Derleme
PDF EndNote BibTex RIS Kaynak Göster

Polymer Nanocomposite Coating Techniques and Their Performances

Yıl 2021, Cilt 14, Sayı 1 - 2, 37 - 45, 26.10.2022

Öz

In the development of today's technologies, polymer and polymer composites have become indispensable with their superior performance. Polymer composites have entered our daily lives with wide usage areas in vehicle technologies, electrical-electronic materials, space, textile, medicine, tribology and many other fields. The structures and properties of nanocomposites can be regulated with the non-conductive, electroactive and conductive polymer used in the coated material. Here, many performance-enhanced materials such as abrasion resistance, anti-corrosion resistance and electrical resistance can also be developed efficiently when nanoclay or nanoparticles are embedded in the polymer. Polymer Nanocomposites made with carbon nanotubes have electrical properties and act as electromagnetic interference shielding. Some coating technologies suitable for polymer nanocomposites are presented.

Kaynakça

  • Atif, R. and Inam, F. (2016). Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein Journal of Nanotechnology, 7, 1174-1196.
  • Baptista, A., Silva, F.J.G., Porteiro, J., Míguez, J.L., Pinto, G. and Fernandes, L. (2018). On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications. Procedia Manufacturing, 17, 746-757.
  • Bharathidasan, T. and Sathiyanaryanan, S. (2020). Self- replenishing superhydrophobic durable polymeric nanocomposite coatings for heat exchanger channels in thermal management applications. Progress in Organic Coatings, 148, 105828.
  • Chen, K.Y., Lai, Y.S., You, J.K., Santiago, K. S. and Yeh, J.M. (2019). Effective anticorrosion coatings prepared from sulfonated electroactive polyurea. Polymer, 166, 98-107.
  • Chen, Y., Zhang, Q., Jing, X., Han, J. and Yu, L. (2019). Synthesis of Cu-doped polyaniline nanocomposites (nano Cu@PANI) via the H2O2-promoted oxidative polymerization of aniline with copper salt. Materials Letters, 242, 170-173.
  • Compton, O.C., Kim, S., Pierre, C., Torkelson, J.M. and Nguyen, S.T. (2010). Crumpled Graphene Nanosheets as Highly Effective Barrier Property Enhancers. 22 (42), 4759-4763.
  • Daikh, S., Zeggai, F.Z., Bellil, A. and Benyoucef, A. (2018). Chemical polymerization, characterization and electrochemical studies of PANI/ZnO doped with hydrochloric acid and/or zinc chloride: Differences between the synthesized nanocomposites. Journal of Physics and Chemistry of Solids, 121, 78-84.
  • Deshpande, A.S., Muraoka, W. and Andreescu, S. (2021). Electrochemical sensors for oxidative stress monitoring. Current Opinion in Electrochemistry, 29, 100809.
  • Fu, S., Zhu, Y., Zhang, Y., Zhang, M., Zhang, Y., Qiao, L., Yin, N., Song, K., Liu, M. and Wang, D. (2021). Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection. Microchemical Journal, https://doi.org/10.1016/j.microc.2021.106776 106776.
  • Gandara, M. and Gonçalves, E.S. (2020). Electroactive composites: PANI electrochemical synthesis with GO and rGO for structural carbon fiber coating. Progress in Organic Coatings, 138, 105399.
  • Gao, F. (2012). Advances in polymer nanocomposites, Types and applications. Woodhead Publishing Limited, 606-629.
  • Gao, Q., Zang, Y., Zhang, Y., Xie, J., Li, J., Gao, J. and Xue, H. (2020). Composite polymerized molecular imprinting membrane-based electrochemical sensor for sensitive determination of curcumin by using 4-pentenoyl-aminoacyl-chitosan oligosaccharide as functional monomer oligomer. Journal of Electroanalytical Chemistry, 879, 114793.
  • Giraldo, L.J., Giraldo, M.A., Llanos, S., Maya, G., Zabala, R.D., Nassar, N.N., Franco, C.A., Alvarado, V. and Cortés, F.B. (2017). The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions. Journal of Petroleum Science and Engineering, 159, 841-852.
  • Giraldo Mejía, H.F., Herrera Seitz, K., Valdés, M., Uheida, A., Procaccini, R.A. and Pellice, S.A. (2021). Antibacterial performance of hybrid nanocomposite coatings containing clay and silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 628, 127354.
  • Guo, B., Glavas, L. and Albertsson, A.C. (2013). Biodegradable and electrically conducting polymers for biomedical applications. Progress in Polymer Science, 38 (9), 1263-1286.
  • Huang, K.Y., Jhuo, Y.S., Wu, P.S., Lin, C.H., Yu, Y.H. and Yeh, J.M. (2009). Electrochemical studies for the electroactivity of amine-capped aniline trimer on the anticorrosion effect of as-prepared polyimide coatings. European Polymer Journal, 45 (2), 485-493.
  • Huang, T.C., Yeh, T.C., Huang, H.Y., Ji, W.F., Chou, Y.-C., Hung, W.I., Yeh, J.M. and Tsai, M.H. (2011). Electrochemical studies on aniline-pentamer-based electroactive polyimide coating: Corrosion protection and electrochromic properties. Electrochimica Acta, 56 (27), 10151-10158.
  • Iftikhar, T., Asif, M., Aziz, A., Ashraf, G., Jun, S., Li, G. and Liu, H. (2021). Topical advances in nanomaterials based electrochemical sensors for resorcinol detection. Trends in Environmental Analytical Chemistry, 31, e00138.
  • Ji, W.F., Chu, C.M., Hsu, S.C., Lu, Y.D., Yu, Y.C., Santiago, K.S. and Yeh, J.M. (2017). Synthesis and characterization of organo-soluble aniline oligomer-based electroactive doped with gold nanoparticles, and application to electrochemical sensing of ascorbic acid. Polymer, 128, 218-228.
  • Kausar, A., in Conducting Polymer-Based Nanocomposites, ed. A. Kausar (Elsevier, 2021), 185-209
  • Kumar, H., Kumari, N. and Sharma, R. (2020). Nanocomposites (conducting polymer and nanoparticles) based electrochemical biosensor for the detection of environment pollutant: Its issues and challenges. Environmental Impact Assessment Review, 85, 106438.
  • Li, C., Wang, J. and Su, Y. (2021). A dual-role theory of the aspect ratio of the nanofillers for the thermal conductivity of graphene-polymer nanocomposites. International Journal of Engineering Science, 160, 103453.
  • Liu, F., Liu, A., Tao, W. and Yang, Y. (2020). Preparation of UV curable organic/inorganic hybrid coatings-a review. Progress in Organic Coatings, 145, 105685.
  • Liu, Z., Ren, L., Jing, J., Wang, C., Liu, F., Yuan, R., Jiang, M. and Wang, H. (2021). Fabrication of robust superhydrophobic organic-inorganic hybrid coating through a novel two-step phase separation method. Progress in Organic Coatings, 157, 106320.
  • Ma, J., Ren, H., Liu, Z., Zhou, J., Wang, Y., Hu, B., Liu, Y., Kong, L.B. and Zhang, T. (2020). Embedded MoS2-PANI nanocomposites with advanced microwave absorption performance. Composites Science and Technology, 198, 108239.
  • Ma, L., Song, G., Zhang, X., Zhou, S., Liu, Y. and Zhang, L. (2021). Attaching SiO2 nanoparticles to GO sheets via amino-terminated hyperbranched polymer for epoxy composites: Extraordinary improvement in thermal and mechanical properties. European Polymer Journal, 157, 110677.
  • Md Saleh, S.S., Md Akil, H. and Abdul Kudus, M.H., in Fillers and Reinforcements for Advanced Nanocomposites, ed. Y. Dong, R. Umer and A.K.T. Lau (Woodhead Publishing, 2015), 81-98
  • Monetta, T., Acquesta, A., Carangelo, A., Naddeo, C. and Guadagno, L. (2019). Enhancement of photooxidative and corrosion resistance of epoxy/graphene water-based coatings on metallic substrate. Progress in Organic Coatings, 135, 7-18.
  • Ng, L.Y., Chua, H.S. and Ng, C.Y. (2021). Incorporation of graphene oxide-based nanocomposite in the polymeric membrane for water and wastewater treatment: A review on recent development. Journal of Environmental Chemical Engineering, 9 (5), 105994.
  • Norouzian, R.S. and Lakouraj, M.M. (2020). Polyaniline-thiacalix[4]arene metallopolymer, self-doped, and externally doped conductive polymers. Progress in Organic Coatings, 146, 105731.
  • Rao, C. R. K. and Trivedi, D.C. (2005). Chemical and electrochemical depositions of platinum group metals and their applications. Coordination Chemistry Reviews, 249 (5), 613-631.
  • Safronova, E.Y., Yurova, P.A., Ashrafi, A.M., Chernyak, A.V., Khoroshilov, A.V. and Yaroslavtsev, A.B. (2021). The effect of ultrasonication of polymer solutions on the performance of hybrid perfluorinated sulfonic acid membranes with SiO2 nanoparticles. Reactive and Functional Polymers, 165, 104959.
  • Sevcik, J., Urbanek, P., Skoda, D., Jamatia, T., Nadazdy, V., Urbanek, M., Antos, J., Munster, L. and Kuritka, I. (2021). Energy resolved-electrochemical impedance spectroscopy investigation of the role of Al-doped ZnO nanoparticles in electronic structure modification of polymer nanocomposite LEDs. Materials & Design, 205, 109738.
  • Shirazi, M., Rad, G. M. and Tamsilian, Y., in Encyclopedia of Materials: Composites, ed. D. Brabazon (Elsevier, Oxford, 2021), 725-745
  • Taborda, E.A., Franco, C.A., Lopera, S.H., Castro, R.H., Maya, G.A., Idrobo, E.A. and Cortés, F.B. (2021). Effect of surface acidity of SiO2 nanoparticles on thermal stability of polymer solutions for application in EOR processes. Journal of Petroleum Science and Engineering, 196, 107802.
  • Wang, J., Li, C., Li, J., Weng, G.J. and Su, Y. (2021). A multiscale study of the filler-size and temperature dependence of the thermal conductivity of graphene-polymer nanocomposites. Carbon, 175, 259-270.
  • Weng, C.J., Chang, C.H., Peng, C.W., Chen, S.W., Yeh, J.M., Hsu, C.L. and Wei, Y. (2011). Advanced Anticorrosive Coatings Prepared from the Mimicked Xanthosoma Sagittifolium-leaf-like Electroactive Epoxy with Synergistic Effects of Superhydrophobicity and Redox Catalytic Capability. Chemistry of Materials, 23 (8), 2075-2083.
  • Weng, C.J., Huang, J.Y., Huang, K.Y., Jhuo, Y.S., Tsai, M.H. and Yeh, J.M. (2010). Advanced anticorrosive coatings prepared from electroactive polyimide-TiO2 hybrid nanocomposite materials. Electrochimica Acta, 55 (28), 8430-8438.
  • Wu, J., Zuo, X., Chen, Q., Deng, X., Liang, H., Zhu, T., Liu, J., Li, W. and Nan, J. (2019). Functional composite polymer electrolytes with imidazole modified SiO2 nanoparticles for high-voltage cathode lithium ion batteries. Electrochimica Acta, 320, 134567.
  • Zainal, N., Arifin, H. H., Zardasti, L., Yahaya, N., Lim, K. S., Lai, J. W. and Md Noor, N. J. M. W. C. (2018). Tensile Properties of Epoxy Grout Incorporating Graphene Nanoplatelets for Pipeline Repair. 203, 06012.
  • Zarei, M. S., Kolahchi, R., Hajmohammad, M. H. and Maleki, M. (2017). Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles and fiber reinforced polymer (FRP) layer. Soil Dynamics and Earthquake Engineering, 103, 76-85.
  • Zhang, Q., Qiao, Y., Zhu, J., Li, Y., Li, C., Lin, J., Li, X., Han, H., Mao, J., Wang, F. and Wang, L. (2021). Electroactive and antibacterial surgical sutures based on chitosan-gelatin/tannic acid/polypyrrole composite coating. Composites Part B: Engineering, 223, 109140.
  • Zhang, S., Chen, S., Yang, F., Hu, F., Yan, B., Gu, Y., Jiang, H., Cao, Y. and Xiang, M. (2019). High-performance electrochromic device based on novel polyaniline nanofibers wrapped antimony-doped tin oxide/TiO2 nanorods. Organic Electronics, 65, 341-348.

Polimer Nanokompozit Kaplama Teknikleri ve Sunduğu Performanslar

Yıl 2021, Cilt 14, Sayı 1 - 2, 37 - 45, 26.10.2022

Öz

Günümüz teknolojilerin gelişiminde polimer ve polimer kompozitler, üstün performanları ile vazgeçilmez bir hale gelmiştir. Araç teknolojileri, elektrik-elektronik mazlzemeler, uzay, tekstil, tıp, triboloji ve diğer bir çok alanda geniş kullanım alanları ile polimer kompozitleri günlük yaşamıza girmiştir. Kaplanan malzeme de kullanılan iletken olmayan, elektroaktif ve iletken polimer ile nanokompozitlerin yapıları ve özellikleri düzenlenebilir. Burada özellikle aşınma direnci, korozyon önleyici direnç ve elektrik direnci gibi birçok performanslı hale getirilen malzeme ayrıca polimere nanokil veya nanoparçacıklar gömüldüğünde verimli bir şekilde geliştirilebilir. Karbon nanotüplerle yapılan Polimer Nanokompozitler, elektriksel özelliklere sahiptir ve elektromanyetik parazit koruması görevi görür. Polimer nanokompozitler için uygun bazı kaplama teknolojileri sunulmuştur.

Kaynakça

  • Atif, R. and Inam, F. (2016). Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein Journal of Nanotechnology, 7, 1174-1196.
  • Baptista, A., Silva, F.J.G., Porteiro, J., Míguez, J.L., Pinto, G. and Fernandes, L. (2018). On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications. Procedia Manufacturing, 17, 746-757.
  • Bharathidasan, T. and Sathiyanaryanan, S. (2020). Self- replenishing superhydrophobic durable polymeric nanocomposite coatings for heat exchanger channels in thermal management applications. Progress in Organic Coatings, 148, 105828.
  • Chen, K.Y., Lai, Y.S., You, J.K., Santiago, K. S. and Yeh, J.M. (2019). Effective anticorrosion coatings prepared from sulfonated electroactive polyurea. Polymer, 166, 98-107.
  • Chen, Y., Zhang, Q., Jing, X., Han, J. and Yu, L. (2019). Synthesis of Cu-doped polyaniline nanocomposites (nano Cu@PANI) via the H2O2-promoted oxidative polymerization of aniline with copper salt. Materials Letters, 242, 170-173.
  • Compton, O.C., Kim, S., Pierre, C., Torkelson, J.M. and Nguyen, S.T. (2010). Crumpled Graphene Nanosheets as Highly Effective Barrier Property Enhancers. 22 (42), 4759-4763.
  • Daikh, S., Zeggai, F.Z., Bellil, A. and Benyoucef, A. (2018). Chemical polymerization, characterization and electrochemical studies of PANI/ZnO doped with hydrochloric acid and/or zinc chloride: Differences between the synthesized nanocomposites. Journal of Physics and Chemistry of Solids, 121, 78-84.
  • Deshpande, A.S., Muraoka, W. and Andreescu, S. (2021). Electrochemical sensors for oxidative stress monitoring. Current Opinion in Electrochemistry, 29, 100809.
  • Fu, S., Zhu, Y., Zhang, Y., Zhang, M., Zhang, Y., Qiao, L., Yin, N., Song, K., Liu, M. and Wang, D. (2021). Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection. Microchemical Journal, https://doi.org/10.1016/j.microc.2021.106776 106776.
  • Gandara, M. and Gonçalves, E.S. (2020). Electroactive composites: PANI electrochemical synthesis with GO and rGO for structural carbon fiber coating. Progress in Organic Coatings, 138, 105399.
  • Gao, F. (2012). Advances in polymer nanocomposites, Types and applications. Woodhead Publishing Limited, 606-629.
  • Gao, Q., Zang, Y., Zhang, Y., Xie, J., Li, J., Gao, J. and Xue, H. (2020). Composite polymerized molecular imprinting membrane-based electrochemical sensor for sensitive determination of curcumin by using 4-pentenoyl-aminoacyl-chitosan oligosaccharide as functional monomer oligomer. Journal of Electroanalytical Chemistry, 879, 114793.
  • Giraldo, L.J., Giraldo, M.A., Llanos, S., Maya, G., Zabala, R.D., Nassar, N.N., Franco, C.A., Alvarado, V. and Cortés, F.B. (2017). The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions. Journal of Petroleum Science and Engineering, 159, 841-852.
  • Giraldo Mejía, H.F., Herrera Seitz, K., Valdés, M., Uheida, A., Procaccini, R.A. and Pellice, S.A. (2021). Antibacterial performance of hybrid nanocomposite coatings containing clay and silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 628, 127354.
  • Guo, B., Glavas, L. and Albertsson, A.C. (2013). Biodegradable and electrically conducting polymers for biomedical applications. Progress in Polymer Science, 38 (9), 1263-1286.
  • Huang, K.Y., Jhuo, Y.S., Wu, P.S., Lin, C.H., Yu, Y.H. and Yeh, J.M. (2009). Electrochemical studies for the electroactivity of amine-capped aniline trimer on the anticorrosion effect of as-prepared polyimide coatings. European Polymer Journal, 45 (2), 485-493.
  • Huang, T.C., Yeh, T.C., Huang, H.Y., Ji, W.F., Chou, Y.-C., Hung, W.I., Yeh, J.M. and Tsai, M.H. (2011). Electrochemical studies on aniline-pentamer-based electroactive polyimide coating: Corrosion protection and electrochromic properties. Electrochimica Acta, 56 (27), 10151-10158.
  • Iftikhar, T., Asif, M., Aziz, A., Ashraf, G., Jun, S., Li, G. and Liu, H. (2021). Topical advances in nanomaterials based electrochemical sensors for resorcinol detection. Trends in Environmental Analytical Chemistry, 31, e00138.
  • Ji, W.F., Chu, C.M., Hsu, S.C., Lu, Y.D., Yu, Y.C., Santiago, K.S. and Yeh, J.M. (2017). Synthesis and characterization of organo-soluble aniline oligomer-based electroactive doped with gold nanoparticles, and application to electrochemical sensing of ascorbic acid. Polymer, 128, 218-228.
  • Kausar, A., in Conducting Polymer-Based Nanocomposites, ed. A. Kausar (Elsevier, 2021), 185-209
  • Kumar, H., Kumari, N. and Sharma, R. (2020). Nanocomposites (conducting polymer and nanoparticles) based electrochemical biosensor for the detection of environment pollutant: Its issues and challenges. Environmental Impact Assessment Review, 85, 106438.
  • Li, C., Wang, J. and Su, Y. (2021). A dual-role theory of the aspect ratio of the nanofillers for the thermal conductivity of graphene-polymer nanocomposites. International Journal of Engineering Science, 160, 103453.
  • Liu, F., Liu, A., Tao, W. and Yang, Y. (2020). Preparation of UV curable organic/inorganic hybrid coatings-a review. Progress in Organic Coatings, 145, 105685.
  • Liu, Z., Ren, L., Jing, J., Wang, C., Liu, F., Yuan, R., Jiang, M. and Wang, H. (2021). Fabrication of robust superhydrophobic organic-inorganic hybrid coating through a novel two-step phase separation method. Progress in Organic Coatings, 157, 106320.
  • Ma, J., Ren, H., Liu, Z., Zhou, J., Wang, Y., Hu, B., Liu, Y., Kong, L.B. and Zhang, T. (2020). Embedded MoS2-PANI nanocomposites with advanced microwave absorption performance. Composites Science and Technology, 198, 108239.
  • Ma, L., Song, G., Zhang, X., Zhou, S., Liu, Y. and Zhang, L. (2021). Attaching SiO2 nanoparticles to GO sheets via amino-terminated hyperbranched polymer for epoxy composites: Extraordinary improvement in thermal and mechanical properties. European Polymer Journal, 157, 110677.
  • Md Saleh, S.S., Md Akil, H. and Abdul Kudus, M.H., in Fillers and Reinforcements for Advanced Nanocomposites, ed. Y. Dong, R. Umer and A.K.T. Lau (Woodhead Publishing, 2015), 81-98
  • Monetta, T., Acquesta, A., Carangelo, A., Naddeo, C. and Guadagno, L. (2019). Enhancement of photooxidative and corrosion resistance of epoxy/graphene water-based coatings on metallic substrate. Progress in Organic Coatings, 135, 7-18.
  • Ng, L.Y., Chua, H.S. and Ng, C.Y. (2021). Incorporation of graphene oxide-based nanocomposite in the polymeric membrane for water and wastewater treatment: A review on recent development. Journal of Environmental Chemical Engineering, 9 (5), 105994.
  • Norouzian, R.S. and Lakouraj, M.M. (2020). Polyaniline-thiacalix[4]arene metallopolymer, self-doped, and externally doped conductive polymers. Progress in Organic Coatings, 146, 105731.
  • Rao, C. R. K. and Trivedi, D.C. (2005). Chemical and electrochemical depositions of platinum group metals and their applications. Coordination Chemistry Reviews, 249 (5), 613-631.
  • Safronova, E.Y., Yurova, P.A., Ashrafi, A.M., Chernyak, A.V., Khoroshilov, A.V. and Yaroslavtsev, A.B. (2021). The effect of ultrasonication of polymer solutions on the performance of hybrid perfluorinated sulfonic acid membranes with SiO2 nanoparticles. Reactive and Functional Polymers, 165, 104959.
  • Sevcik, J., Urbanek, P., Skoda, D., Jamatia, T., Nadazdy, V., Urbanek, M., Antos, J., Munster, L. and Kuritka, I. (2021). Energy resolved-electrochemical impedance spectroscopy investigation of the role of Al-doped ZnO nanoparticles in electronic structure modification of polymer nanocomposite LEDs. Materials & Design, 205, 109738.
  • Shirazi, M., Rad, G. M. and Tamsilian, Y., in Encyclopedia of Materials: Composites, ed. D. Brabazon (Elsevier, Oxford, 2021), 725-745
  • Taborda, E.A., Franco, C.A., Lopera, S.H., Castro, R.H., Maya, G.A., Idrobo, E.A. and Cortés, F.B. (2021). Effect of surface acidity of SiO2 nanoparticles on thermal stability of polymer solutions for application in EOR processes. Journal of Petroleum Science and Engineering, 196, 107802.
  • Wang, J., Li, C., Li, J., Weng, G.J. and Su, Y. (2021). A multiscale study of the filler-size and temperature dependence of the thermal conductivity of graphene-polymer nanocomposites. Carbon, 175, 259-270.
  • Weng, C.J., Chang, C.H., Peng, C.W., Chen, S.W., Yeh, J.M., Hsu, C.L. and Wei, Y. (2011). Advanced Anticorrosive Coatings Prepared from the Mimicked Xanthosoma Sagittifolium-leaf-like Electroactive Epoxy with Synergistic Effects of Superhydrophobicity and Redox Catalytic Capability. Chemistry of Materials, 23 (8), 2075-2083.
  • Weng, C.J., Huang, J.Y., Huang, K.Y., Jhuo, Y.S., Tsai, M.H. and Yeh, J.M. (2010). Advanced anticorrosive coatings prepared from electroactive polyimide-TiO2 hybrid nanocomposite materials. Electrochimica Acta, 55 (28), 8430-8438.
  • Wu, J., Zuo, X., Chen, Q., Deng, X., Liang, H., Zhu, T., Liu, J., Li, W. and Nan, J. (2019). Functional composite polymer electrolytes with imidazole modified SiO2 nanoparticles for high-voltage cathode lithium ion batteries. Electrochimica Acta, 320, 134567.
  • Zainal, N., Arifin, H. H., Zardasti, L., Yahaya, N., Lim, K. S., Lai, J. W. and Md Noor, N. J. M. W. C. (2018). Tensile Properties of Epoxy Grout Incorporating Graphene Nanoplatelets for Pipeline Repair. 203, 06012.
  • Zarei, M. S., Kolahchi, R., Hajmohammad, M. H. and Maleki, M. (2017). Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles and fiber reinforced polymer (FRP) layer. Soil Dynamics and Earthquake Engineering, 103, 76-85.
  • Zhang, Q., Qiao, Y., Zhu, J., Li, Y., Li, C., Lin, J., Li, X., Han, H., Mao, J., Wang, F. and Wang, L. (2021). Electroactive and antibacterial surgical sutures based on chitosan-gelatin/tannic acid/polypyrrole composite coating. Composites Part B: Engineering, 223, 109140.
  • Zhang, S., Chen, S., Yang, F., Hu, F., Yan, B., Gu, Y., Jiang, H., Cao, Y. and Xiang, M. (2019). High-performance electrochromic device based on novel polyaniline nanofibers wrapped antimony-doped tin oxide/TiO2 nanorods. Organic Electronics, 65, 341-348.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Çetin ÇİMEN> (Sorumlu Yazar)
KAFKAS ÜNİVERSİTESİ
0000-0002-1338-2509
Türkiye

Yayımlanma Tarihi 26 Ekim 2022
Gönderilme Tarihi 22 Şubat 2022
Kabul Tarihi 1 Temmuz 2022
Yayınlandığı Sayı Yıl 2021, Cilt 14, Sayı 1 - 2

Kaynak Göster

Bibtex @derleme { kujs1077130, journal = {Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi}, issn = {2587-2389}, eissn = {2587-2389}, address = {kaufbed@kafkas.edu.tr}, publisher = {Kafkas Üniversitesi}, year = {2022}, volume = {14}, number = {1 - 2}, pages = {37 - 45}, title = {Polimer Nanokompozit Kaplama Teknikleri ve Sunduğu Performanslar}, key = {cite}, author = {Çimen, Çetin} }
APA Çimen, Ç. (2022). Polimer Nanokompozit Kaplama Teknikleri ve Sunduğu Performanslar . Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi , 14 (1 - 2) , 37-45 . Retrieved from https://dergipark.org.tr/tr/pub/kujs/issue/73183/1077130
MLA Çimen, Ç. "Polimer Nanokompozit Kaplama Teknikleri ve Sunduğu Performanslar" . Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14 (2022 ): 37-45 <https://dergipark.org.tr/tr/pub/kujs/issue/73183/1077130>
Chicago Çimen, Ç. "Polimer Nanokompozit Kaplama Teknikleri ve Sunduğu Performanslar". Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14 (2022 ): 37-45
RIS TY - JOUR T1 - Polimer Nanokompozit Kaplama Teknikleri ve Sunduğu Performanslar AU - ÇetinÇimen Y1 - 2022 PY - 2022 N1 - DO - T2 - Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi JF - Journal JO - JOR SP - 37 EP - 45 VL - 14 IS - 1 - 2 SN - 2587-2389-2587-2389 M3 - UR - Y2 - 2022 ER -
EndNote %0 Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi Polimer Nanokompozit Kaplama Teknikleri ve Sunduğu Performanslar %A Çetin Çimen %T Polimer Nanokompozit Kaplama Teknikleri ve Sunduğu Performanslar %D 2022 %J Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi %P 2587-2389-2587-2389 %V 14 %N 1 - 2 %R %U
ISNAD Çimen, Çetin . "Polimer Nanokompozit Kaplama Teknikleri ve Sunduğu Performanslar". Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14 / 1 - 2 (Ekim 2022): 37-45 .
AMA Çimen Ç. Polimer Nanokompozit Kaplama Teknikleri ve Sunduğu Performanslar. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2022; 14(1 - 2): 37-45.
Vancouver Çimen Ç. Polimer Nanokompozit Kaplama Teknikleri ve Sunduğu Performanslar. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2022; 14(1 - 2): 37-45.
IEEE Ç. Çimen , "Polimer Nanokompozit Kaplama Teknikleri ve Sunduğu Performanslar", Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 14, sayı. 1 - 2, ss. 37-45, Eki. 2022