Araştırma Makalesi
BibTex RIS Kaynak Göster

Streptococcus Minor; Köpek Isırıklarında Potansiyel Patojenik Bakteriyel Etken Olabilir Mi?

Yıl 2022, , 194 - 199, 30.06.2022
https://doi.org/10.30607/kvj.1068222

Öz

Köpekler ve insanlar, yakın arkadaşlık veya bazen köpeklerin insanlara saldırması şeklinde olabilen sürekli bir etkileşim halindedir. Köpek ısırık vakaları dünyada sık görülmektedir. Bu vakalardan sıklıkla Streptococcus türleri izole edilir ve en sık izole edilen tür Streptococcus canis'tir. 2004 yılında tanımlanan Streptococcus minor köpek ısırması vakalarında izole edilmiştir. Bu araştırmada köpek ağız florasında S. minor varlığının ortaya konulması amaçlanmıştır. Bu çalışmada, 50 köpek oral svap örneğinden 19 Gram pozitif kok izole edilmiştir. Ondokuz izolattan 17'si katalaz negatif olduğu belirlenmiş ve PCR ve dizileme ile genotipik olarak tiplendirilmiştir. Sekiz izolat S. minor olarak tanımlandı. S. minor izolatlarının tetrasikline %75 oranında dirençli ve diğer antibiyotiklere çeşitli oranlarda duyarlı olduğu bulunmuştur. Bir S. minor izolatında trimetoprim direnç geni, bir S. minor izolatında ise tetrasiklin direnç geni saptanmıştır. Bu araştırma sonucunda S. minor'un köpeklerin ağız florasından izole edilebileceği ve köpek ısırık vakalarında potansiyel bir bakteriyel patojen olarak ortaya çıkabileceği gösterilmiştir.

Kaynakça

  • Abrahamian FM, Goldstein EJ. Microbiology of animal bite wound infections. Clinical microbiology reviews. 2011; 24 (2), 231-246.
  • Bata SI, Andua OA, Maimadu A, Sabo JA, Mayowa O, Waziri IA. Oral cavities multidrug resistant bacteria colonization in apparently healthy dogs in jos, Plateau State, Nigeria. Science World Journal. 2020; 15 (1), 15-20.
  • Bell SE, Nash AK, Zanghi BM, Otto CM, Perry EB. An assessment of the stability of the canine oral microbiota after probiotic administration in healthy dogs over time. Front. Vet. Sci. 2020; 7, 616.
  • Bert F, Lambert-Zechovsky N. Septicemia caused by Streptococcus canis in a human. J Clin Microbiol. 1997; 35, 777–779.
  • Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford). 2010; Article ID: baq013. doi: 10.1093/database/baq013
  • Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement M100-S26. Wayne, PA, Clinical and Laboratory Standards Institute. 2016.
  • Damborg P, Broens EM, Chomel BB. Bacterial zoonoses transmitted by household pets: State-of-the-art and future perspectives for targeted research and policy actions. J. Comp. Pathol. 2016; 155 (1), 27-40.
  • Fowler EB, Breault LG, Cuenin MF. Periodontal disease and its association with systemic disease. Mil Med. 2001; 166 (1), 85–89.
  • Goldstein EJC, Citron DM, Tyrrell KL, Leoncio E, Merriam CV. Comparative in vitro activity of omadacycline against dog and cat bite wound isolates. Antimicrob. Agents Chemother. 2018; 62 (4), e02551-17.
  • Isaiah A, Hoffmann AR, Kelley R, Mundell P, Steiner JM, Suchodolski JS. Characterization of the nasal and oral microbiota of detection dogs. PLoS One. 2017; 12 (9), e0184899.
  • Lam MM, Clarridge JE, Young EJ, Mizuki S. The other group G Streptococcus: increased detection of Streptococcus canis ulcer infections in dog owners. J Clin Microbiol. 2007; 45 (7), 2327–2329.
  • Lane DJ. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics. Stackebrandt, E., and Goodfellow, M., eds., John Wiley and Sons, New York, NY, 1991; 115-175.
  • Mammeri H, Van De Loo M, Poirel L, Martinez-Martinez L, Nordmann P. Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. Antimicrob Agents Chemother. 2005; 49 (1), 71–76.
  • Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res. 1994; 8 (2), 263–271.
  • Oh C, Lee K, Cheong Y, Lee SW, Park SY, Song CS, Choi IS, Lee JB. Comparison of the oral microbiomes of canines and their owners using next-generation sequencing. PLoS One. 2015; 10 (7), e0131468.
  • Ohtaki H, Ohkusu K, Ohta H, Miyazaki T, Yonetamari J, Usui T, Mori I, Ito H, Ishizuka T, Seishima M. A case of sepsis caused by Streptococcus canis in a dog owner: a first case report of sepsis without dog bite in Japan. J Infect Chemother. 2013; 19 (6), 1206-1209.
  • Randall LP, Cooles SW, Osborn MK, Piddock LJ, Woodward MJ. Antibiotic resistance genes integrons and multiple antibiotic resistance in thirtyfive serotypes of Salmonella enterica isolated from humans and animals in the UK. J Antimicrob Chemother. 2004; 53 (2), 208–216.
  • Razali K, Kaidi R, Abdelli A, Menoueri MN, Ait-Oudhia K. Oral flora of stray dogs and cats in Algeria: Pasteurella and other zoonotic bacteria. Veterinary World. 2020; 13 (12), 2806-2814.
  • Ruparell A, Inui T, Staunton R, Wallis C, Deusch O, Holcombe LJ. The canine oral microbiome: Variation in bacterial populations across different niches. BMC Microbiol. 2020; 20 (1), 1-13.
  • Stefanopoulos PK, Tarantzopoulou AD. Facial bite wounds: management update. Int. J. Oral Maxillofac. Surg. 2005; 34 (5), 464–472.
  • Sturgeon A, Stull JW, Costa MC, Weese JS. Metagenomic analysis of the canine oral cavity as revealed by high-throughput pyrosequencing of the 16S rRNA gene. Vet. Microbiol. 2013; 162 (2-4), 891–898.
  • Tabaka ME, Quinn JV, Kohn MA, Polevoi SK. Predictors of infection from dog bite wounds: Which patients may benefit from prophylactic antibiotics? Emerg. Med. J. 2015; 32 (11), 860-863.
  • Takeda N, Kikuchi K, Asano R, Harada T, Totsuka K, Uchiyama T, Hosoda S. Recurrent septicemia caused by Streptococcus canis after a dog bite. Scand J Infect Dis. 2001; 33 (12), 927–928.
  • Toro CS, Farfán M, Contreras I, Flores O, Navarro N, Mora GC, Prado V. Genetic analysis of antibiotic-resistance determinants in multidrugresistant Shigella strains isolated from Chilean children. Epidemiol Infect. 2005; 133 (1), 81–86.
  • Tré-Hardy M, Saussez T, Yombi JC, Rodriguez-Villalobos H. First case of a dog bite wound infection caused by Streptococcus minor in human. NMNI. 2016; 14, 49-50.
  • Turner S, Pryer KM, Mıao VPW, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 1999 46 (4), 327-338.
  • Van TT, Chin J, Chapman T, Tran LT, Coloe PJ. Safety of raw meat and shellfish in Vietnam: an analysis of Escherichia coli isolations for antibiotic resistance and virulence genes. Int J Food Microbiol. 2008; 124 (3), 217–223.
  • Vancanneyt M, Devriese LA, De Graef EM. Streptococcus minor sp. nov., from faecal samples and tonsils of domestic animals. IJSEM. 2004; 54 (2), 449–452.
  • Zarco MF, Vess TJ, Ginsburg GS. The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis. 2012; 18 (2), 109-120.

Streptococcus minor; Can There Be A Potential Pathogenic Bacterial Agent In Dog Bites?

Yıl 2022, , 194 - 199, 30.06.2022
https://doi.org/10.30607/kvj.1068222

Öz

Dogs and humans are in constant interaction which can be in the form of close friendship, or sometimes an attack by dogs on people. Dog bite cases are common in the world and Streptococcus species are often isolated from these cases and most frequently isolated species is Streptococcus canis. Streptococcus minor which was described in 2004 has been isolated in dog bite cases. This research was aimed to reveal the presence of S. minor in canine oral flora. In this study, 19 Gram-positive cocci were isolated from 50 dog oral swab samples. Of 19 isolates, 17 isolates were catalase-negative and were typed genotypically by PCR and sequencing. Eight isolates were identified as S. minor. S. minor isolates were found to be resistant to tetracycline at a rate of 75% and susceptible to other antibiotics at various rates. Trimethoprim resistance gene was detected in one S. minor isolate and tetracycline resistance gene was found in one S. minor isolate. The results of this research, it has been shown that S. minor can be isolated from dogs oral flora and it can appear as a potential bacterial pathogen in dog bite cases.

Kaynakça

  • Abrahamian FM, Goldstein EJ. Microbiology of animal bite wound infections. Clinical microbiology reviews. 2011; 24 (2), 231-246.
  • Bata SI, Andua OA, Maimadu A, Sabo JA, Mayowa O, Waziri IA. Oral cavities multidrug resistant bacteria colonization in apparently healthy dogs in jos, Plateau State, Nigeria. Science World Journal. 2020; 15 (1), 15-20.
  • Bell SE, Nash AK, Zanghi BM, Otto CM, Perry EB. An assessment of the stability of the canine oral microbiota after probiotic administration in healthy dogs over time. Front. Vet. Sci. 2020; 7, 616.
  • Bert F, Lambert-Zechovsky N. Septicemia caused by Streptococcus canis in a human. J Clin Microbiol. 1997; 35, 777–779.
  • Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford). 2010; Article ID: baq013. doi: 10.1093/database/baq013
  • Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement M100-S26. Wayne, PA, Clinical and Laboratory Standards Institute. 2016.
  • Damborg P, Broens EM, Chomel BB. Bacterial zoonoses transmitted by household pets: State-of-the-art and future perspectives for targeted research and policy actions. J. Comp. Pathol. 2016; 155 (1), 27-40.
  • Fowler EB, Breault LG, Cuenin MF. Periodontal disease and its association with systemic disease. Mil Med. 2001; 166 (1), 85–89.
  • Goldstein EJC, Citron DM, Tyrrell KL, Leoncio E, Merriam CV. Comparative in vitro activity of omadacycline against dog and cat bite wound isolates. Antimicrob. Agents Chemother. 2018; 62 (4), e02551-17.
  • Isaiah A, Hoffmann AR, Kelley R, Mundell P, Steiner JM, Suchodolski JS. Characterization of the nasal and oral microbiota of detection dogs. PLoS One. 2017; 12 (9), e0184899.
  • Lam MM, Clarridge JE, Young EJ, Mizuki S. The other group G Streptococcus: increased detection of Streptococcus canis ulcer infections in dog owners. J Clin Microbiol. 2007; 45 (7), 2327–2329.
  • Lane DJ. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics. Stackebrandt, E., and Goodfellow, M., eds., John Wiley and Sons, New York, NY, 1991; 115-175.
  • Mammeri H, Van De Loo M, Poirel L, Martinez-Martinez L, Nordmann P. Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. Antimicrob Agents Chemother. 2005; 49 (1), 71–76.
  • Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res. 1994; 8 (2), 263–271.
  • Oh C, Lee K, Cheong Y, Lee SW, Park SY, Song CS, Choi IS, Lee JB. Comparison of the oral microbiomes of canines and their owners using next-generation sequencing. PLoS One. 2015; 10 (7), e0131468.
  • Ohtaki H, Ohkusu K, Ohta H, Miyazaki T, Yonetamari J, Usui T, Mori I, Ito H, Ishizuka T, Seishima M. A case of sepsis caused by Streptococcus canis in a dog owner: a first case report of sepsis without dog bite in Japan. J Infect Chemother. 2013; 19 (6), 1206-1209.
  • Randall LP, Cooles SW, Osborn MK, Piddock LJ, Woodward MJ. Antibiotic resistance genes integrons and multiple antibiotic resistance in thirtyfive serotypes of Salmonella enterica isolated from humans and animals in the UK. J Antimicrob Chemother. 2004; 53 (2), 208–216.
  • Razali K, Kaidi R, Abdelli A, Menoueri MN, Ait-Oudhia K. Oral flora of stray dogs and cats in Algeria: Pasteurella and other zoonotic bacteria. Veterinary World. 2020; 13 (12), 2806-2814.
  • Ruparell A, Inui T, Staunton R, Wallis C, Deusch O, Holcombe LJ. The canine oral microbiome: Variation in bacterial populations across different niches. BMC Microbiol. 2020; 20 (1), 1-13.
  • Stefanopoulos PK, Tarantzopoulou AD. Facial bite wounds: management update. Int. J. Oral Maxillofac. Surg. 2005; 34 (5), 464–472.
  • Sturgeon A, Stull JW, Costa MC, Weese JS. Metagenomic analysis of the canine oral cavity as revealed by high-throughput pyrosequencing of the 16S rRNA gene. Vet. Microbiol. 2013; 162 (2-4), 891–898.
  • Tabaka ME, Quinn JV, Kohn MA, Polevoi SK. Predictors of infection from dog bite wounds: Which patients may benefit from prophylactic antibiotics? Emerg. Med. J. 2015; 32 (11), 860-863.
  • Takeda N, Kikuchi K, Asano R, Harada T, Totsuka K, Uchiyama T, Hosoda S. Recurrent septicemia caused by Streptococcus canis after a dog bite. Scand J Infect Dis. 2001; 33 (12), 927–928.
  • Toro CS, Farfán M, Contreras I, Flores O, Navarro N, Mora GC, Prado V. Genetic analysis of antibiotic-resistance determinants in multidrugresistant Shigella strains isolated from Chilean children. Epidemiol Infect. 2005; 133 (1), 81–86.
  • Tré-Hardy M, Saussez T, Yombi JC, Rodriguez-Villalobos H. First case of a dog bite wound infection caused by Streptococcus minor in human. NMNI. 2016; 14, 49-50.
  • Turner S, Pryer KM, Mıao VPW, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 1999 46 (4), 327-338.
  • Van TT, Chin J, Chapman T, Tran LT, Coloe PJ. Safety of raw meat and shellfish in Vietnam: an analysis of Escherichia coli isolations for antibiotic resistance and virulence genes. Int J Food Microbiol. 2008; 124 (3), 217–223.
  • Vancanneyt M, Devriese LA, De Graef EM. Streptococcus minor sp. nov., from faecal samples and tonsils of domestic animals. IJSEM. 2004; 54 (2), 449–452.
  • Zarco MF, Vess TJ, Ginsburg GS. The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis. 2012; 18 (2), 109-120.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Cerrahi
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Hafize Tuğba Yüksel Dolgun 0000-0002-1125-5792

Şükrü Kırkan 0000-0001-5111-8656

Yayımlanma Tarihi 30 Haziran 2022
Kabul Tarihi 19 Nisan 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Yüksel Dolgun, H. T., & Kırkan, Ş. (2022). Streptococcus minor; Can There Be A Potential Pathogenic Bacterial Agent In Dog Bites?. Kocatepe Veterinary Journal, 15(2), 194-199. https://doi.org/10.30607/kvj.1068222
AMA Yüksel Dolgun HT, Kırkan Ş. Streptococcus minor; Can There Be A Potential Pathogenic Bacterial Agent In Dog Bites?. kvj. Haziran 2022;15(2):194-199. doi:10.30607/kvj.1068222
Chicago Yüksel Dolgun, Hafize Tuğba, ve Şükrü Kırkan. “Streptococcus Minor; Can There Be A Potential Pathogenic Bacterial Agent In Dog Bites?”. Kocatepe Veterinary Journal 15, sy. 2 (Haziran 2022): 194-99. https://doi.org/10.30607/kvj.1068222.
EndNote Yüksel Dolgun HT, Kırkan Ş (01 Haziran 2022) Streptococcus minor; Can There Be A Potential Pathogenic Bacterial Agent In Dog Bites?. Kocatepe Veterinary Journal 15 2 194–199.
IEEE H. T. Yüksel Dolgun ve Ş. Kırkan, “Streptococcus minor; Can There Be A Potential Pathogenic Bacterial Agent In Dog Bites?”, kvj, c. 15, sy. 2, ss. 194–199, 2022, doi: 10.30607/kvj.1068222.
ISNAD Yüksel Dolgun, Hafize Tuğba - Kırkan, Şükrü. “Streptococcus Minor; Can There Be A Potential Pathogenic Bacterial Agent In Dog Bites?”. Kocatepe Veterinary Journal 15/2 (Haziran 2022), 194-199. https://doi.org/10.30607/kvj.1068222.
JAMA Yüksel Dolgun HT, Kırkan Ş. Streptococcus minor; Can There Be A Potential Pathogenic Bacterial Agent In Dog Bites?. kvj. 2022;15:194–199.
MLA Yüksel Dolgun, Hafize Tuğba ve Şükrü Kırkan. “Streptococcus Minor; Can There Be A Potential Pathogenic Bacterial Agent In Dog Bites?”. Kocatepe Veterinary Journal, c. 15, sy. 2, 2022, ss. 194-9, doi:10.30607/kvj.1068222.
Vancouver Yüksel Dolgun HT, Kırkan Ş. Streptococcus minor; Can There Be A Potential Pathogenic Bacterial Agent In Dog Bites?. kvj. 2022;15(2):194-9.

13520    13521       13522   1352314104

14105         14106        14107       14108