Derleme
BibTex RIS Kaynak Göster

Investigation of Solar Cell Efficiencies and Stabilization Using Polymer-Based Photovoltaic Cells

Yıl 2018, Cilt: 11 Sayı: 2, 48 - 57, 30.12.2018

Öz

The use of polymer electronics has the power to revolutionize the field of solar cells by reducing the production costs of large-scale nano-electronic applications. At the same time, the performance and stability of polymer-based devices are still low compared to their inorganic counterparts. New and comprehensive experimental and theoretical research is needed to reduce energy losses and increase efficiency in these devices. For this purpose, we present the knowledge, development, efficiency levels of polymer based solar cells, the performance of polymer membranes in solar cell. We will examine the relationship between the parameters of the eccentricity and hol carrier parameters, load bearing losses and solar cell variables in the polymer based solar cell with technological importance. Finally, the latest study demonstrates that, in accordance with experimental observations, the reduction of load-carrier losses is more important than reducing excitation and photon losses to optimize the performance of solar-cell devices.

Kaynakça

  • Antohe, S., S. Iftimie, L. Hrostea, V. A. Antohe and M. Girtan (2017). "A critical review of photovoltaic cells based on organic monomeric and polymeric thin film heterojunctions." Thin Solid Films 642: 219-231.
  • Chen, B.-C., Y.-S. Cheng, C. Gau and Y.-C. Lee (2014). "Enhanced performance of polymer solar cells with imprinted nanostructures on the active layer." Thin Solid Films 564: 384-389.
  • Cho, H. J., Y. J. Kim, S. Chen, J. Lee, T. J. Shin, C. E. Park and C. Yang (2017). "Over 10% efficiency in single-junction polymer solar cells developed from easily accessible random terpolymers." Nano Energy 39: 229-237.
  • Dang, D., P. Zhou, J. Zhong, J. Fan, Z. Wang, Y. Wang, Y. Pei, X. Bao, R. Yang, W. Hu and W. Zhu (2014). "Novel wide band-gap polymer utilizing fused hetero-aromatic unit for efficient polymer solar cells and field-effect transistors." Polymer 55(26): 6708-6716.
  • de la Mora, M. B., O. Amelines-Sarria, B. M. Monroy, C. D. Hernández-Pérez and J. E. Lugo (2017). "Materials for downconversion in solar cells: Perspectives and challenges." Solar Energy Materials and Solar Cells 165: 59-71.
  • Deng, P., J. Yu, X. Yin, Y. Geng, B. Zhou, F. Zhang and W. Tang (2017). "Effect of bisalkylthio side chains on benzo[1,2-b:4,5-b′]dithiophene-based polymers for organic solar cells." Dyes and Pigments 138: 47-55.
  • Fan, P., Y. Zheng, D. Zheng and J. Yu (2017). "Improved efficiency of bulk heterojunction polymer solar cells by doping with iridium complex." Materials Letters 186: 161-164.
  • Fan, Q., Q. Zhu, Z. Xu, W. Su, J. Chen, J. Wu, X. Guo, W. Ma, M. Zhang and Y. Li (2018). "Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing." Nano Energy 48: 413-420.
  • Gao, X., Y. Li, L. Yu, F. Hou, T. Zhu, X. Bao, F. Li, M. Sun and R. Yang (2019). "The regulation of π-bridge of indacenodithiophene-based donor-π-acceptor conjugated polymers toward efficient polymer solar cells." Dyes and Pigments 162: 43-51.
  • Goetzberger, A., C. Hebling and H.-W. Schock (2003). "Photovoltaic materials, history, status and outlook." Materials Science and Engineering: R: Reports 40(1): 1-46.
  • Han, G., S. Zhang, P. P. Boix, L. H. Wong, L. Sun and S.-Y. Lien (2017). "Towards high efficiency thin film solar cells." Progress in Materials Science 87: 246-291.
  • Holliday, S., Y. Li and C. K. Luscombe (2017). "Recent advances in high performance donor-acceptor polymers for organic photovoltaics." Progress in Polymer Science 70: 34-51.
  • Kumar Moluguri, N., C. Rama Murthy and V. Harshavardhan (2016). "Solar Energy System and Design - Review." Materials Today: Proceedings 3(10, Part B): 3637-3645.
  • Lan, L., P. Cai, Y. Mai, Z. Hu, W. Wen, J. Zhang, Y. Li, H. Shi and J. Zhang (2018). "A new wide-bandgap conjugated polymer based on imide-fused benzotriazole for highly efficient nonfullerene polymer solar cells." Dyes and Pigments 158: 219-224.
  • Lee, H., J. Jeong, H. Han, S. Nam, H. Kim and Y. Kim (2014). "All-polymer solar cells with in-situ generated n-type conjugated polymer nanoparticles." Solar Energy Materials and Solar Cells 122: 112-119.
  • Lee, U. R., T. W. Lee, M. H. Hoang, N. S. Kang, J. W. Yu, K. H. Kim, K.-G. Lim, T.-W. Lee, J.-I. Jin and D. H. Choi (2011). "Photoreactive low-bandgap 4H-cyclopenta[2,1-b:3,4-b′]dithiophene and 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole-based alternating copolymer for polymer solar cell." Organic Electronics 12(2): 269-278.
  • Li, G., W. Budiawan, P.-C. Wang and C. Wei Chu (2018). Conjugated Polymer-Based Solar Cells. Encyclopedia of Modern Optics (Second Edition). B. D. Guenther and D. G. Steel. Oxford, Elsevier: 256-269.
  • Li, W., M. Chen, J. Cai, E. L. K. Spooner, H. Zhang, R. S. Gurney, D. Liu, Z. Xiao, D. G. Lidzey, L. Ding and T. Wang (2018). "Molecular Order Control of Non-fullerene Acceptors for High-Efficiency Polymer Solar Cells." Joule.
  • Li, X., Y. Hu, Z. Deng, D. Xu, Y. Hou, Z. Lou and F. Teng (2017). "Efficiency improvement of polymer solar cells with random micro-nanostructured back electrode formed by active layer self-aggregation." Organic Electronics 41: 362-368.
  • Li, Y., H. Yu, X. Huang, Z. Wu and H. Xu (2017). "Improved performance for polymer solar cells using CTAB-modified MoO3 as an anode buffer layer." Solar Energy Materials and Solar Cells 171: 72-84.
  • Li, Z., L. Ying, R. Xie, P. Zhu, N. Li, W. Zhong, F. Huang and Y. Cao (2018). "Designing ternary blend all-polymer solar cells with an efficiency of over 10% and a fill factor of 78%." Nano Energy 51: 434-441.
  • Liang, C. and H. Wang (2017). "Indacenodithiophene-based D-A conjugated polymers for application in polymer solar cells." Organic Electronics 50: 443-457.
  • Lin, Z., K. Huang, Z. Wang, X. Chen, J. Sun, Z. Xu, T. He, S. Yin, M. Li, Q. Zhang and H. Qiu (2019). "Alkyl side-chain and fluorination engineering in the indeno[1,2-b]fluorene-based small-molecule acceptors for efficient non-fullerene organic solar cells." Dyes and Pigments 160: 432-438.
  • Liu, Z., D. Zeng, X. Gao, P. Li, Q. Zhang and X. Peng (2019). "Non-fullerene polymer acceptors based on perylene diimides in all-polymer solar cells." Solar Energy Materials and Solar Cells 189: 103-117.
  • Putri, S. K., H. C. Jin, D. R. Whang, J. H. Kim and D. W. Chang (2019). "Enhanced open-circuit voltages of trifluoromethylated quinoxaline-based polymer solar cells." Organic Electronics 65: 363-369.
  • Rasool, S., V. Van Doan, H. K. Lee, S. K. Lee, J.-C. Lee, S.-J. Moon, W. W. So, C. E. Song and W. S. Shin (2019). "Enhanced photostability in polymer solar cells achieved with modified electron transport layer." Thin Solid Films 669: 42-48.
  • Song, S., S.-J. Ko, H. Shin, Y. Jin, I. Kim, J. Y. Kim and H. Suh (2012). "Synthesis of the pyrrolo[3,2-b]pyrrole-based copolymer with enhanced open circuit voltage." Synthetic Metals 162(24): 2288-2293.
  • Stephen, M., G. E. Morse, N. Blouin, O. Lozman, K. Genevičius and G. Juška (2016). "The effect of polymer solar cell degradation on charge carrier dynamics in benzodithiophene-diketopyrrolopyrrole polymers." Materials Chemistry and Physics 183: 485-489.
  • Vogelbaum, H. S. and G. Sauvé (2017). "Recently developed high-efficiency organic photoactive materials for printable photovoltaic cells: a mini review." Synthetic Metals 223: 107-121.
  • Yi, M., J. Yi, J. Wang, L. Wang, W. Gao, Y. Lin, Q. Luo, H. Tan, C.-Q. Ma and H. Wang (2017). "Perylenediimide derivatives based on a dendritic oligothiophene core as electron acceptor for use in polymer solar cells." Dyes and Pigments 139: 498-508.
  • Zhou, H., X. Sun, Z. Zhang, Y. Yu, M. Huang and B. Zhao (2018). "Two A2-D-A1-D-A2 small molecules with isoindigo as the central core for efficient organic photovoltaics." Dyes and Pigments 156: 403-409.

Polimer Tabanlı Fotovoltaik Hücrelerin Kullanımı ile Solar Hücre Verimlerinin Artışı ve Stabilizasyonun İncelenmesi

Yıl 2018, Cilt: 11 Sayı: 2, 48 - 57, 30.12.2018

Öz

Polimer elektroniğinin kullanımı, geniş ölçekli nano elektronik uygulamaların üretim maliyetlerini düşürerek solar hücre alanında devrim yaratma gücüne sahiptir. Aynı zamanda inorganik muadilleriyle karşılaştırıldığında polimer tabanlı cihazların performansı ve kararlılığı, halen düşüktür. Bu cihazlardaki enerji kayıplarının azaltması ve verimliliğinin artırılması konusunda yeni ve kapsamlı deneysel ve teorik araştırmaların yapılması gereklidir. Bu amaçla, bu makalede, polimer esaslı güneş hücrelerinin tanımı, gelişimi, verimlilik düzeyleri, polimer membranların solar hücrede kullanım performansları hakkında bilgi sunuyoruz. Teknolojik önemi olan polimer esaslı güneş-hücresinde fotondaki eksiton ve hol taşıyıcı parametrelerinin, yük taşıma kayıplarının ve solar hücre değişkenlerinin verimlik parametreleriyle ilişkisinin inceleyeceğiz. Son olarak, son çalışmada, deneysel gözlemlerle uyumlu olarak, yük-taşıyıcı kayıplarının azaltılmasının, güneş-hücre aygıtlarının performansını optimize etmek için eksiton ve foton kayıplarını azaltmaktan daha önemli olduğunu ortaya koymaktadır. 

Kaynakça

  • Antohe, S., S. Iftimie, L. Hrostea, V. A. Antohe and M. Girtan (2017). "A critical review of photovoltaic cells based on organic monomeric and polymeric thin film heterojunctions." Thin Solid Films 642: 219-231.
  • Chen, B.-C., Y.-S. Cheng, C. Gau and Y.-C. Lee (2014). "Enhanced performance of polymer solar cells with imprinted nanostructures on the active layer." Thin Solid Films 564: 384-389.
  • Cho, H. J., Y. J. Kim, S. Chen, J. Lee, T. J. Shin, C. E. Park and C. Yang (2017). "Over 10% efficiency in single-junction polymer solar cells developed from easily accessible random terpolymers." Nano Energy 39: 229-237.
  • Dang, D., P. Zhou, J. Zhong, J. Fan, Z. Wang, Y. Wang, Y. Pei, X. Bao, R. Yang, W. Hu and W. Zhu (2014). "Novel wide band-gap polymer utilizing fused hetero-aromatic unit for efficient polymer solar cells and field-effect transistors." Polymer 55(26): 6708-6716.
  • de la Mora, M. B., O. Amelines-Sarria, B. M. Monroy, C. D. Hernández-Pérez and J. E. Lugo (2017). "Materials for downconversion in solar cells: Perspectives and challenges." Solar Energy Materials and Solar Cells 165: 59-71.
  • Deng, P., J. Yu, X. Yin, Y. Geng, B. Zhou, F. Zhang and W. Tang (2017). "Effect of bisalkylthio side chains on benzo[1,2-b:4,5-b′]dithiophene-based polymers for organic solar cells." Dyes and Pigments 138: 47-55.
  • Fan, P., Y. Zheng, D. Zheng and J. Yu (2017). "Improved efficiency of bulk heterojunction polymer solar cells by doping with iridium complex." Materials Letters 186: 161-164.
  • Fan, Q., Q. Zhu, Z. Xu, W. Su, J. Chen, J. Wu, X. Guo, W. Ma, M. Zhang and Y. Li (2018). "Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing." Nano Energy 48: 413-420.
  • Gao, X., Y. Li, L. Yu, F. Hou, T. Zhu, X. Bao, F. Li, M. Sun and R. Yang (2019). "The regulation of π-bridge of indacenodithiophene-based donor-π-acceptor conjugated polymers toward efficient polymer solar cells." Dyes and Pigments 162: 43-51.
  • Goetzberger, A., C. Hebling and H.-W. Schock (2003). "Photovoltaic materials, history, status and outlook." Materials Science and Engineering: R: Reports 40(1): 1-46.
  • Han, G., S. Zhang, P. P. Boix, L. H. Wong, L. Sun and S.-Y. Lien (2017). "Towards high efficiency thin film solar cells." Progress in Materials Science 87: 246-291.
  • Holliday, S., Y. Li and C. K. Luscombe (2017). "Recent advances in high performance donor-acceptor polymers for organic photovoltaics." Progress in Polymer Science 70: 34-51.
  • Kumar Moluguri, N., C. Rama Murthy and V. Harshavardhan (2016). "Solar Energy System and Design - Review." Materials Today: Proceedings 3(10, Part B): 3637-3645.
  • Lan, L., P. Cai, Y. Mai, Z. Hu, W. Wen, J. Zhang, Y. Li, H. Shi and J. Zhang (2018). "A new wide-bandgap conjugated polymer based on imide-fused benzotriazole for highly efficient nonfullerene polymer solar cells." Dyes and Pigments 158: 219-224.
  • Lee, H., J. Jeong, H. Han, S. Nam, H. Kim and Y. Kim (2014). "All-polymer solar cells with in-situ generated n-type conjugated polymer nanoparticles." Solar Energy Materials and Solar Cells 122: 112-119.
  • Lee, U. R., T. W. Lee, M. H. Hoang, N. S. Kang, J. W. Yu, K. H. Kim, K.-G. Lim, T.-W. Lee, J.-I. Jin and D. H. Choi (2011). "Photoreactive low-bandgap 4H-cyclopenta[2,1-b:3,4-b′]dithiophene and 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole-based alternating copolymer for polymer solar cell." Organic Electronics 12(2): 269-278.
  • Li, G., W. Budiawan, P.-C. Wang and C. Wei Chu (2018). Conjugated Polymer-Based Solar Cells. Encyclopedia of Modern Optics (Second Edition). B. D. Guenther and D. G. Steel. Oxford, Elsevier: 256-269.
  • Li, W., M. Chen, J. Cai, E. L. K. Spooner, H. Zhang, R. S. Gurney, D. Liu, Z. Xiao, D. G. Lidzey, L. Ding and T. Wang (2018). "Molecular Order Control of Non-fullerene Acceptors for High-Efficiency Polymer Solar Cells." Joule.
  • Li, X., Y. Hu, Z. Deng, D. Xu, Y. Hou, Z. Lou and F. Teng (2017). "Efficiency improvement of polymer solar cells with random micro-nanostructured back electrode formed by active layer self-aggregation." Organic Electronics 41: 362-368.
  • Li, Y., H. Yu, X. Huang, Z. Wu and H. Xu (2017). "Improved performance for polymer solar cells using CTAB-modified MoO3 as an anode buffer layer." Solar Energy Materials and Solar Cells 171: 72-84.
  • Li, Z., L. Ying, R. Xie, P. Zhu, N. Li, W. Zhong, F. Huang and Y. Cao (2018). "Designing ternary blend all-polymer solar cells with an efficiency of over 10% and a fill factor of 78%." Nano Energy 51: 434-441.
  • Liang, C. and H. Wang (2017). "Indacenodithiophene-based D-A conjugated polymers for application in polymer solar cells." Organic Electronics 50: 443-457.
  • Lin, Z., K. Huang, Z. Wang, X. Chen, J. Sun, Z. Xu, T. He, S. Yin, M. Li, Q. Zhang and H. Qiu (2019). "Alkyl side-chain and fluorination engineering in the indeno[1,2-b]fluorene-based small-molecule acceptors for efficient non-fullerene organic solar cells." Dyes and Pigments 160: 432-438.
  • Liu, Z., D. Zeng, X. Gao, P. Li, Q. Zhang and X. Peng (2019). "Non-fullerene polymer acceptors based on perylene diimides in all-polymer solar cells." Solar Energy Materials and Solar Cells 189: 103-117.
  • Putri, S. K., H. C. Jin, D. R. Whang, J. H. Kim and D. W. Chang (2019). "Enhanced open-circuit voltages of trifluoromethylated quinoxaline-based polymer solar cells." Organic Electronics 65: 363-369.
  • Rasool, S., V. Van Doan, H. K. Lee, S. K. Lee, J.-C. Lee, S.-J. Moon, W. W. So, C. E. Song and W. S. Shin (2019). "Enhanced photostability in polymer solar cells achieved with modified electron transport layer." Thin Solid Films 669: 42-48.
  • Song, S., S.-J. Ko, H. Shin, Y. Jin, I. Kim, J. Y. Kim and H. Suh (2012). "Synthesis of the pyrrolo[3,2-b]pyrrole-based copolymer with enhanced open circuit voltage." Synthetic Metals 162(24): 2288-2293.
  • Stephen, M., G. E. Morse, N. Blouin, O. Lozman, K. Genevičius and G. Juška (2016). "The effect of polymer solar cell degradation on charge carrier dynamics in benzodithiophene-diketopyrrolopyrrole polymers." Materials Chemistry and Physics 183: 485-489.
  • Vogelbaum, H. S. and G. Sauvé (2017). "Recently developed high-efficiency organic photoactive materials for printable photovoltaic cells: a mini review." Synthetic Metals 223: 107-121.
  • Yi, M., J. Yi, J. Wang, L. Wang, W. Gao, Y. Lin, Q. Luo, H. Tan, C.-Q. Ma and H. Wang (2017). "Perylenediimide derivatives based on a dendritic oligothiophene core as electron acceptor for use in polymer solar cells." Dyes and Pigments 139: 498-508.
  • Zhou, H., X. Sun, Z. Zhang, Y. Yu, M. Huang and B. Zhao (2018). "Two A2-D-A1-D-A2 small molecules with isoindigo as the central core for efficient organic photovoltaics." Dyes and Pigments 156: 403-409.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ümit Yıldıko

İsmail Çakmak Bu kişi benim

Yayımlanma Tarihi 30 Aralık 2018
Gönderilme Tarihi 29 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 11 Sayı: 2

Kaynak Göster

APA Yıldıko, Ü., & Çakmak, İ. (2018). Investigation of Solar Cell Efficiencies and Stabilization Using Polymer-Based Photovoltaic Cells. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 48-57.