Amaç: Düşük seviyeli lazer terapisi, rejeneratif tıpta fonksiyonel anomalilerin yönetilmesi, iyileşme sürecini ve hücresel fonksiyonları geliştirmek için düşük seviyeli lazerlerin kullanıldığı bir tedavi yaklaşımıdır. Çalışmada, bu tedavi yaklaşımının diyabetik hastalarda rastlanan en önemli problemlerden birisi olan diyabetik yaraların iyileşmesinde etkinliğinin araştırılması amaçlanmıştır.
Yöntem: İnsan derisinden izole edilmiş olan Tip 2 diyabetik ve normoglisemik insan dermal fibroblast hücrelerine belirli sürelerde (10-100 saniye) iki günde bir, 9 gün süresince 980 nm dalga boyundaki diyot lazer uygulanmış ve hücre sayıları ve sentezlenen Tip 1 kollajen miktarları karşılaştırılmıştır.
Bulgular: Her iki hücre tipinde de uygulanan sürelerdeki lazerin hücreler üzerinde herhangi bir sitotoksik etkiye yol açmadığı, ancak hücrelere 50 sn.’den fazla uygulanmasının anlamlı düzeyde hücre çoğalmasını yavaşlattığı tespit edilmiştir. Hücrelerde sentezlenen kollajen miktarları kıyaslandığında normoglisemik hücrelerde daha fazla sentez olduğu sonucuna varıldı. Tip 2 diyabetik insan dermal fibroblast hücrelerinde en yüksek kollajen sentezine 90 sn. lazer uygulaması sonucunda rastlanırken normoglisemik hücrelerde en yüksek kollajen sentezine 70 sn. lazer uygulamasında ulaşıldı.
Sonuç: Diyot lazerin olumlu etkilerinin görülmesinde uygulama sürelerinin hücre tipine göre değiştiği, hasta profiline göre uygun sürelerde uygulanan lazerin düşük maliyetle, hastaya en az zararla, hastadaki yara iyileşme sürecini olumlu yönde etkileyebileceği düşünülmektedir.
Emilia de Abreu Chaves M, Piancastelli ACC, Rodrigues de Araujo A, Pinotti M. Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol. 2014;89(4):616-623. doi:10.1590/abd1806-4841.20142519
Osman AH, Kamel MM, Wahdan MH, Al-gazaly M. Assessment to the effects of low diode laser on wound healing in diabetic rats. Life Sci. J. 2013;10(2):1313-1320.
Yu W, Naim JO, Lanzafame J. Effects of photostimulation on wound healing in diabetic mice, Lasers in Surg. Med. 1997;20:56-63. doi:10.1002/(sici)1096-9101(1997)20:1<56:aid-lsm9>3.0.co;2-y
Colombo F, Neto AAPV, Cavalcanti de Sousa AP, Marchionni AMT, Pinheiro ALB, Regina de Almeida Reis S. Effect of low-level laser therapy (λ660 nm) on angiogenesis in wound healing: An immunohistochemical study in a rodent model. Braz. Dent. J. 2013;24(4):308-312. doi:10.1590/0103-6440201301867
Hawkins D, Abrahamse H. Phototherapy-a treatment modality for wound healing and pain relief. African J. Biomed. Res. 2007;10:99-109. doi:10.4314/ajbr.v10i2.50626
Kawalec JS, Hetherington VJ, Pfennigwerth TC, Dockery DS, Dolce M. Effect of a diode laser on wound healing by using diabetic and nondabetic mice. J. foot & Ankle Surg. 2004;43(4):214-220. doi:10.1053/j.jfas.2004.05.004
Medrado ARAP, Pugliese LS, Reis SRA, Andrade ZA. Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg. Med. 2003;32:239-244. doi:10.1002/lsm.10126
Migliario M, Pittarella P, Fanuli M, Rizzi M, Renỏ F. Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med. Sci. 2014;29:1463-1467. doi:10.1007/s10103-014-1556-x
Borzabadi-Farahani A. Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. J. Photochem.&Photobio., B: Bio. 2016;162:577-582. doi:10.1016/j.jphotobiol.2016.07.022
Rizzi M, Migliario M, Rocchetti V, Tonello S, Renỏ F. Pre-odontoblast proliferation induced by near-infrared laser stimulation. Eur. Rev. Med. Pharmacol. Sci. 2016;20:794-800.
Crisan B, Soritau O, Baciut M, Campian R, Crisan L, Baciut G. Influence of three laser wavelengths on human fibroblasts cell culture. Lasers Med. Sci. 2013;28:457-463. doi:10.1007/s10103-012-1084-5
Park JJ, Kang KL. Effect of 980 nm GaAlAs diode laser irradiation on healing of extraction sockets in streptozotocin-induced diabetic rats: a pilot study. Lasers Med. Sci. 2012;27:223-230. doi:10.1007/s10103-011-0944-8
Sterczala B, Grzech-Leṡniak K, Michel O, Trzeciakowski W, Jurczyszyn K. Assesment of human gingival fibroblast proliferation after laser stimulation in vitro using different types and wavelengths (1064, 980, 635, 450 and 405 nm)-preliminary report. J. Person. Med. 2020;2020100600. doi:10.20944/preprints202010.0600.v1
Yilmaz Ozdogan C, Kenar H, Davun KE, Yucel D, Doger E, Alagoz S. An in vitro 3D diabetic human skin model from diabetic primary cells. Biomed. Mater. 2020;16(1):015027. doi:10.1088/1748-605X/abc1b1
Brechbuhl HM, Barrett AS, Kopin E, et al. Fibroblast subtypes define a metastatic matrisome in breast cancer. JCI Insight. 2020;5(4):e130751. doi:10.1172/jci.insight.130751
Alt E, Yan Y, Gehmert S, et al. Fibroblasts share mesenchymal phenotyped with stem cells, but lack their differentiation and colony-forming potential. Bio. Cell. 2011;103:197-208. doi:10.1042/BC20100117
Skopin MD, Molitor SC. Effects of near-infrared laser exposure in a cellular model of wound healing. Photodermat., Photoimmun.&Photomed. 2008;25:75-80. doi:10.1111/j.1600-0781.2009.00406.x
Kawalec JS, Pfennigwerth TC, Hetherington VJ, et al. A review of lasers in healing diabetic ulcers. The Foot. 2004;14:68-71. doi:10.1016/j.foot.2003.11.001
Amid R, Kadkhodazadeh M, Ahsaie MG, Hakakzadeh A. Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J. Lasers Med. Sci. 2014;5(4):163-169.
Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed. Laser Surg. 2005;23(2):161-166. doi:10.1089/pho.2005.23.161
Abergel RP, Lam TS, Meeker CA, Castel CJ, Dwyer RM, Uitto J. Biostimulation of procollagen by low energy lasers in human skin fibroblast cultures. Clinical Res. 1984;32:567-572. doi:10.1111/j.1524-4725.1987.tb00510.x
Moura LIF, Dias AMA, Carvalho E, de Sousa HC. Recent advances on the development of wound dressings for diabetic foot ulcer treatment-A review. Acta Biomat. 2013;9:7093-7114. doi:10.1016/j.actbio.2013.03.033
Kawalec JS, Reyes C, Penfield VK, et al. Evaluation of the Ceralas D15 diode laser as an adjunct tool for wound care: a pilot study. The Foot. 2001;11(2):68-73, doi:10.1054/foot.2001.0669
Al-Watban FH, Zhang XY, Andres BL. Low-level laser therapy enhances wound healing in diabetic rats: A comparison of different lasers. Photomed. Laser Surg. 2007;25(2):72-79. doi:10.1089/pho.2007.1094
Usumez A, Cengiz B, Oztuzcu S, Demir T, Aras MH, Gutknecht N. Effects of laser irradiation at different wavelengths (660, 810, 980 and 1064 nm) on mucositis in an animal model of wound healing. Lasers Med. Sci. 2014;29:1807-1813. doi:10.1007/s10103-013-1336-z
Effects of Diode Laser on Type 2 Diabetic Human Dermal Fibroblast Proliferation and Collagen Synthesis
Objective: Low-level laser therapy is a treatment approach in regenerative medicine that employs low-level lasers to manage functional abnormalities, improve the healing process, and the cellular functions. The aim of this study was to investigate the effectiveness of this treatment approach in healing diabetic wounds that is one of the most important problems encountered in diabetic patients.
Methods: Diode laser was applied on Type 2 diabetic and normoglycemic human dermal fibroblasts for a predetermined time period (10-100 seconds) every two days for total of 9 days, and cell numbers and the amounts of synthesized Type 1 collagen were compared.
Results: In both cell types, the laser did not cause any cytotoxicity at the applied time periods, but laser application for more than 50 sec. significantly slowed down cell proliferation. When the amount of synthesized collagen was compared, the normoglycemic fibroblasts were found to synthesize more. As the highest collagen synthesis was found in Type 2 diabetic cells at 90 sec. laser application, in normoglycemic cells it was achieved at 70 seconds.
Conclusion: It is thought that the optimum application times of the 980 nm diode laser vary according to the cell type, and that the laser applied at appropriate periods according to the patient’s profile can positively affect the wound healing process with a minimal damage.
Emilia de Abreu Chaves M, Piancastelli ACC, Rodrigues de Araujo A, Pinotti M. Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol. 2014;89(4):616-623. doi:10.1590/abd1806-4841.20142519
Osman AH, Kamel MM, Wahdan MH, Al-gazaly M. Assessment to the effects of low diode laser on wound healing in diabetic rats. Life Sci. J. 2013;10(2):1313-1320.
Yu W, Naim JO, Lanzafame J. Effects of photostimulation on wound healing in diabetic mice, Lasers in Surg. Med. 1997;20:56-63. doi:10.1002/(sici)1096-9101(1997)20:1<56:aid-lsm9>3.0.co;2-y
Colombo F, Neto AAPV, Cavalcanti de Sousa AP, Marchionni AMT, Pinheiro ALB, Regina de Almeida Reis S. Effect of low-level laser therapy (λ660 nm) on angiogenesis in wound healing: An immunohistochemical study in a rodent model. Braz. Dent. J. 2013;24(4):308-312. doi:10.1590/0103-6440201301867
Hawkins D, Abrahamse H. Phototherapy-a treatment modality for wound healing and pain relief. African J. Biomed. Res. 2007;10:99-109. doi:10.4314/ajbr.v10i2.50626
Kawalec JS, Hetherington VJ, Pfennigwerth TC, Dockery DS, Dolce M. Effect of a diode laser on wound healing by using diabetic and nondabetic mice. J. foot & Ankle Surg. 2004;43(4):214-220. doi:10.1053/j.jfas.2004.05.004
Medrado ARAP, Pugliese LS, Reis SRA, Andrade ZA. Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg. Med. 2003;32:239-244. doi:10.1002/lsm.10126
Migliario M, Pittarella P, Fanuli M, Rizzi M, Renỏ F. Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med. Sci. 2014;29:1463-1467. doi:10.1007/s10103-014-1556-x
Borzabadi-Farahani A. Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. J. Photochem.&Photobio., B: Bio. 2016;162:577-582. doi:10.1016/j.jphotobiol.2016.07.022
Rizzi M, Migliario M, Rocchetti V, Tonello S, Renỏ F. Pre-odontoblast proliferation induced by near-infrared laser stimulation. Eur. Rev. Med. Pharmacol. Sci. 2016;20:794-800.
Crisan B, Soritau O, Baciut M, Campian R, Crisan L, Baciut G. Influence of three laser wavelengths on human fibroblasts cell culture. Lasers Med. Sci. 2013;28:457-463. doi:10.1007/s10103-012-1084-5
Park JJ, Kang KL. Effect of 980 nm GaAlAs diode laser irradiation on healing of extraction sockets in streptozotocin-induced diabetic rats: a pilot study. Lasers Med. Sci. 2012;27:223-230. doi:10.1007/s10103-011-0944-8
Sterczala B, Grzech-Leṡniak K, Michel O, Trzeciakowski W, Jurczyszyn K. Assesment of human gingival fibroblast proliferation after laser stimulation in vitro using different types and wavelengths (1064, 980, 635, 450 and 405 nm)-preliminary report. J. Person. Med. 2020;2020100600. doi:10.20944/preprints202010.0600.v1
Yilmaz Ozdogan C, Kenar H, Davun KE, Yucel D, Doger E, Alagoz S. An in vitro 3D diabetic human skin model from diabetic primary cells. Biomed. Mater. 2020;16(1):015027. doi:10.1088/1748-605X/abc1b1
Brechbuhl HM, Barrett AS, Kopin E, et al. Fibroblast subtypes define a metastatic matrisome in breast cancer. JCI Insight. 2020;5(4):e130751. doi:10.1172/jci.insight.130751
Alt E, Yan Y, Gehmert S, et al. Fibroblasts share mesenchymal phenotyped with stem cells, but lack their differentiation and colony-forming potential. Bio. Cell. 2011;103:197-208. doi:10.1042/BC20100117
Skopin MD, Molitor SC. Effects of near-infrared laser exposure in a cellular model of wound healing. Photodermat., Photoimmun.&Photomed. 2008;25:75-80. doi:10.1111/j.1600-0781.2009.00406.x
Kawalec JS, Pfennigwerth TC, Hetherington VJ, et al. A review of lasers in healing diabetic ulcers. The Foot. 2004;14:68-71. doi:10.1016/j.foot.2003.11.001
Amid R, Kadkhodazadeh M, Ahsaie MG, Hakakzadeh A. Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J. Lasers Med. Sci. 2014;5(4):163-169.
Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed. Laser Surg. 2005;23(2):161-166. doi:10.1089/pho.2005.23.161
Abergel RP, Lam TS, Meeker CA, Castel CJ, Dwyer RM, Uitto J. Biostimulation of procollagen by low energy lasers in human skin fibroblast cultures. Clinical Res. 1984;32:567-572. doi:10.1111/j.1524-4725.1987.tb00510.x
Moura LIF, Dias AMA, Carvalho E, de Sousa HC. Recent advances on the development of wound dressings for diabetic foot ulcer treatment-A review. Acta Biomat. 2013;9:7093-7114. doi:10.1016/j.actbio.2013.03.033
Kawalec JS, Reyes C, Penfield VK, et al. Evaluation of the Ceralas D15 diode laser as an adjunct tool for wound care: a pilot study. The Foot. 2001;11(2):68-73, doi:10.1054/foot.2001.0669
Al-Watban FH, Zhang XY, Andres BL. Low-level laser therapy enhances wound healing in diabetic rats: A comparison of different lasers. Photomed. Laser Surg. 2007;25(2):72-79. doi:10.1089/pho.2007.1094
Usumez A, Cengiz B, Oztuzcu S, Demir T, Aras MH, Gutknecht N. Effects of laser irradiation at different wavelengths (660, 810, 980 and 1064 nm) on mucositis in an animal model of wound healing. Lasers Med. Sci. 2014;29:1807-1813. doi:10.1007/s10103-013-1336-z
Yılmaz Özdoğan, C., & Kenar, H. (2021). Diyot Lazerin Tip 2 Diyabetik İnsan Dermal Fibroblast Hücrelerinin Çoğalma ve Kollajen Üretimine Etkisi. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi, 7(2), 174-180. https://doi.org/10.30934/kusbed.884859
AMA
Yılmaz Özdoğan C, Kenar H. Diyot Lazerin Tip 2 Diyabetik İnsan Dermal Fibroblast Hücrelerinin Çoğalma ve Kollajen Üretimine Etkisi. KOU Sag Bil Derg. Mayıs 2021;7(2):174-180. doi:10.30934/kusbed.884859
Chicago
Yılmaz Özdoğan, Candan, ve Halime Kenar. “Diyot Lazerin Tip 2 Diyabetik İnsan Dermal Fibroblast Hücrelerinin Çoğalma Ve Kollajen Üretimine Etkisi”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 7, sy. 2 (Mayıs 2021): 174-80. https://doi.org/10.30934/kusbed.884859.
EndNote
Yılmaz Özdoğan C, Kenar H (01 Mayıs 2021) Diyot Lazerin Tip 2 Diyabetik İnsan Dermal Fibroblast Hücrelerinin Çoğalma ve Kollajen Üretimine Etkisi. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 7 2 174–180.
IEEE
C. Yılmaz Özdoğan ve H. Kenar, “Diyot Lazerin Tip 2 Diyabetik İnsan Dermal Fibroblast Hücrelerinin Çoğalma ve Kollajen Üretimine Etkisi”, KOU Sag Bil Derg, c. 7, sy. 2, ss. 174–180, 2021, doi: 10.30934/kusbed.884859.
ISNAD
Yılmaz Özdoğan, Candan - Kenar, Halime. “Diyot Lazerin Tip 2 Diyabetik İnsan Dermal Fibroblast Hücrelerinin Çoğalma Ve Kollajen Üretimine Etkisi”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 7/2 (Mayıs 2021), 174-180. https://doi.org/10.30934/kusbed.884859.
JAMA
Yılmaz Özdoğan C, Kenar H. Diyot Lazerin Tip 2 Diyabetik İnsan Dermal Fibroblast Hücrelerinin Çoğalma ve Kollajen Üretimine Etkisi. KOU Sag Bil Derg. 2021;7:174–180.
MLA
Yılmaz Özdoğan, Candan ve Halime Kenar. “Diyot Lazerin Tip 2 Diyabetik İnsan Dermal Fibroblast Hücrelerinin Çoğalma Ve Kollajen Üretimine Etkisi”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi, c. 7, sy. 2, 2021, ss. 174-80, doi:10.30934/kusbed.884859.
Vancouver
Yılmaz Özdoğan C, Kenar H. Diyot Lazerin Tip 2 Diyabetik İnsan Dermal Fibroblast Hücrelerinin Çoğalma ve Kollajen Üretimine Etkisi. KOU Sag Bil Derg. 2021;7(2):174-80.