Derleme
BibTex RIS Kaynak Göster

Yararlı Mikroorganizma İçerikli Biyolojik Gübrelerin Meyve Yetiştiriciliğinde Kullanımı

Yıl 2022, Cilt: 2 Sayı: 1, 71 - 92, 30.06.2022

Öz

Bitkilerin yetişmesi için hem ortam hem de beslenme ihtiyaçlarını sağlayan toprak, önemli miktarda mikroorganizma içeriğine de sahiptir. Dolayısıyla hem canlı hem de cansız unsurların bir arada olduğu bu ekosistem, iyi bir yetiştiricilik için mutlak dengeyi oluşturmak zorundadır. Topraktaki doğal yaşam döngüsü, özellikle toprağın biyotik kısmı tarafından yürütülmekte, bu kısım aynı zamanda bitki yetiştiriciliğinin daha sağlıklı yapılabilmesine imkân sağlamaktadır. Toprağın biyotik kısmında önemli bir yer kaplayan patojen olmayan yararlı mikroorganizmalar, son yıllarda özellikle sürdürülebilir-organik-kontrollü tarımın en büyük destekleyicisi olma görevi üstlenmiştir. Bu derleme ile, yararlı mikroorganizmalar olarak bilinen bitki büyümesini teşvik eden rizobakteriler ve yararlı mantar formlarının meyve yetiştiriciliğinde kullanım imkanlarına yönelik yapılan çalışmalar ve etki mekanizmaları özetlenmiştir.

Kaynakça

  • Abdel Latef A A and Chaoxing H (2011a). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hort. 127, 228–233. doi: 10.1016/j. scienta.2010.09.020.
  • Abdel Latef A A and Chaoxing H (2011b). Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol. Plant. 33, 1217–1225. doi: 10.1007/s11738-010-0650-3
  • Abdel Latef A A and Chaoxing H J (2014). Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants? Plant Grow. Regul. 33, 644– 653. doi: 10.1007/s00344-014-9414-4
  • Abdel-Rahman S S, El-Naggar A I (2014). Promotion of rooting and growth of some types of Bougainvilleas cutting by plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) in combination with indole-3-butyric acid (IBA). Inter. J. Sci. and Res, 3(11), 97-108.
  • Akbaş Y, Pirlak L, and Dönmez M F (2019). Bacillus atrophaeus MFDV2 Rhizobacteria Isolate Increases Vegetative Growth, Yield, and Fruit Size of Banana Plant. Indonesian Journal of Agricultural Science Vol. 20 No. 2: 55–60. DOI: http//dx.doi.org/10.21082/ijas.v.20.n2.2019.p.55–60
  • Akça, Y, Ercişli S, (2010). Effect of plant growth promoting rhizobacteria inoculation on fruit quality in sweetcherry (Prunus avium L) cv. 0900 Ziraat. J. Food Agr. And Biology, 8(2):769-771.
  • Alagawadi A R and Gaur A C (1992). Inoculation of Azospirillum brasilense and phosphate-solubilizing bacteria on yield of sorghum (Sorghum bicolor L. Moench) in dry land. Trop. Agric. 69, 347–350.
  • Alizadeh H, Sharifi-Tehrani A, Hedjaroude G (2007) Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry. Commun Agric Appl Biol Sci 72:795–800
  • Alori E T and Babalola O O (2018) Microbial Inoculants for Improving Crop Quality and Human Health in Africa. Front. Microbiol. 9:2213. doi: 10.3389/fmicb.2018.02213
  • Antoun H, Prevost D (2006). Ecology of plant growth promoting rhizobacteria. PGPR: biocontrol and biofertilization. Edited by Zaki A. Sıddıqui, S 1-38.
  • Arıkan Ş, Pırlak L (2016). Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Growth, Yield and Fruit Quality of Sour Cherry (Prunus cerasus L.). Erwerbs-Obstbau (2016) 58:221–226.
  • Aseri, G K, Jain N, Panwar J, Rao A V, Meghwal P R (2008). Biofertilizers improve plant growth, fruit yield, nutrition, and metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Scientia Horticulturae. 117: 130-135
  • Aslantas R, Karakurt H, Kose M, Ozkan G, Cakmakci R (2009). Influences of some bacteria strains on runner plant production on strawberry. Proc III. National Berry Fruit Symposium 50–58
  • Attia M, Ahmed M A, El-Sonbaty M R (2009). Use of biotechnologies to increase growth, productivity and fruit quality of maghrabi banana under different rates of phosphorus. World J Agric Sci 5:211–220
  • Awad S M (1999). Response of flame grape transplant to mycorrhizal inoculation and phosphorus fertilization. Egyptian Journal of Horticulture. 26(3): 421-423
  • Azizoglu U (2019). Bacillus thuringiensis as a biofertilizer and biostimulator: a mini-review of the little-known plant growth-promoting properties of Bt. Curr. Microbiol. 76, 1379–1385. doi: 10.1007/s00284-019-01705-9
  • Balla I Szucs E, Borkowska B, and Michalczuk B (2008). Evaluation the response of micropropagated peach and apple rootstocks to different mycorrhizal inocula. Mycorrhiza Works, eds F. Feldmann, Y. Kapulnik, and J. Baar (Braunschweig: Deutsche Phytomedizinische Gesellschaft), 126–134
  • Bassil N V, Proebsting W M, Moore L W, Lightfoot D A (1991). Propagation of hazelnut stem cuttings using Agrobacterium rhizogenes. Hort Sci 26:1058–1060 Bashan Y, De-Bashan L E (2005). Plant growth-promoting. Encyclopedia of soils in the environment, 1, 103-115.
  • Bent E (2006). Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 225–258
  • Berg A, Kemami Wangun H V, Nkengfack A E, Schlegel B (2004) Lignoren, a new sesquiterpenoid metabolite from Trichoderma lignorum HKI 0257. J Basic Microbiol 44:317–319. https://doi.org/10.1002/jobm.200410383
  • Bhardwaj D, Ansari M W, Sahoo R K, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:1–10. https://doi.org/10.1186/1475-2859-13-66
  • Bitterlich M, Sandmann M and Graefe J (2018). Arbuscular mycorrhiza alleviates restrictions to substrate water flow and delays transpiration limitation to stronger drought in tomato. Front.Plant Sci. 9:154. doi: 10.3389/fpls.2018. 00154.
  • Burd G I, Dixon D G, Glick B R (2000). Plant Growth Promoting Bacteria that decrease heavy metal toxity in Plants. Can J. Microbiol, 46:237-245.
  • Cakmakci R, Erdogan U, Kotan R, Oral B, Donmez M F (2008). Cultivable heterotrophic N2-fixing bacterial diversity in wild red raspberries soils in the coruh valley. In: Proceedings of IV. National Plant Nutrition and Fertilizer Congress 706–717
  • Çakmakçı R (2009a). Stres Koşullarında ACC Deaminaze Üretici Bakteriler Tarafından Bitki Gelişiminin Teşvik Edilmesi. Atatürk Üniv. Ziraat Fak. Derg. 40(1):109-125
  • Çakmakçı R, Ertürk Y, Dönmez F, Erat M, Haznedar A, Sekban R (2009b). Organik çay yetiştiriciliği için biyolojik gübre araştırmaları. I. GAP Organik Tarım Kong. 17-20 Kasım 2009 Şanlıurfa. s, 193-201
  • Çakmakçı R, Ertürk Y, Dönmez F, Erat M, Sekban R (2010 a). Organik çay üretiminin geliştirilmesi için biyolojik gübre olarak kullanılabilecek bitki gelişimini teşvik edici bakteri araştırması. International Conference on Organic Agriculture in Scope of Environmental Problems 03-07 February 2010 in Famagusta, p:371-376
  • Çakmakçı R, Dönmez M F, Ertürk Y, Erat M, Haznedar A, Sekban R (2010 b). Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils. Plant and Soil,332:299-318 Çakmakçı R, Ertürk Y, Atasever A, Ercişli S, Şentürk M, Haznedar A, Sekban R (2011a). The Use of Plant Growth Promoting Rhizobacteria for Organic Tea Production in Turkey. Proceeding of Tea Organic Low Carbon International Symposium. Guangyuan, Chına, 2011, June 6-9, 89-97pp.
  • Çakmakçı R, Ertürk Y, Dönmez M F, Turan M, Sekban R, Haznedar A (2011b). Bitki Gelişimini Teşvik Edici Bakterilerin Tuğlalı Çay Klonunda Gelişme, Verim, Besin Alımı Üzerine Etkisi. Uluslararası Katılımlı I. Ali Numan Kıraç Tarım Kongresi ve Fuarı, 27-30 Nisan, s:571-581.
  • Çakmakçı R, Ertürk Y, Varmazyari A, Atasever A, Kotan R, Erat M, Turkyılmaz K, Sekban R, Haznedar A (2015). The effect of mixed cultures of plant growth promoting bacteria and mineral fertilizers on tea (Camellia sinensis L.) growth, yield, nutrient uptake, and enzyme activities. International Congress on “Soil Science in International Year of Soils” 19-23 October 2015 Sohi, Russia. Vol:1, pp:67-71.
  • Çakmakçı R, Ertürk Y, Varmazyari A, Atasever A, Kotan R, Haliloğlu K, Erat M, Türkyılmaz K, Sekban R, Haznedar A (2017). The effect of bacteria-based formulations on tea (Camellia sinensis L.) growth, yield, and enzyme activities. Annals of Warsaw University of Life Sciences – SGGW Horticulture and Landscape Architecture No 38, 2017: 5–18 (Ann. Warsaw Univ. of Life Sci. – SGGW, Horticult. Landsc. Architect. 38
  • De-Ming L I and Alexander M (1988) Co-inoculation with antibiotic producing bacteria to increase colonization and nodulation by rhizobia. Plant Soil 108, 211–219
  • De Silva A, Patterson K, Rothrock C, Moore J (2000). Growth Promoting of Highbush Blueberry by fungal and Bacterial Inoculants. HortSci. 35(7): 1228-1230.
  • du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021
  • Ercisli S, Esitken A, Cangi R, Sahin F (2003). Adventitious root formation of kiwifruit in relation to sampling date, IBA and Agrobacterium rubi inoculation. Plant Growth Regul 41:133–137
  • Ercisli S, Esitken A, Sahin F (2004). Application of exogenous IBA and inoculation with Agrobacterium rubi stimulate adventitious root formation among stem cuttings of two Rose genotypes. HortSci 39:533–534
  • Ertürk Y, Ercisli S, Sekban R, Haznedar A, Donmez M F (2008). The effect of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of tea (Camellia sinensis var. Sinensis) cuttings. Roum Biotech Lett 13:3747– 3756
  • Ertürk Y, Ercişli S, Haznedar A, Çakmakçı R (2010a). Effects of plant growth promoting rhizobacteria(PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biol Res 43: 91-98
  • Ertürk Y, Çakmakçı R, Duyar Ö, Turan M (2010b). Fındık bitkisinde PGPR uygulamalarının bitki gelişimi ve yapraktaki bitki besin elementi içeriğine etkilerinin belirlenmesi. Türkiye IV. Organik Tarım Sempozyumu, 28 Haziran-01 Temmuz 2010, Erzurum, s 511-516
  • Ertürk Y, Çakmakçı R, Duyar Ö, Turan M (2011a). The Effects of Plant Growth-Promoting Rhizobacteria on Vegetative Growth and Leaf Nutrient Contents of Hazelnut Seedlings (Turkish hazelnut cv. Tombul and Sivri). Int. J. Soil Sci. 6(3):188-198.
  • Ertürk Y, Çakmakçı R, Dönmez M F, Sekban R, Haznedar A (2011b). Fener-3 Çay klonu Fidanlarında Enjeksiyon ve Daldırma Metotları ile PGPR Uygulamalarının Verim Üzerine Etkilerinin İncelenmesi. GAP VI. Tarım Kongresi 9-12 Mayıs 2011, s: 29-34.
  • Ertürk Y, Ercisli S, Çakmakçı R (2012). Yield and growth response of strawberry to plant growth promoting rhizobacteria inoculation. Journal Plant Nutrition 35:817-826.
  • Ertürk Y, Çakmakçı R, Sekban R, Haznedar A (2013). Çay yetiştiriciliğinde bitki büyümesini teşvik edici bakteri uygulamaları alternatif olabilir mi ? Türkiye V. Organik Tarım Sempozyumu 25-27 Eylül 2013. Samsun, cilt 1, s:47-51.
  • Eswarappa H, Sukhada M, Gowda K N, Mohandas S (2002). Effect of VAM fungi on banana. Current Research 31(5-6): 69-70
  • Esitken A, Karlidag H, Ercisli S, Sahin F (2002). Effects of foliar application of Bacillus subtilis OSU-142 on the yield, growth and control of shot-hole disease (Coryneum Blight) of Apricot. Gartenbau 67:139–142
  • Esitken A, Karlidag H, Ercisli S, Turan M, Sahin F (2003). The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Aust. J. Agric. Res. 54, 377–380
  • Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic 110:324–327
  • Esitken A, Pirlak L, Ipek M, Donmez M F, Cakmakci R, Sahin F (2009). Fruit bio-thinning by plant growth promoting bacteria (PGPB) in apple cvs. Golden Delicious Braeburn. Biol Agric Hort 26:379–390
  • Eşitken, A, Yıldız E H, Ercişli S, Dönmez M F, Turan M, Güneş A (2010). Effects of plant growth promoting bacteria PGPB) on yield, growth and nutrient contents of organically grown starwberry. Scientia Hort. 124:62-66.
  • Fawzi F M, Shahin E, Daood A, and Kandil E A (2010). Effect of organic and biofertilizers and magnesium sulphate on growth yield, chemical composition and fruit quality of "Le-Conte" pear trees. Nature and Science 8(12):273-280]. (ISSN: 1545-0740).
  • Fra˛c M, Hannula SE, Bełka M, Je˛dryczka M (2018) Fungal biodiversity and their role in soil health. Front Microbiol 9:707. https://doi.org/10.3389/fmicb.2018.00707
  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017). The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions. Frontiers in Plant Science V:8. doi:10.3389/fpls.2017.01617.
  • Garcia-Seco D, Zhang Y, Gutierrez-Mañero FJ, Martin C, Ramos-Solano B (2015) Application of Pseudomonas fluorescens to Blackberry under Field Conditions Improves Fruit Quality by Modifying Flavonoid Metabolism. PLoS ONE 10(11): e0142639. doi:10.1371/journal.pone.0142639
  • Glick B R, Jacobson C B, Schwarze M M K, Pasternak J J (1994). 1-Aminocyclopropane-1- acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Microbiol 40:911–915
  • Glick B R, Penrose D M, Li J (1998). A model for the Lowering of Plant Ethylene Concentrations by Plant Growth Promoting Bacteria . J. Theor Biol, 190:63-68.
  • Grant C, Bittman S, Montreal M, Plenchette C, Morel C (2005). Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Can. J. Plant Sci. 85: 3-14
  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. https://doi.org/ 10.1007/s13213-010-0117-1
  • Harel Y M, Kolton M, Elad Y, Rav-david D, Cytryn E, Borenstein M, Shulchani R, Graber E R (2011) Induced systemic resistance in strawberry (Fragaria ananassa) to powdery mildew using various control agents. IOBC/Wprs Bull 71:47–51
  • Ibrahim H I M, Zaglol M M A, Hammad A M M (2010). Response of Baldy guava trees cultivated in sandy calcareous soil to biofertilization with phosphate dissolving bacteria and /or VAM fungi. Journal of American Science 6(9): 399- 404.
  • Jannin L, Arkoun M, Ourry A, Laıˆne´ P, Goux D, Garnica M, Fuentes M, Francisco S S, Baigorri R, Cruz F, Houdusse F, Garcia-Mina J M, Yvin J C, Etienne P (2012) Microarray analysis of humic acid effects on Brassica napus growth: involvement of N, C and S metabolisms. Plant Soil 359:297–319. https://doi.org/10.1007/s11104-012-1191-x
  • Jeffries P, Gianinazzi S, Perotto S, Turnau K (2003). The contribution of arbuscular mycorrhizal 706.
  • Joolka N K, Singh R R, Sharma M K (2004). Influence of biofertilizers, GA3 and their combinations on the growth of pecan seedlings. Indian Journal of Horticulture. 61(3): 226-228
  • Josec B F (2009). Effeciency of Arbuscular mycorrhizalfungi on growth of aldrighi peach tree rootstock. Bragantia. 68(4): 931-940
  • Karakurt H, Aslantas R, Ozkan G, Guleryuz M (2009). Effects of indol-3-butyric acid (IBA), plant growth promoting rhizobacteria (PGPR) and carbohydrates on rooting of hardwood cutting of MM106 Apple rootstock. Afr J Agric Res 4:60–64
  • Karlidag H, Esitken A, Yildirim E, Donmez M F, Turan M (2011). Effects of plant growth promoting bacteria (PGPB) on yield, growth, leaf water content, membrane permeability and ionic composition of strawberry under saline conditions. J Plant Nutr 34:34–45
  • Kavino M, Harish S, Kumar S, Saravanakumar D, Samiyappan R (2010). Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Applied Soil Ecology 45:71-77.
  • Khan M S, Zaidi A, Wani P A (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43
  • Koç A, Balcı G, Ertürk Y, Keles H, Bakoglu N, Ercisli S (2016). Influence of arbuscular mycorrhizae and plant growth promoting rhizobacteria on proline content, membrane permeability and growth of strawberry (FragariaXananassa Duch.)under salt stress. Journal of Applied Botany and Food Quality 89:89 – 97.
  • Köhl J, Kolnaar R, and Ravensberg W J (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. 10:845. doi: 10.3389/fpls.2019.00845
  • Kohler J, Caravaca J A H F, Roldan A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water stressed plants Josef. Funct Plant Biol 35:141–151. https:// doi.org/10.1074/jbc.272.16.10639
  • Köse C, Guleryuz M, Sahin F, Demirtas I (2005). Effects of some plant growth promotion rhizobacteria (PGPR) on graft union of grapevine. J Sustain Agric 26:139–147
  • Koskey G, Mburu S W, Awino R, Njeru E M and Maingi J M (2021) Potential Use of Beneficial Microorganisms for Soil Amelioration, Phytopathogen Biocontrol, and Sustainable Crop Production in Smallholder Agroecosystems. Front. Sustain. Food Syst. 5:606308. doi: 10.3389/fsufs.2021.606308
  • Linderman R G, Davis E A (2001). Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi. American Journal of Enology and Viticulture. 52(1): 8-11
  • Liu X, Cao A, Yan D, Ouyang C, Wang Q, and Li Y (2019). Overview of mechanisms and uses of biopesticides. Int. J. Pest Manage. 24, 1–8. doi: 10.1080/09670874.2019.1664789
  • Lovato P E, Hammatt N, Gianinazzi Pearson V, Gianinazzi S (1994). Mycorrhization of micropropagated mature wild cherry and common ash. Agriculture Science in Finland 3(3): 297- 302
  • Lucy M, Reed E, Glick B R (2004). Applications of free-living plant growth-promoting rhizobacteria. Antonie van Leewenhoock, 86:1-25
  • Melo A L, de A, Soccol V T, and Soccol C R (2016). Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit. Rev. Biotechnol. 36, 317–326. doi: 10.3109/07388551.2014.960793
  • McGuire A V, and Northfield T D (2020). Tropical occurrence and agricultural importance of Beauveria bassiana and Metarhizium anisopliae. Front. Sust. Food Syst. 4:6. doi: 10.3389/fsufs.2020.00006
  • Mia M A B, Shamsuddin Z H, Wahab Z, Marziah M (2010). Rhizobacteria as bioenhancer and biofertilizer for growth and yield of banana (Musa spp. cv. ‘Berangan’).Scientia Hort. 126:80-87.
  • Miransari M (2011) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81. https://doi.org/10.1007/s00203-010-0657-6
  • Mortin F, Fortin J A, Hamel C, Granger R L, Smith D L (1994). Apple rootstock response to VA-mycorrhizal fungi in a high P soil. Journal of American Society of Horticultural Science. 119(3): 578-583
  • Naik S M R , Nandini M L N, Jameel Md A, Venkataramana K T, Mukundalakshmi L (2018). Role of Arbuscular Mycorrhiza in Fruit Crops Production. Int. J. Pure App. Biosci. 6 (5): 1126-1133.
  • Orhan E, Ercisli S, Esitken A, Sahin F (2006). Lateral root induction by bacteria, radicle cut off and IBA treatments of almond cv. “Texas” and “Nonpareil” seedlings. Sodininkyste ir darzininkyste 25:71–76
  • Orhan E, Esitken A, Ercisli S, Sahin F (2007). Effects of indole-3-butyric acid (IBA), bacteria and radicle tip cutting on lateral root induction in Pistacia vera. J Hort Sci Biotechnol 82:2–4
  • Ozbay N, Newman S E (2004) Biological control with Trichoderma spp. with emphasis on T. harzianum. Pak J Biol Sci 7:478–484. https://doi.org/10.3923/pjbs.2004.478.484
  • Pacˇuta V, Rasˇovsky´ M, C ˇ erny´ I, Michalska-Klimczak B, Wyszynski Z, Lesniewska J, Buday M (2018) Influence of weather conditions, variety and sea algae-based biopreparations on root yield, sugar content and polarized sugar yield of sugar beet. List Cukrov a R ˇ eparˇske´ 11:368–371
  • Panja B N, Chaudhuri S (2004). Exploitation of soil arbuscular mycorrhizal potential for AM-dependent mandarin orange plants by the cropping with mycotropic crops. Applied Soil Ecology. 26(3): 249-255
  • Penrose D M, Glick B R (2001). Levels of 1- aminocyclopropane- 1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can J Microbiol, 47:368–372
  • Pirlak L, Turan M, Sahin F, Esitken A (2007). Floral and foliar application of plant growth promoting rhizobacteria (PGPR) to apples increases yield, growth, and nutrient element contents of leaves. J Sustain Agric 30:145–155
  • Podile A R, Kishore G K, Manjula K (2006). Achievements in biological control of diseases with antagonistic organisms at University of Hyderabad, Hyderabad. In Current status of biological control of plant diseases using antagonistic organisms in India. Proceedings of the group meeting on antagonistic organisms in plant disease management held at Project Directorate of Biological Control, Bangalore, India on 10-11th July 2003 (pp. 340-349). Project Directorate of Biological Control, Indian Council of Agricultural Research.
  • Porras Soriano A, Domenech Menor B, Castillo Rubio J, Sorian Martin M L, Porras Piedra A (2002). Influence of vesicular arbuscular mycorrhizae on growth of mist propagated olive cuttings. Olivae. 92: 33- 37
  • Pylak M, Oszust K, Frac M (2019). Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev Environ Sci Biotechnol (2019) 18:597–616. https://doi.org/10.1007/s11157-019-09500-5.01234567 () 0123458697().,-volV)
  • Ram R L, Maji C, Bindroo B B (2013). Role of PGPR in different crops-an overview. Indian J. Seric. 52(1):1-13.
  • Renaldelli E, Mancuso S (1996). Response of young mycorrhizal and nonmycorrhizal plants of olive tree to saline condition. Short term electrophysiological and long term vegetative salt effects. Agrochimica. 44(3-4): 151- 159
  • Rivera-Chavez F H, Vasquez-Galvez G, Castillejo-Álvarez L H, Angoa-Perez M V, Oyoque-Salcedo G, Mena-Violante H G (2012). Efecto de hongos micorrícicos arbusculares y extracto acuoso de vermicompost sobre calidad de fresa. Ra Ximhai 8: 119-130.
  • Robledo-Buriticá J, Aristizábal-Loaiza J C, Ceballos-Aguirre N, and Cabra-Cendales T (2018). Influence of plant growth-promoting rhizobacteria (PGPR) on blackberry (Rubus glaucus Benth. cv. thornless) growth under semi-cover and field conditions. Acta Agron. 67 (2) 258-263 ISSN 0120-2812 | e-ISSN 2323-0118. https://doi.org/10.15446/acag.v67n2.62572
  • Roco A, Pe´rez L M (2001) In vitro biocontrol activity of Trichoderma harzianum on Alternaria alternata in the presence of growth regulators. Electron J Biotechnol 4:68–73. https://doi.org/10.2225/vol4-issue2-fulltext-1
  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004). Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555
  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, De Pascale S, Bonini P, Colla G (2015) 123 614 Rev Environ Sci Biotechnol (2019) 18:597–616 Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108. https://doi.org/10. 1016/j.scienta.2015.09.002
  • Ruzzi M and Aroca R (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hort. 196, 124–134.
  • Safronova V I, Stepanok V V, Engqvist G L, Alekseyev Y V, Belimov A A (2006). Root associated bacteria containing 1- aminocylclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genoytypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils, 42:267-272.
  • Saia S, Rappa V, Ruisi P, Abenavoli M R, Sunseri F, Giambalvo D, Frenda A S, Martinelli F (2015) Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat. Front Plant Sci 6:1–10. https://doi.org/10.3389/fpls.2015. 00815
  • Sharma S D, Bhutani V P (1998). Response of apple seedling to VAM, Azotobacter and inorganic fertilizers. Horticulture Journal. 11(1): 1-8
  • Slawomir S, Aleksander S (2010). The influence of mycorrhizal fungi on the growth and yield of plum and sour cherry trees. Journal of Fruit and Ornamental Plant Research 18(2): 71-77
  • Szekeres A, Kredics L, Antal Z, Kevei F, Manczinger L (2004) Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. FEMS Microbiol Lett 233:215–222. https://doi.org/10.1016/j.femsle.2004.02. 012
  • Studholme D J, Harris B, Le Cocq K, Winsbury R, Perera V, Ryder L, Grant M (2013). Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture—insights from genomics. Frontiers in plant science, 4, 258.
  • Souza PV D-de, Souza de P V D (2000). Effect of arbuscular mycorrhizae and gibberellic acid interactions on vegetative growth of Carrizo citrange seedlings. Cienicia Rural 30(5): 783-787
  • Sudhakar P, Chattopadhyay G N, Gangwar S K, Ghosh J K (2000). Effect of foliar application of Azotobacter; Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J. Agric. Sci. 134, 227–234
  • Tao G C, Tian S J, Cai M Y, Xie G H (2008). Phosphate-solubilizing and –mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523
  • Tewari S, Shrivas V L, Hariprasad P, and Sharma S (2019). “Harnessing endophytes as biocontrol agents,” in Plant Health Under Biotic Stress (Sigapore: Springer), 189–218. doi: 10.1007/978-981-13-6040-4_10
  • Todeschini V, Aitlahmidi N, Mazzucco E, Marsano F, Gosetti F, Robotti E, Bona E, Massa N, Bonneau L, Marengo E, Wipf D, Berta G, Lingua G (2018). Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome. Frontiers in Plant Science 9: 1611-1611.
  • Turkmen O, Sensoy S, Demir S, Erdinc C (2008). Effects of two different AMF species on growth and nutrient content of pepper seedlings grown under moderate salt stres. African Journal of Biotechnology Vol. 7 (4), pp. 392-396
  • Yedidia I, Benhamou N, Kapulnik Y, Chet I (2000) Induction and accumulation of PR proteins activityduring early stages of root colonizationby the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol Biochem 38(11):863–873. https://doi.org/10.1016/S0981- 9428(00)01198-0
  • Yu Y Y, Xu J D, Huang T X, Zhong J, Yu H, Qui J P, Guo J H (2020). Combination of beneficial bacteria improves blueberry production and soil quality. Food Sci Nutr. 8:5776–5784. https://doi.org/10.1002/fsn3.1772
  • Wang C M, Han Z H, Li X L, Xu X F (2001). Effects of phosphorus levels and VA mycorrhizae on growth and nutrient contents of apple seedlings. Acta Horticulturae Sinica. 28(1): 1-6
  • Wang P, Zhang J J, Shu B, Xia R X (2012). Arbuscular mycorrhizal fungi associated with citrus orchards under different types of soil management, southern China. Plant Soil Environ. 58, (7): 302–308
  • Wu Q S, Zou Y N, He X H (2010). Exogenous putrescine, not spermine or spermidine, enhances root mycorrhizal development and plant growth of trifoliate orange (Poncirus trifoliata) seedlings. Int. J. Agric. Biol., 12: 576-580
  • Wu Q S, Zou Y N (2012). Evaluating Effectiveness of Four Inoculation Methods with Arbuscular Mycorrhizal Fungi on Trifoliate Orange Seedlings. Int. J Agric. Biol. 14: 266-270
  • Verterberg M, Kukkonen S, Sari K, Parikka P, Huttunen J, Tainino L, Devos N, Weekers F, Kevers C, Thonart P, Lemoine M C, Cordier C, Alabouvette C, Gianinazzi S (2004). Microbial inoculation for Improving the Growth and Health of Micropropagated Strawberry. Appl. Soil Ecol 27:243-258.
  • Vitagliano C, Citernesi A S (1999). Plant growth of Olea europaea L. as influenced by arbuscular mycorrhizal fungi. Acta Horticulturae 474: 357-361
  • Zahir Z A, Arshad M (2004). Perspectives in agriculture. Advances in agronomy, 81, 97.
  • Zhang F, Dashti N, Hynes R K and Smith D L (1996). Plant growth promoting rhizobacteria and soybean (Glycine max L. Merr.) nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann. Bot. 77, 453–459.

Biological Fertilizers-Containing Beneficial Microorganisms in Fruit Culture

Yıl 2022, Cilt: 2 Sayı: 1, 71 - 92, 30.06.2022

Öz

The soil, which provides both the environment and the nutritional requirements for the growth of plants, also has a significant number of microorganisms. Therefore, this ecosystem, where both living and non-living elements are together, must create an absolute balance for good growing. The natural life cycle in the soil is carried out especially by the biotic part of the soil, this part also provides the opportunity to make plant cultivation h ealthier. Non-pathogenic beneficial microorganisms, which occupy an important portion in the biotic part of the soil, have taken on the task of being the biggest supporter of sustainable-organic-controlled agriculture in recent years. In this review, studies on the possibilities of using rhizobacteria and beneficial fungal forms, known as beneficial microorganisms, in fruit growing and their mechanisms of action are summarized.

Kaynakça

  • Abdel Latef A A and Chaoxing H (2011a). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hort. 127, 228–233. doi: 10.1016/j. scienta.2010.09.020.
  • Abdel Latef A A and Chaoxing H (2011b). Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol. Plant. 33, 1217–1225. doi: 10.1007/s11738-010-0650-3
  • Abdel Latef A A and Chaoxing H J (2014). Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants? Plant Grow. Regul. 33, 644– 653. doi: 10.1007/s00344-014-9414-4
  • Abdel-Rahman S S, El-Naggar A I (2014). Promotion of rooting and growth of some types of Bougainvilleas cutting by plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) in combination with indole-3-butyric acid (IBA). Inter. J. Sci. and Res, 3(11), 97-108.
  • Akbaş Y, Pirlak L, and Dönmez M F (2019). Bacillus atrophaeus MFDV2 Rhizobacteria Isolate Increases Vegetative Growth, Yield, and Fruit Size of Banana Plant. Indonesian Journal of Agricultural Science Vol. 20 No. 2: 55–60. DOI: http//dx.doi.org/10.21082/ijas.v.20.n2.2019.p.55–60
  • Akça, Y, Ercişli S, (2010). Effect of plant growth promoting rhizobacteria inoculation on fruit quality in sweetcherry (Prunus avium L) cv. 0900 Ziraat. J. Food Agr. And Biology, 8(2):769-771.
  • Alagawadi A R and Gaur A C (1992). Inoculation of Azospirillum brasilense and phosphate-solubilizing bacteria on yield of sorghum (Sorghum bicolor L. Moench) in dry land. Trop. Agric. 69, 347–350.
  • Alizadeh H, Sharifi-Tehrani A, Hedjaroude G (2007) Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry. Commun Agric Appl Biol Sci 72:795–800
  • Alori E T and Babalola O O (2018) Microbial Inoculants for Improving Crop Quality and Human Health in Africa. Front. Microbiol. 9:2213. doi: 10.3389/fmicb.2018.02213
  • Antoun H, Prevost D (2006). Ecology of plant growth promoting rhizobacteria. PGPR: biocontrol and biofertilization. Edited by Zaki A. Sıddıqui, S 1-38.
  • Arıkan Ş, Pırlak L (2016). Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Growth, Yield and Fruit Quality of Sour Cherry (Prunus cerasus L.). Erwerbs-Obstbau (2016) 58:221–226.
  • Aseri, G K, Jain N, Panwar J, Rao A V, Meghwal P R (2008). Biofertilizers improve plant growth, fruit yield, nutrition, and metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Scientia Horticulturae. 117: 130-135
  • Aslantas R, Karakurt H, Kose M, Ozkan G, Cakmakci R (2009). Influences of some bacteria strains on runner plant production on strawberry. Proc III. National Berry Fruit Symposium 50–58
  • Attia M, Ahmed M A, El-Sonbaty M R (2009). Use of biotechnologies to increase growth, productivity and fruit quality of maghrabi banana under different rates of phosphorus. World J Agric Sci 5:211–220
  • Awad S M (1999). Response of flame grape transplant to mycorrhizal inoculation and phosphorus fertilization. Egyptian Journal of Horticulture. 26(3): 421-423
  • Azizoglu U (2019). Bacillus thuringiensis as a biofertilizer and biostimulator: a mini-review of the little-known plant growth-promoting properties of Bt. Curr. Microbiol. 76, 1379–1385. doi: 10.1007/s00284-019-01705-9
  • Balla I Szucs E, Borkowska B, and Michalczuk B (2008). Evaluation the response of micropropagated peach and apple rootstocks to different mycorrhizal inocula. Mycorrhiza Works, eds F. Feldmann, Y. Kapulnik, and J. Baar (Braunschweig: Deutsche Phytomedizinische Gesellschaft), 126–134
  • Bassil N V, Proebsting W M, Moore L W, Lightfoot D A (1991). Propagation of hazelnut stem cuttings using Agrobacterium rhizogenes. Hort Sci 26:1058–1060 Bashan Y, De-Bashan L E (2005). Plant growth-promoting. Encyclopedia of soils in the environment, 1, 103-115.
  • Bent E (2006). Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 225–258
  • Berg A, Kemami Wangun H V, Nkengfack A E, Schlegel B (2004) Lignoren, a new sesquiterpenoid metabolite from Trichoderma lignorum HKI 0257. J Basic Microbiol 44:317–319. https://doi.org/10.1002/jobm.200410383
  • Bhardwaj D, Ansari M W, Sahoo R K, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:1–10. https://doi.org/10.1186/1475-2859-13-66
  • Bitterlich M, Sandmann M and Graefe J (2018). Arbuscular mycorrhiza alleviates restrictions to substrate water flow and delays transpiration limitation to stronger drought in tomato. Front.Plant Sci. 9:154. doi: 10.3389/fpls.2018. 00154.
  • Burd G I, Dixon D G, Glick B R (2000). Plant Growth Promoting Bacteria that decrease heavy metal toxity in Plants. Can J. Microbiol, 46:237-245.
  • Cakmakci R, Erdogan U, Kotan R, Oral B, Donmez M F (2008). Cultivable heterotrophic N2-fixing bacterial diversity in wild red raspberries soils in the coruh valley. In: Proceedings of IV. National Plant Nutrition and Fertilizer Congress 706–717
  • Çakmakçı R (2009a). Stres Koşullarında ACC Deaminaze Üretici Bakteriler Tarafından Bitki Gelişiminin Teşvik Edilmesi. Atatürk Üniv. Ziraat Fak. Derg. 40(1):109-125
  • Çakmakçı R, Ertürk Y, Dönmez F, Erat M, Haznedar A, Sekban R (2009b). Organik çay yetiştiriciliği için biyolojik gübre araştırmaları. I. GAP Organik Tarım Kong. 17-20 Kasım 2009 Şanlıurfa. s, 193-201
  • Çakmakçı R, Ertürk Y, Dönmez F, Erat M, Sekban R (2010 a). Organik çay üretiminin geliştirilmesi için biyolojik gübre olarak kullanılabilecek bitki gelişimini teşvik edici bakteri araştırması. International Conference on Organic Agriculture in Scope of Environmental Problems 03-07 February 2010 in Famagusta, p:371-376
  • Çakmakçı R, Dönmez M F, Ertürk Y, Erat M, Haznedar A, Sekban R (2010 b). Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils. Plant and Soil,332:299-318 Çakmakçı R, Ertürk Y, Atasever A, Ercişli S, Şentürk M, Haznedar A, Sekban R (2011a). The Use of Plant Growth Promoting Rhizobacteria for Organic Tea Production in Turkey. Proceeding of Tea Organic Low Carbon International Symposium. Guangyuan, Chına, 2011, June 6-9, 89-97pp.
  • Çakmakçı R, Ertürk Y, Dönmez M F, Turan M, Sekban R, Haznedar A (2011b). Bitki Gelişimini Teşvik Edici Bakterilerin Tuğlalı Çay Klonunda Gelişme, Verim, Besin Alımı Üzerine Etkisi. Uluslararası Katılımlı I. Ali Numan Kıraç Tarım Kongresi ve Fuarı, 27-30 Nisan, s:571-581.
  • Çakmakçı R, Ertürk Y, Varmazyari A, Atasever A, Kotan R, Erat M, Turkyılmaz K, Sekban R, Haznedar A (2015). The effect of mixed cultures of plant growth promoting bacteria and mineral fertilizers on tea (Camellia sinensis L.) growth, yield, nutrient uptake, and enzyme activities. International Congress on “Soil Science in International Year of Soils” 19-23 October 2015 Sohi, Russia. Vol:1, pp:67-71.
  • Çakmakçı R, Ertürk Y, Varmazyari A, Atasever A, Kotan R, Haliloğlu K, Erat M, Türkyılmaz K, Sekban R, Haznedar A (2017). The effect of bacteria-based formulations on tea (Camellia sinensis L.) growth, yield, and enzyme activities. Annals of Warsaw University of Life Sciences – SGGW Horticulture and Landscape Architecture No 38, 2017: 5–18 (Ann. Warsaw Univ. of Life Sci. – SGGW, Horticult. Landsc. Architect. 38
  • De-Ming L I and Alexander M (1988) Co-inoculation with antibiotic producing bacteria to increase colonization and nodulation by rhizobia. Plant Soil 108, 211–219
  • De Silva A, Patterson K, Rothrock C, Moore J (2000). Growth Promoting of Highbush Blueberry by fungal and Bacterial Inoculants. HortSci. 35(7): 1228-1230.
  • du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021
  • Ercisli S, Esitken A, Cangi R, Sahin F (2003). Adventitious root formation of kiwifruit in relation to sampling date, IBA and Agrobacterium rubi inoculation. Plant Growth Regul 41:133–137
  • Ercisli S, Esitken A, Sahin F (2004). Application of exogenous IBA and inoculation with Agrobacterium rubi stimulate adventitious root formation among stem cuttings of two Rose genotypes. HortSci 39:533–534
  • Ertürk Y, Ercisli S, Sekban R, Haznedar A, Donmez M F (2008). The effect of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of tea (Camellia sinensis var. Sinensis) cuttings. Roum Biotech Lett 13:3747– 3756
  • Ertürk Y, Ercişli S, Haznedar A, Çakmakçı R (2010a). Effects of plant growth promoting rhizobacteria(PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biol Res 43: 91-98
  • Ertürk Y, Çakmakçı R, Duyar Ö, Turan M (2010b). Fındık bitkisinde PGPR uygulamalarının bitki gelişimi ve yapraktaki bitki besin elementi içeriğine etkilerinin belirlenmesi. Türkiye IV. Organik Tarım Sempozyumu, 28 Haziran-01 Temmuz 2010, Erzurum, s 511-516
  • Ertürk Y, Çakmakçı R, Duyar Ö, Turan M (2011a). The Effects of Plant Growth-Promoting Rhizobacteria on Vegetative Growth and Leaf Nutrient Contents of Hazelnut Seedlings (Turkish hazelnut cv. Tombul and Sivri). Int. J. Soil Sci. 6(3):188-198.
  • Ertürk Y, Çakmakçı R, Dönmez M F, Sekban R, Haznedar A (2011b). Fener-3 Çay klonu Fidanlarında Enjeksiyon ve Daldırma Metotları ile PGPR Uygulamalarının Verim Üzerine Etkilerinin İncelenmesi. GAP VI. Tarım Kongresi 9-12 Mayıs 2011, s: 29-34.
  • Ertürk Y, Ercisli S, Çakmakçı R (2012). Yield and growth response of strawberry to plant growth promoting rhizobacteria inoculation. Journal Plant Nutrition 35:817-826.
  • Ertürk Y, Çakmakçı R, Sekban R, Haznedar A (2013). Çay yetiştiriciliğinde bitki büyümesini teşvik edici bakteri uygulamaları alternatif olabilir mi ? Türkiye V. Organik Tarım Sempozyumu 25-27 Eylül 2013. Samsun, cilt 1, s:47-51.
  • Eswarappa H, Sukhada M, Gowda K N, Mohandas S (2002). Effect of VAM fungi on banana. Current Research 31(5-6): 69-70
  • Esitken A, Karlidag H, Ercisli S, Sahin F (2002). Effects of foliar application of Bacillus subtilis OSU-142 on the yield, growth and control of shot-hole disease (Coryneum Blight) of Apricot. Gartenbau 67:139–142
  • Esitken A, Karlidag H, Ercisli S, Turan M, Sahin F (2003). The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Aust. J. Agric. Res. 54, 377–380
  • Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic 110:324–327
  • Esitken A, Pirlak L, Ipek M, Donmez M F, Cakmakci R, Sahin F (2009). Fruit bio-thinning by plant growth promoting bacteria (PGPB) in apple cvs. Golden Delicious Braeburn. Biol Agric Hort 26:379–390
  • Eşitken, A, Yıldız E H, Ercişli S, Dönmez M F, Turan M, Güneş A (2010). Effects of plant growth promoting bacteria PGPB) on yield, growth and nutrient contents of organically grown starwberry. Scientia Hort. 124:62-66.
  • Fawzi F M, Shahin E, Daood A, and Kandil E A (2010). Effect of organic and biofertilizers and magnesium sulphate on growth yield, chemical composition and fruit quality of "Le-Conte" pear trees. Nature and Science 8(12):273-280]. (ISSN: 1545-0740).
  • Fra˛c M, Hannula SE, Bełka M, Je˛dryczka M (2018) Fungal biodiversity and their role in soil health. Front Microbiol 9:707. https://doi.org/10.3389/fmicb.2018.00707
  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017). The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions. Frontiers in Plant Science V:8. doi:10.3389/fpls.2017.01617.
  • Garcia-Seco D, Zhang Y, Gutierrez-Mañero FJ, Martin C, Ramos-Solano B (2015) Application of Pseudomonas fluorescens to Blackberry under Field Conditions Improves Fruit Quality by Modifying Flavonoid Metabolism. PLoS ONE 10(11): e0142639. doi:10.1371/journal.pone.0142639
  • Glick B R, Jacobson C B, Schwarze M M K, Pasternak J J (1994). 1-Aminocyclopropane-1- acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Microbiol 40:911–915
  • Glick B R, Penrose D M, Li J (1998). A model for the Lowering of Plant Ethylene Concentrations by Plant Growth Promoting Bacteria . J. Theor Biol, 190:63-68.
  • Grant C, Bittman S, Montreal M, Plenchette C, Morel C (2005). Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Can. J. Plant Sci. 85: 3-14
  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. https://doi.org/ 10.1007/s13213-010-0117-1
  • Harel Y M, Kolton M, Elad Y, Rav-david D, Cytryn E, Borenstein M, Shulchani R, Graber E R (2011) Induced systemic resistance in strawberry (Fragaria ananassa) to powdery mildew using various control agents. IOBC/Wprs Bull 71:47–51
  • Ibrahim H I M, Zaglol M M A, Hammad A M M (2010). Response of Baldy guava trees cultivated in sandy calcareous soil to biofertilization with phosphate dissolving bacteria and /or VAM fungi. Journal of American Science 6(9): 399- 404.
  • Jannin L, Arkoun M, Ourry A, Laıˆne´ P, Goux D, Garnica M, Fuentes M, Francisco S S, Baigorri R, Cruz F, Houdusse F, Garcia-Mina J M, Yvin J C, Etienne P (2012) Microarray analysis of humic acid effects on Brassica napus growth: involvement of N, C and S metabolisms. Plant Soil 359:297–319. https://doi.org/10.1007/s11104-012-1191-x
  • Jeffries P, Gianinazzi S, Perotto S, Turnau K (2003). The contribution of arbuscular mycorrhizal 706.
  • Joolka N K, Singh R R, Sharma M K (2004). Influence of biofertilizers, GA3 and their combinations on the growth of pecan seedlings. Indian Journal of Horticulture. 61(3): 226-228
  • Josec B F (2009). Effeciency of Arbuscular mycorrhizalfungi on growth of aldrighi peach tree rootstock. Bragantia. 68(4): 931-940
  • Karakurt H, Aslantas R, Ozkan G, Guleryuz M (2009). Effects of indol-3-butyric acid (IBA), plant growth promoting rhizobacteria (PGPR) and carbohydrates on rooting of hardwood cutting of MM106 Apple rootstock. Afr J Agric Res 4:60–64
  • Karlidag H, Esitken A, Yildirim E, Donmez M F, Turan M (2011). Effects of plant growth promoting bacteria (PGPB) on yield, growth, leaf water content, membrane permeability and ionic composition of strawberry under saline conditions. J Plant Nutr 34:34–45
  • Kavino M, Harish S, Kumar S, Saravanakumar D, Samiyappan R (2010). Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Applied Soil Ecology 45:71-77.
  • Khan M S, Zaidi A, Wani P A (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43
  • Koç A, Balcı G, Ertürk Y, Keles H, Bakoglu N, Ercisli S (2016). Influence of arbuscular mycorrhizae and plant growth promoting rhizobacteria on proline content, membrane permeability and growth of strawberry (FragariaXananassa Duch.)under salt stress. Journal of Applied Botany and Food Quality 89:89 – 97.
  • Köhl J, Kolnaar R, and Ravensberg W J (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. 10:845. doi: 10.3389/fpls.2019.00845
  • Kohler J, Caravaca J A H F, Roldan A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water stressed plants Josef. Funct Plant Biol 35:141–151. https:// doi.org/10.1074/jbc.272.16.10639
  • Köse C, Guleryuz M, Sahin F, Demirtas I (2005). Effects of some plant growth promotion rhizobacteria (PGPR) on graft union of grapevine. J Sustain Agric 26:139–147
  • Koskey G, Mburu S W, Awino R, Njeru E M and Maingi J M (2021) Potential Use of Beneficial Microorganisms for Soil Amelioration, Phytopathogen Biocontrol, and Sustainable Crop Production in Smallholder Agroecosystems. Front. Sustain. Food Syst. 5:606308. doi: 10.3389/fsufs.2021.606308
  • Linderman R G, Davis E A (2001). Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi. American Journal of Enology and Viticulture. 52(1): 8-11
  • Liu X, Cao A, Yan D, Ouyang C, Wang Q, and Li Y (2019). Overview of mechanisms and uses of biopesticides. Int. J. Pest Manage. 24, 1–8. doi: 10.1080/09670874.2019.1664789
  • Lovato P E, Hammatt N, Gianinazzi Pearson V, Gianinazzi S (1994). Mycorrhization of micropropagated mature wild cherry and common ash. Agriculture Science in Finland 3(3): 297- 302
  • Lucy M, Reed E, Glick B R (2004). Applications of free-living plant growth-promoting rhizobacteria. Antonie van Leewenhoock, 86:1-25
  • Melo A L, de A, Soccol V T, and Soccol C R (2016). Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit. Rev. Biotechnol. 36, 317–326. doi: 10.3109/07388551.2014.960793
  • McGuire A V, and Northfield T D (2020). Tropical occurrence and agricultural importance of Beauveria bassiana and Metarhizium anisopliae. Front. Sust. Food Syst. 4:6. doi: 10.3389/fsufs.2020.00006
  • Mia M A B, Shamsuddin Z H, Wahab Z, Marziah M (2010). Rhizobacteria as bioenhancer and biofertilizer for growth and yield of banana (Musa spp. cv. ‘Berangan’).Scientia Hort. 126:80-87.
  • Miransari M (2011) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81. https://doi.org/10.1007/s00203-010-0657-6
  • Mortin F, Fortin J A, Hamel C, Granger R L, Smith D L (1994). Apple rootstock response to VA-mycorrhizal fungi in a high P soil. Journal of American Society of Horticultural Science. 119(3): 578-583
  • Naik S M R , Nandini M L N, Jameel Md A, Venkataramana K T, Mukundalakshmi L (2018). Role of Arbuscular Mycorrhiza in Fruit Crops Production. Int. J. Pure App. Biosci. 6 (5): 1126-1133.
  • Orhan E, Ercisli S, Esitken A, Sahin F (2006). Lateral root induction by bacteria, radicle cut off and IBA treatments of almond cv. “Texas” and “Nonpareil” seedlings. Sodininkyste ir darzininkyste 25:71–76
  • Orhan E, Esitken A, Ercisli S, Sahin F (2007). Effects of indole-3-butyric acid (IBA), bacteria and radicle tip cutting on lateral root induction in Pistacia vera. J Hort Sci Biotechnol 82:2–4
  • Ozbay N, Newman S E (2004) Biological control with Trichoderma spp. with emphasis on T. harzianum. Pak J Biol Sci 7:478–484. https://doi.org/10.3923/pjbs.2004.478.484
  • Pacˇuta V, Rasˇovsky´ M, C ˇ erny´ I, Michalska-Klimczak B, Wyszynski Z, Lesniewska J, Buday M (2018) Influence of weather conditions, variety and sea algae-based biopreparations on root yield, sugar content and polarized sugar yield of sugar beet. List Cukrov a R ˇ eparˇske´ 11:368–371
  • Panja B N, Chaudhuri S (2004). Exploitation of soil arbuscular mycorrhizal potential for AM-dependent mandarin orange plants by the cropping with mycotropic crops. Applied Soil Ecology. 26(3): 249-255
  • Penrose D M, Glick B R (2001). Levels of 1- aminocyclopropane- 1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can J Microbiol, 47:368–372
  • Pirlak L, Turan M, Sahin F, Esitken A (2007). Floral and foliar application of plant growth promoting rhizobacteria (PGPR) to apples increases yield, growth, and nutrient element contents of leaves. J Sustain Agric 30:145–155
  • Podile A R, Kishore G K, Manjula K (2006). Achievements in biological control of diseases with antagonistic organisms at University of Hyderabad, Hyderabad. In Current status of biological control of plant diseases using antagonistic organisms in India. Proceedings of the group meeting on antagonistic organisms in plant disease management held at Project Directorate of Biological Control, Bangalore, India on 10-11th July 2003 (pp. 340-349). Project Directorate of Biological Control, Indian Council of Agricultural Research.
  • Porras Soriano A, Domenech Menor B, Castillo Rubio J, Sorian Martin M L, Porras Piedra A (2002). Influence of vesicular arbuscular mycorrhizae on growth of mist propagated olive cuttings. Olivae. 92: 33- 37
  • Pylak M, Oszust K, Frac M (2019). Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev Environ Sci Biotechnol (2019) 18:597–616. https://doi.org/10.1007/s11157-019-09500-5.01234567 () 0123458697().,-volV)
  • Ram R L, Maji C, Bindroo B B (2013). Role of PGPR in different crops-an overview. Indian J. Seric. 52(1):1-13.
  • Renaldelli E, Mancuso S (1996). Response of young mycorrhizal and nonmycorrhizal plants of olive tree to saline condition. Short term electrophysiological and long term vegetative salt effects. Agrochimica. 44(3-4): 151- 159
  • Rivera-Chavez F H, Vasquez-Galvez G, Castillejo-Álvarez L H, Angoa-Perez M V, Oyoque-Salcedo G, Mena-Violante H G (2012). Efecto de hongos micorrícicos arbusculares y extracto acuoso de vermicompost sobre calidad de fresa. Ra Ximhai 8: 119-130.
  • Robledo-Buriticá J, Aristizábal-Loaiza J C, Ceballos-Aguirre N, and Cabra-Cendales T (2018). Influence of plant growth-promoting rhizobacteria (PGPR) on blackberry (Rubus glaucus Benth. cv. thornless) growth under semi-cover and field conditions. Acta Agron. 67 (2) 258-263 ISSN 0120-2812 | e-ISSN 2323-0118. https://doi.org/10.15446/acag.v67n2.62572
  • Roco A, Pe´rez L M (2001) In vitro biocontrol activity of Trichoderma harzianum on Alternaria alternata in the presence of growth regulators. Electron J Biotechnol 4:68–73. https://doi.org/10.2225/vol4-issue2-fulltext-1
  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004). Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555
  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, De Pascale S, Bonini P, Colla G (2015) 123 614 Rev Environ Sci Biotechnol (2019) 18:597–616 Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108. https://doi.org/10. 1016/j.scienta.2015.09.002
  • Ruzzi M and Aroca R (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hort. 196, 124–134.
  • Safronova V I, Stepanok V V, Engqvist G L, Alekseyev Y V, Belimov A A (2006). Root associated bacteria containing 1- aminocylclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genoytypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils, 42:267-272.
  • Saia S, Rappa V, Ruisi P, Abenavoli M R, Sunseri F, Giambalvo D, Frenda A S, Martinelli F (2015) Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat. Front Plant Sci 6:1–10. https://doi.org/10.3389/fpls.2015. 00815
  • Sharma S D, Bhutani V P (1998). Response of apple seedling to VAM, Azotobacter and inorganic fertilizers. Horticulture Journal. 11(1): 1-8
  • Slawomir S, Aleksander S (2010). The influence of mycorrhizal fungi on the growth and yield of plum and sour cherry trees. Journal of Fruit and Ornamental Plant Research 18(2): 71-77
  • Szekeres A, Kredics L, Antal Z, Kevei F, Manczinger L (2004) Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. FEMS Microbiol Lett 233:215–222. https://doi.org/10.1016/j.femsle.2004.02. 012
  • Studholme D J, Harris B, Le Cocq K, Winsbury R, Perera V, Ryder L, Grant M (2013). Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture—insights from genomics. Frontiers in plant science, 4, 258.
  • Souza PV D-de, Souza de P V D (2000). Effect of arbuscular mycorrhizae and gibberellic acid interactions on vegetative growth of Carrizo citrange seedlings. Cienicia Rural 30(5): 783-787
  • Sudhakar P, Chattopadhyay G N, Gangwar S K, Ghosh J K (2000). Effect of foliar application of Azotobacter; Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J. Agric. Sci. 134, 227–234
  • Tao G C, Tian S J, Cai M Y, Xie G H (2008). Phosphate-solubilizing and –mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523
  • Tewari S, Shrivas V L, Hariprasad P, and Sharma S (2019). “Harnessing endophytes as biocontrol agents,” in Plant Health Under Biotic Stress (Sigapore: Springer), 189–218. doi: 10.1007/978-981-13-6040-4_10
  • Todeschini V, Aitlahmidi N, Mazzucco E, Marsano F, Gosetti F, Robotti E, Bona E, Massa N, Bonneau L, Marengo E, Wipf D, Berta G, Lingua G (2018). Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome. Frontiers in Plant Science 9: 1611-1611.
  • Turkmen O, Sensoy S, Demir S, Erdinc C (2008). Effects of two different AMF species on growth and nutrient content of pepper seedlings grown under moderate salt stres. African Journal of Biotechnology Vol. 7 (4), pp. 392-396
  • Yedidia I, Benhamou N, Kapulnik Y, Chet I (2000) Induction and accumulation of PR proteins activityduring early stages of root colonizationby the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol Biochem 38(11):863–873. https://doi.org/10.1016/S0981- 9428(00)01198-0
  • Yu Y Y, Xu J D, Huang T X, Zhong J, Yu H, Qui J P, Guo J H (2020). Combination of beneficial bacteria improves blueberry production and soil quality. Food Sci Nutr. 8:5776–5784. https://doi.org/10.1002/fsn3.1772
  • Wang C M, Han Z H, Li X L, Xu X F (2001). Effects of phosphorus levels and VA mycorrhizae on growth and nutrient contents of apple seedlings. Acta Horticulturae Sinica. 28(1): 1-6
  • Wang P, Zhang J J, Shu B, Xia R X (2012). Arbuscular mycorrhizal fungi associated with citrus orchards under different types of soil management, southern China. Plant Soil Environ. 58, (7): 302–308
  • Wu Q S, Zou Y N, He X H (2010). Exogenous putrescine, not spermine or spermidine, enhances root mycorrhizal development and plant growth of trifoliate orange (Poncirus trifoliata) seedlings. Int. J. Agric. Biol., 12: 576-580
  • Wu Q S, Zou Y N (2012). Evaluating Effectiveness of Four Inoculation Methods with Arbuscular Mycorrhizal Fungi on Trifoliate Orange Seedlings. Int. J Agric. Biol. 14: 266-270
  • Verterberg M, Kukkonen S, Sari K, Parikka P, Huttunen J, Tainino L, Devos N, Weekers F, Kevers C, Thonart P, Lemoine M C, Cordier C, Alabouvette C, Gianinazzi S (2004). Microbial inoculation for Improving the Growth and Health of Micropropagated Strawberry. Appl. Soil Ecol 27:243-258.
  • Vitagliano C, Citernesi A S (1999). Plant growth of Olea europaea L. as influenced by arbuscular mycorrhizal fungi. Acta Horticulturae 474: 357-361
  • Zahir Z A, Arshad M (2004). Perspectives in agriculture. Advances in agronomy, 81, 97.
  • Zhang F, Dashti N, Hynes R K and Smith D L (1996). Plant growth promoting rhizobacteria and soybean (Glycine max L. Merr.) nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann. Bot. 77, 453–459.
Toplam 122 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Agronomi
Bölüm Derlemeler
Yazarlar

Yaşar Ertürk Bu kişi benim 0000-0003-2525-0260

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 2 Sayı: 1

Kaynak Göster

APA Ertürk, Y. (2022). Biological Fertilizers-Containing Beneficial Microorganisms in Fruit Culture. Kırşehir Ahi Evran Üniversitesi Ziraat Fakültesi Dergisi, 2(1), 71-92.
AMA Ertürk Y. Biological Fertilizers-Containing Beneficial Microorganisms in Fruit Culture. KUZFAD. Haziran 2022;2(1):71-92.
Chicago Ertürk, Yaşar. “Biological Fertilizers-Containing Beneficial Microorganisms in Fruit Culture”. Kırşehir Ahi Evran Üniversitesi Ziraat Fakültesi Dergisi 2, sy. 1 (Haziran 2022): 71-92.
EndNote Ertürk Y (01 Haziran 2022) Biological Fertilizers-Containing Beneficial Microorganisms in Fruit Culture. Kırşehir Ahi Evran Üniversitesi Ziraat Fakültesi Dergisi 2 1 71–92.
IEEE Y. Ertürk, “Biological Fertilizers-Containing Beneficial Microorganisms in Fruit Culture”, KUZFAD, c. 2, sy. 1, ss. 71–92, 2022.
ISNAD Ertürk, Yaşar. “Biological Fertilizers-Containing Beneficial Microorganisms in Fruit Culture”. Kırşehir Ahi Evran Üniversitesi Ziraat Fakültesi Dergisi 2/1 (Haziran 2022), 71-92.
JAMA Ertürk Y. Biological Fertilizers-Containing Beneficial Microorganisms in Fruit Culture. KUZFAD. 2022;2:71–92.
MLA Ertürk, Yaşar. “Biological Fertilizers-Containing Beneficial Microorganisms in Fruit Culture”. Kırşehir Ahi Evran Üniversitesi Ziraat Fakültesi Dergisi, c. 2, sy. 1, 2022, ss. 71-92.
Vancouver Ertürk Y. Biological Fertilizers-Containing Beneficial Microorganisms in Fruit Culture. KUZFAD. 2022;2(1):71-92.