription polymerase chain reaction (RT-PCR) method between 15 May and 17 June 2020 were enrolled in the study. Laboratory parameters and findings on ECG obtained during admission were recorded. Criteria for hospitalization and intensive care unit (ICU) admission were determined in accordance with interim guidance of the Republic of Turkey Ministry of Health and the World Health Organization. Patients were grouped according to their in-hospital mortality status, survivors and non-surviors and units where patients are treated, intensive care unit and in-patient room.
Results: The median age was significantly higher in the non-survivors group and, in the patients treated in ICU (p<0.05, for both). PR duration, P dispersion, QRS duration, QTc duration, and QT dispersion were significantly longer in patients treated in the ICU (p <0.001, for all), whilst PR duration, P dispersion, QRS duration, QT dispersion and QTc interval were significantly longer in the non-survivors group (p<0.05, for all). QT dispersion (OR: 1.093, 95% Cl: 1.018 + 1.174, p = 0.014) predicted admission to ICU, whereas QRS duration (OR: 1.045, 95% Cl: 1.000-1.091, p = 0.049) predicted in-hospital all-cause mortality in patients with COVID-19.
Conclusion: Findings on ECG during admission could be independently associated with treating units and in-hospital all-cause mortality in COVID-19 patients.

References

  • 1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506. https://doi.org/10.1016/S0140-6736 (20)30183-5.
  • 2. Eaaswarkhanth M, Al Madhoun A, Al-Mulla F. Could the D614G substitution in the SARS-CoV-2 spike(S) protein be associated with higher COVID-19 mortality? Int J Infect Dis 2020;96:459–60. https://doi.org/10.1016/j.ijid.2020.05.071.
  • 3. Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV2): Facts and myths. J Microbiol Immunol Infect 2020;53:404-12. https://doi.org/10.1016/j.jmii.2020.02.012
  • 4. Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, et al. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 2020;323:1406-7 https://doi.org/10.1001/jama.2020.2565.
  • 5. Garg S, Kim L, Whitaker M, O’Halloran A, Cummings C, Holstein R, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 - COVID-NET, 14 States, March 1-30, 2020. MMWR Morb Mortal Wkly Rep 2020;69:458-64.
  • 6. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020;12:8. doi: 10.1038/s41368-020-0074-x.
  • 7. Zhou R. Does SARS-CoV-2 cause viral myocarditis in COVID-19 patients? Eur Heart J 2020;41:2123. doi: 10.1093/eurheartj/ehaa392.
  • 8. IC Kim, JY Kim, HA Kim, S Han. COVID-19-related myocarditis in a 21-year-old female patient. Eur Heart J 2020;41:1859. doi: 10.1093/eurheartj/ehaa288.
  • 9. Inciardi RM, Adamo M, Lupi L, Cani DS, Di Pasquale M, Tomasoni D, et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J 2020;41:1821-29. doi: 10.1093/eurheartj/ehaa388.
  • 10. Argenziano MG, Bruce SL, Slater CL, Tiao JR, Baldwin MR, Barr RG, et al. Characterization and clinical course of 1000 Patients with COVID-19 in New York: retrospective case series. medRxiv 2020;2020.04.20.20072116. doi: 10.1101/2020.04.20.20072116.
  • 11. Lanza GA, De Vita A, Ravenna SE, D’Aiello A, Covino M, Franceschi F, et al. Electrocardiographic findings at presentation and clinical outcome in patients with SARS-CoV-2 infection. Europace 2020;euaa245. doi: 10.1093/europace/euaa245.
  • 12. Rautaharju PM, Ge S, Nelson JC, Marino Larsen EK, Psaty BM, Furberg CD, et al. Comparison of mortality risk for electrocardiographic abnormalities in men and women with and without coronary heart disease (from the Cardiovascular Health Study). Am J Cardiol. 2006;97:309-15. doi: 10.1016/j.amjcard.2005.08.046.
  • 13. Lund LH, Jurga J, Edner M, Benson L, Dahlström U, Linde C, et al. Prevalence, correlates, and prognostic significance of QRS prolongation in heart failure with reduced and preserved ejection fraction. Eur Heart J 2013;34:529-39. doi: 10.1093/eurheartj/ehs305.
  • 14. Ogiso M, Suzuki A, Shiga T, Nakai K, Shoda M, Hagiwara N. Effect of intravenous amiodarone on QT and T peak-T end dispersions in patients with nonischemic heart failure treated with cardiac resynchronization-defibrillator therapy and electrical storm. J Arrhythm 2015;31:1-5. doi: 10.1016/j.joa.2014.01.006.
  • 15. Glancy JM, Garratt CJ, Woods KL, de Bono DP. QT dispersion and mortality after myocardial infarction. Lancet 1995;345:945-8. doi:10.1016/ S0140-6736(95)90697-5.
  • 16. Buja G, Miorelli M, Turrini P, Melacini P, Nava A. Comparison of QT dispersion in hypertrophic cardiomyopathy between patients with and without ventricular arrhythmias and sudden death. Am J Cardiol 1993;72:973-6. doi:10.1016/0002-9149(93)91118-2.
  • 17. World Health Organization. Clinical management of severe acute respiratory infection when Novel coronavirus (2019-nCoV) infection is suspected: Interim Guidance. https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected.
  • 18. Prigent A. Monitoring renal function and limitations of renal function tests. Semin Nucl Med 2008;38:32-46. doi: 10.1053/j.semnuclmed.2007.09.003. 19.Ministry of Health. COVID-19 algoritmalar [online]; 2020 Website: https:// covid19bilgi.saglik.gov.tr/tr/algoritmalar [accessed 17April 2020].
  • 20. Bazett HC. The time relations of the blood-pressure changes after excision of the adrenal glands, with some observations on blood volume changes. J Physiol 1920;53:320-39. doi: 10.1113/jphysiol.1920.sp001881.
  • 21 Priori SG, Napolitano C, Diehl L, Schwartz PJ. Dispersion of the QT interval. A marker of therapeutic efficacy in the idiopathic long QT syndrome. Circulation 1994;89:1681-9. doi: 10.1161/01.cir.89.4.1681.
  • 22. Dilaveris PE, Gialafos EJ, Sideris SK, Theopistou AM, Andrikopoulos GK, Kyriakidis M, et al. Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. Am Heart J. 1998;135:733-8. doi: 10.1016/s0002-8703(98)70030-4.
  • 23.Antzelevitch C, Shimizu W, Yan GX, Sicouri S. Cellular basis for QT dispersion. J Electrocardiol 1998;30 Suppl:168-75. doi: 10.1016/s0022-0736(98)80070-8.
  • 24. Bogun F, Chan KK, Harvey M, Goyal R, Castellani M, Niebauer M, et al. QT dispersion in nonsustained ventricular tachycardia and coronary artery disease. Am J Cardiol 1996;77:256-9. doi: 10.1016/s0002-9149(97)89389-7.
  • 25.Han J, Goel BG. Electrophysiologic precursors of ventricular tachyarrhythmias. Arch Intern Med. 1972;129:749–55.
  • 26.Mirvis DM. Spatial variation of QT intervals in normal persons and patients with acute myocardial infarction. J Am Coll Cardiol 1985;5:625-31. doi: 10.1016/s0735-1097(85)80387-9.
  • 27. Puljevic D, Smalcelj A, Durakovic Z, Goldner V. QT dispersion, daily variations, QT interval adaptation and late potentials as risk mark‐ ers for ventricular tachycardia. Eur Heart J 1997;18:1343-9. doi: 10.1093/oxfordjournals.eurheartj.a015448.
  • 28.Barr CS, Naas A, Freeman M, Lang CC, Struthers AD. QT dispersion and sudden unexpected death in chronic heart failure. Lancet 1994;343:327-9. doi: 10.1016/s0140-6736(94)91164-9.
  • 29 Bazoukis G, Yeung C, Wui Hang Ho R, Varrias D, Papadatos S, Lee S, et al. Association of QT dispersion with mortality and arrhythmic events-A meta-analysis of observational studies. J Arrhythm 2019;36:105-15. doi: 10.1002/joa3.12253.
  • 30. Glancy JM, Garratt CJ, de Bono DP. Dynamics of QT dispersion during myocardial infarction and ischaemia. Int J Cardiol 1996;57:55-60. doi: 10.1016/s0167-5273(96)02732-5.
  • 31. Shi S, Qin M, Shen Bo, Cai Y, Liu T, Yang F, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol 2020;5:802-10. doi: 10.1001/jamacardio.2020.0950.
  • 32. Alabd AA, Fouad A, Abdel-Nasser R, Nammas W. QT interval dispersion pattern in patients with acute ischemic stroke: Does the site of infarction matter? Int J Angiol Winter 2009;18:177-81. doi: 10.1055/s-0031-1278349.
  • 33. Minisi AJ, Thames MD. Distribution of left ventricular sympathetic afferents demonstrated by reflex responses to transmural myocardial ischemia and to intracoronary and epicardial bradykinin. Circulation 1993;87:240-6. doi: 10.1161/01.cir.87.1.240.
  • 34. Kosmopoulos M, Roukoz H, Sebastian P, Kalra J, Goslar T, Bartos JA et al. Increased QT Dispersion Is Linked to Worse Outcomes in Patients Hospitalized for Out-of-Hospital Cardiac Arrest. J Am Heart Assoc 2020;9(16):e016485. doi: 10.1161/JAHA.120.016485.
  • 35. Rahar KK, Pahadiya HR, Barupal KG, Mathur CP, Lakhotia M. The QT dispersion and QTc dispersion in patients presenting with acute neurological events and its impact on early prognosis. J Neurosci Rural Pract 2016;7:61-6. doi: 10.4103/0976-3147.172173.
  • 36. Kelmanson IA. High anxiety in clinically healthy patients and increased QT dispersion: a meta-analysis. Eur J Prev Cardiol 2014;21:1568-74. doi:10.1177/2047487313501613.
  • 37. Hassan M, Mela A, Li Q, Brumback B, Fillingim RB, Conti JB, et al. The effect of acute psychological stress on QT dispersion in patients with coronary artery disease. Pacing Clin Electrophysiol 2009;32:1178-83. doi: 10.1111/j.1540-8159.2009.02462.x.
  • 38. Kors JA, van Herpen G, van Bemmel JH. QT dispersion as an attribute of T-loop morphology. Circulation 1999;99:1458-63. doi: 10.1161/01.cir.99.11.1458.
  • 39. Goldberger JJ, Cain ME, Hohnloser SH, Kadish AH, Knight BP, Lauer MS, et al. American Heart Association/american College of Cardiology Foundation/heart Rhythm Society scientific statement on noninvasive risk stratification techniques for identifying patients at risk for sudden cardiac death: a scientific statement from the American Heart Association Council on Clinical Cardiology Committee on Electrocardiography and Arrhythmias and Council on Epidemiology and Prevention. Circulation 2008;118:1497-518.
  • 40. De Vita A, Ravenna SE, Covino M, Lanza O, Franceschi F, Crea F, et al. Electrocardiographic Findings and Clinical Outcome in Patients with COVID-19 or Other Acute Infectious Respiratory Diseases. J Clin Med 2020;9:3647. doi: 10.3390/jcm9113647.
  • 41. Lanza GA, De Vita A, Ravenna SE, D'Aiello A, Covino M, Franceschi F, et al. Electrocardiographic findings at presentation and clinical outcome in patients with SARS-CoV-2 infection. Europace 2020;euaa245. doi: 10.1093/europace/euaa245.
  • 42. Kurl S, Mäkikallio TH, Rautaharju P, Kiviniemi V, Laukkanen JA. Duration of QRS complex in resting electrocardiogram is a predictor of sudden cardiac death in men. Circulation 2012;125:2588-94. doi: 10.1161/CIRCULATIONAHA.111.025577.
  • 43. Erdoğan T, Çetin M, Özyıldız AG, Özer S, Uslu A, Karakişi SO, et al. Prolonged QRS independently predicts long-term all-cause mortality in patients with narrow QRS complex undergoing coronary artery bypass grafting surgery (9-year follow-up results). Kardiochir Torakochirurgia Pol 2020;17:117-22. doi: 10.5114/kitp.2020.99073.
  • 44. Prineas RJ, Crow RS, Zhang Z. The Minnesota Code Manual of Electrocardiographic Findings. Boston, Springer 2010
  • 45. Yang A-P, Liu J-P, Tao W-Q, Li H-M. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol 2020;84:106504. https://doi. org/10.1016/j.intimp.2020.106504
  • 46. Xia X, Wen M, Zhan S, He J, Chen W. An increased neutrophil/lymphocyte ratio is an early warning signal of severe COVID-19. Nan Fang Yi Ke Da Xue Xue Bao 2020;40:333-6. doi: 10.12122/j.issn.1673-4254.2020.03.06.
  • 47. Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HHX, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect 2020;81(1):e6-e12. doi: 10.1016/j.jinf.2020.04.002.
  • 48. Drent M, Cobben NA, Henderson RF, Wouters EF, van Dieijen-Visser M. Usefulness of lactate dehydrogenase and its isoenzymes as indicators of lung damage or inflammation. Eur Respir J 1996;9:1736-42. doi: 10.1183/09031936.96.09081736.
  • 49. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 2020;180:934-43. doi: 10.1001/jamainternmed.2020.0994.
  • 50. Tecklenborg J, Clayton D, Siebert S, Coley SM. The role of the immune system in kidney disease. Clin Exp Immunol. 2018;192:142-50. doi: 10.1111/cei.13119.
  • 51. Kato S, Chmielewski M, Honda H, Pecoits-Filho R, Matsuo S, Yuzawa Y, et al. Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol 2008;3:1526-33. doi: 10.2215/CJN.00950208.
  • 52. Güner R, Hasanoğlu İ, Kayaaslan B, Aypak A, Kalem AK, Eser F, et al. COVID-19 experience of the major pandemic response center in the capital: Results of the pandemic's first month in Turkey. Turk J Med Sci 2020;50:1801-9. doi: 10.3906/sag-2006-164.
  • 53. Bhargava A, Fukushima EA, Levine M, Zhao W, Tanveer F, Szpunar SM, et al. Predictors for Severe COVID-19 Infection. Clin Infect Dis 2020;71:1962-68. doi: 10.1093/cid/ciaa674.
There are 52 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Hazar Harbalıoğlu 0000-0002-6694-814X

Omer Genc 0000-0002-9097-5391

Gökhan Alıcı 0000-0002-4589-7566

Alaa Quisi 0000-0002-5862-5789

Abdullah Yıldırım 0000-0003-3175-0835

Publication Date August 30, 2021
Acceptance Date July 3, 2021
Published in Issue Year 2021

Cite

APA Harbalıoğlu, H., Genc, O., Alıcı, G., Quisi, A., et al. (2021). Features on ECG During Admission May Predict in-hospital Events for COVID-19 Patients. Konuralp Medical Journal, 13(S1), 401-410. https://doi.org/10.18521/ktd.922646
AMA Harbalıoğlu H, Genc O, Alıcı G, Quisi A, Yıldırım A. Features on ECG During Admission May Predict in-hospital Events for COVID-19 Patients. Konuralp Medical Journal. August 2021;13(S1):401-410. doi:10.18521/ktd.922646
Chicago Harbalıoğlu, Hazar, Omer Genc, Gökhan Alıcı, Alaa Quisi, and Abdullah Yıldırım. “Features on ECG During Admission May Predict in-Hospital Events for COVID-19 Patients”. Konuralp Medical Journal 13, no. S1 (August 2021): 401-10. https://doi.org/10.18521/ktd.922646.
EndNote Harbalıoğlu H, Genc O, Alıcı G, Quisi A, Yıldırım A (August 1, 2021) Features on ECG During Admission May Predict in-hospital Events for COVID-19 Patients. Konuralp Medical Journal 13 S1 401–410.
IEEE H. Harbalıoğlu, O. Genc, G. Alıcı, A. Quisi, and A. Yıldırım, “Features on ECG During Admission May Predict in-hospital Events for COVID-19 Patients”, Konuralp Medical Journal, vol. 13, no. S1, pp. 401–410, 2021, doi: 10.18521/ktd.922646.
ISNAD Harbalıoğlu, Hazar et al. “Features on ECG During Admission May Predict in-Hospital Events for COVID-19 Patients”. Konuralp Medical Journal 13/S1 (August 2021), 401-410. https://doi.org/10.18521/ktd.922646.
JAMA Harbalıoğlu H, Genc O, Alıcı G, Quisi A, Yıldırım A. Features on ECG During Admission May Predict in-hospital Events for COVID-19 Patients. Konuralp Medical Journal. 2021;13:401–410.
MLA Harbalıoğlu, Hazar et al. “Features on ECG During Admission May Predict in-Hospital Events for COVID-19 Patients”. Konuralp Medical Journal, vol. 13, no. S1, 2021, pp. 401-10, doi:10.18521/ktd.922646.
Vancouver Harbalıoğlu H, Genc O, Alıcı G, Quisi A, Yıldırım A. Features on ECG During Admission May Predict in-hospital Events for COVID-19 Patients. Konuralp Medical Journal. 2021;13(S1):401-10.