Araştırma Makalesi
BibTex RIS Kaynak Göster

Çiğ Et Örneklerinde Kolistine Dirençli Escherichia coli'nin İzolasyonu ve Moleküler Karakterizasyonu

Yıl 2024, , 48 - 54, 31.03.2024
https://doi.org/10.30607/kvj.1414055

Öz

Çeşitli Gram-negatif bakterilerde meydana gelen antimikrobiyal direnç devam eden bir halk sağlığı tehdidi olarak nitelendirilmektedir. Bu nedenle bilinçsiz antimikrobiyal kullanımı yeni direnç mekanizmalarını ortaya çıkarmakta ve söz konusu bu mekanizmalar küresel olarak yayılmaktadır. Bu nedenler ışığında, mevcut çalışmamızda, çiğ et örneklerinde kolistin dirençli E. coli izolasyonu ve direnç genlerinin moleküler karakterizasyonu amaçlanmıştır. Bu amaçla, 300 örnekten elde edilen E. coli izolatının 90 (%75)’ınında trpA geni saptanmıştır. E. coli olarak doğrulanan izolatın 8 (%8.8)’inde mcr-1 geni bulunmuştur. Ancak yapılan PCR analizi sonucunda hiçbir izolatta O45:H2, O103:H2, O121:H19, O145:H28, O26:H11, O111:H8 E. coli serogrupları ve virülens genleri bulunamamıştır. Ayrıca, E. coli izolatları disk difüzyon testi sonucunda 7 (%7.7), 5 (%5.5), 29 (%32.2), 23 (%25.5), 8 (%8.8), 10 (%9), 2 (%2.2) ve 6 (%6.6) oranlarında sırasıyla tetrasiklin, eritromisin, gentamisin azitromisin, imipenem, ampisilin, nalidiksik aside asit dirençli bulunmuştur.

Kaynakça

  • Papouskova A. (2020). Genomic analysis of Escherichia coli strains isolated from diseased chicken in the Czech Republic. BMC veterinary research, 16(1), 1-10. https://doi.org/10.1186/s12917-020-02407-2
  • Adiguzel, M. C., Baran, A., Wu, Z., Cengiz, S., Dai, L., Oz, C., & Sahin, O. (2021). Prevalence of colistin resistance in Escherichia coli in Eastern Turkey and genomic characterization of an mcr-1 positive strain from retail chicken meat. Microbial Drug Resistance, 27(3), 424-432. https://doi.org/10.1089/mdr.2020.0209
  • Adzitey, F. (2020). Incidence and antimicrobial susceptibility of Escherichia coli isolated from beef (meat muscle, liver and kidney) samples in Wa Abattoir, Ghana. Cogent Food & Agriculture, 6(1), 1718269. https://doi.org/10.1080/23311932.2020.1718269
  • Aklilu, E., & Raman, K. (2020). MCR-1 gene encoded colistin-resistant Escherichia coli in raw chicken meat and bean sprouts in Malaysia. International journal of microbiology, 2020. https://doi.org/10.1155/2020/8853582
  • Babolhavaeji, K., Shokoohizadeh, L., Yavari, M., Moradi, A., & Alikhani, M. Y. (2021). Prevalence of Shiga Toxin-Producing Escherichia coli O157 and Non-O157 Serogroups Isolated from Fresh Raw Beef Meat Samples in an Industrial Slaughterhouse. International journal of microbiology, 2021. https://doi.org/10.1155/2021/1978952
  • Bauer, A. W., M.D., Kirby, W. M. M., M.D., J. C. Sherris, M.D., M. Turck, M.D. (1966). Antibiotic Susceptibility Testing by a Standardized Single Disk Method. American Journal of Clinical Pathology, Volume 45, Issue 4_ts, April 1966, Pages 493–496.
  • Barel M, Hizlisoy H, Gungor C, Dishan A, Disli HB, Al S, Ertaş Onmaz N, Yildirim Y, Gonulalan, Z. Escherichia coli serogroups in slaughterhouses: Antibiotic susceptibility and molecular typing of isolates. Int J Food Microbiol. 2022; 371:109673. https://doi.org/10.1016/j.ijfoodmicro.2022.109673
  • Berglund, B. (2019). Acquired resistance to colistin via chromosomal and plasmid-mediated mechanisms in Klebsiella pneumoniae. Infectious Microbes & Diseases, 1(1), 10-19. doi: 10.1097/IM9.0000000000000002
  • Cho, Y. S., Koo, M. S., & Jang, H. J. (2020). Characterization of diarrheagenic Escherichia coli isolated from fresh beef, pork, and chicken meat in korean markets. Microbiology and Biotechnology Letters, 48(2), 121-128. https://doi.org/10.4014/mbl.1912.12005
  • Clermont, O., Christenson, J. K., Denamur, E., & Gordon, D. M. (2013). The C lermont Escherichia coli phylo‐typing method revisited: improvement of specificity and detection of new phylo‐groups. Environmental microbiology reports, 5(1), 58-65.CLSI, C. (2016). Performance standards for antimicrobial susceptibility testing. Clinical Lab Standards Institute, 35(3), 16-38. https://doi.org/10.1111/1758-2229.12019
  • Enany, M. E., Algammal, A. M., Nasef, S. A., Abo-Eillil, S. A., Bin-Jumah, M., Taha, A. E., & Allam, A. A. (2019). The occurrence of the multidrug resistance (MDR) and the prevalence of virulence genes and QACs resistance genes in E. coli isolated from environmental and avian sources. AMB Express, 9(1), 1-9. https://doi.org/10.1186/s13568-019-0920-4
  • Ghafur, A., Shankar, C., GnanaSoundari, P., Venkatesan, M., Mâni, D., Thirunarayanan, M. A., & Veeraraghavan, B. (2019). Detection of chromosomal and plasmid-mediated mechanisms of colistin resistance in Escherichia coli and Klebsiella pneumoniae from Indian food samples. Journal of global antimicrobial resistance, 16, 48-52. https://doi.org/10.1016/j.jgar.2018.09.005
  • Guo, S., Aung, K. T., Leekitcharoenphon, P., Tay, M. Y., Seow, K. L., Zhong, Y., & Schlundt, J. (2021). Prevalence and genomic analysis of ESBL-producing Escherichia coli in retail raw meats in Singapore. Journal of Antimicrobial Chemotherapy, 76(3), 601-605. https://doi.org/10.1093/jac/dkaa461
  • Hizlisoy, H., Al, S., Onmaz, N. E., Yildirim, Y., Gönülalan, Z., & Gümüşsoy, K. S. (2017). Antimicrobial resistance profiles and virulence factors of Escherichia coli O157 collected from a poultry processing plant. Turkish Journal of Veterinary & Animal Sciences, 41(1), 65-71. doi:10.3906/vet-1602-22
  • Indraswari, A., Haryanto, A., Suardana, I. W., & Widiasih, D. A. (2021). Isolation and detection of four major virulence genes in O157: H7 and non-O157 E. coli from beef at Yogyakarta Special Province, Indonesia. J. Anim. Health Prod, 9(4), 371-379. http://dx.doi.org/10.17582/journal.jahp/2021/9.4.371.379
  • Kassem, I. I., Nasser, N. A., & Salibi, J. (2020). Prevalence and loads of fecal pollution indicators and the antibiotic resistance phenotypes of Escherichia coli in raw minced beef in Lebanon. Foods, 9(11), 1543. https://doi.org/10.3390/foods9111543
  • Kim, Y. B., Yoon, M. Y., Ha, J. S., Seo, K. W., Noh, E. B., Son, S. H., & Lee, Y. J. (2020). Molecular characterization of avian pathogenic Escherichia coli from broiler chickens with colibacillosis. Poultry Science, 99(2), 1088-1095
  • Komijani, M., Shahin, K., Barazandeh, M., & Sajadi, M. (2018). Prevalence of extended- spectrum β-lactamases genes in clinical isolates of Pseudomonas aeruginosa. Medical Laboratory Journal, 12(5), 34-41. https://doi.org/10.1016/j.lwt.2021.112836
  • Koskeroglu, K., Barel, M., Hizlisoy, H., & Yildirim, Y. (2023). “Biofilm Formationand Antibiotic Resistance Profiles of Water-borne Pathogens. Research in Microbiology, 104056. https://doi.org/10.1016/j.resmic.2023.104056.
  • Liu, H., Zhu, B., Liang, B., Xu, X., Qiu, S., Jia, L., & Song, H. (2018). A novel mcr-1 variant carried by an IncI2-type plasmid identified from a multidrug resistant enterotoxigenic Escherichia coli. Frontiers in microbiology, 9, 815. https://doi.org/10.3389/fmicb.2018.00815
  • M. (2020). Characterization of Shiga toxin-producing Escherichia coli in raw beef from informal and commercial abattoirs. Plos one, 15(12), e0243828. https://doi.org/10.1371/journal.pone.0243828
  • Manges, A. R., Geum, H. M., Guo, A., Edens, T. J., Fibke, C. D., & Pitout, J. D. (2019). Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clinical microbiology reviews, 32(3), e00135-18. DOI: https://doi.org/10.1128/cmr.00135-18
  • Mashak, Z. (2018). Virulence genes and phenotypic evaluation of the antibiotic resistance of vero toxin producing Escherichia coli recovered from milk, meat, and vegetables. Jundishapur Journal of Microbiology, 11(5). DOI: https://doi.org/10.5812/jjm.62288
  • McLellan, J. E., Pitcher, J. I., Ballard, S. A., Grabsch, E. A., Bell, J. M., Barton, M., & Grayson, M. L. (2018). Superbugs in the supermarket? Assessing the rate of contamination with third-generation cephalosporin-resistant gram-negative bacteria in fresh Australian pork and chicken. Antimicrobial Resistance & Infection Control, 7(1), 1-7. https://doi.org/10.1186/s13756-018-0322-4
  • Mgaya, F. X., Matee, M. I., Muhairwa, A. P., & Hoza, A. S. (2021). Occurrence of multidrug resistant Escherichia coli in raw meat and cloaca swabs in poultry processed in slaughter slabs in Dar es Salaam, Tanzania. Antibiotics, 10(4), 343. https://doi.org/10.3390/antibiotics10040343
  • Mokhtar, A., & Karmi, M. (2021). Surveillance of food poisoning Escherichia coli (STEC) in ready-to-eat meat products in Aswan, Egypt. Egyptian Journal of Veterinary Sciences, 52(The 9th International Conference of Veterinary Research Division National Research Centre, Giza, Egypt 27th-29th September 2021), 41-50. DOI: 10.21608/ejvs.2021.94025.1277
  • Nehoya, K. N., Hamatui, N., Shilangale, R. P., Onywera, H., Kennedy, J., & Mwapagha, L.Paitan, Y. (2018). Current trends in antimicrobial resistance of Escherichia coli. Escherichia coli, a versatile pathogen, 181-211
  • Päivärinta, M., Latvio, S., Fredriksson-Ahomaa, M., & Heikinheimo, A. (2020). Whole genome sequence analysis of antimicrobial resistance genes, multilocus sequence types and plasmid sequences in ESBL/AmpC Escherichia coli isolated from broiler caecum and meat. International journal of food microbiology, 315, 108361. https://doi.org/10.1016/j.ijfoodmicro.2019.108361
  • Papouskova, A., Masarikova, M., Valcek, A., Senk, D., Cejkova, D., Jahodarova, E., & Cizek,Poirel, L., Madec, J. Y., Lupo, A., Schink, A. K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial resistance in Escherichia coli. Microbiology Spectrum, 6(4), 6-4. DOI: https://doi.org/10.1128/microbiolspec.arba-0026-2017
  • Redweik, G. A., Stromberg, Z. R., Van Goor, A., & Mellata, M. (2020). Protection against avian pathogenic Escherichia coli and Salmonella kentucky exhibited in chickens given both probiotics and live Salmonella vaccine. Poultry science, 99(2), 752-762. https://doi.org/10.1016/j.psj.2019.10.038
  • Rega, M., Carmosino, I., Bonilauri, P., Frascolla, V., Vismarra, A., & Bacci, C. (2021). Prevalence of ESβL, AmpC and Colistin-Resistant E. coli in meat: a comparison between pork and wild boar. Microorganisms, 9(2), 214. https://doi.org/10.3390/microorganisms9020214
  • Renter, D. G., Bohaychuk, V., Van Donkersgoed, J., & King, R. (2007). Presence of non-O157 Shiga toxin-producing Escherichia coli in feces from feedlot cattle in Alberta and absence on corresponding beef carcasses. Canadian journal of veterinary research, 71(3), 230
  • Shahin, K., Bao, H., Zhu, S., Soleimani-Delfan, A., He, T., Mansoorianfar, M., & Wang, R. (2022). Bio-control of O157: H7, and colistin-resistant MCR-1-positive Escherichia coli using a new designed broad host range phage cocktail. LWT, 154, 112836. https://doi.org/10.1016/j.lwt.2021.112836
  • Wasiński, B. (2019). Extra-intestinal pathogenic Escherichia coli–threat connected with food- borne infections. Annals of Agricultural and Environmental Medicine, 26(4), 532-537
  • Wolfensberger, A., Kuster, S. P., Marchesi, M., Zbinden, R., & Hombach, M. (2019). The effect of varying multidrug-resistence (MDR) definitions on rates of MDR gram-negative rods. Antimicrobial Resistance & Infection Control, 8(1), 1-9. https://doi.org/10.1186/s13756-019-0614-3
  • Zhang, S., Huang, Y., Chen, M., Yang, G., Zhang, J., Wu, Q., & Zhang, Y. (2022). Characterization of Escherichia coli O157: non-H7 isolated from retail food in China and first report of mcr-1/IncI2-carrying colistin-resistant E. coli O157: H26 and E. coli O157: H4. International Journal of Food Microbiology, 378, 109805. https://doi.org/10.1016/j.ijfoodmicro.2022.109805

Isolation and Molecular Characterization of Colistin-Resistant Escherichia coli in Raw Meat Samples

Yıl 2024, , 48 - 54, 31.03.2024
https://doi.org/10.30607/kvj.1414055

Öz

Antimicrobial resistance occurring in a wide variety of Gram negative bacteria is considered an ongoing public health threat. For this reason, unconscious use of antimicrobials reveals new resistance mechanisms, and these resistance mechanisms are spreading globally. Due to these reasons, our current study aimed to isolate colistin-resistant Escherichia coli in raw meat samples and molecular characterization of resistance genes. For this purpose, the trpA gene was detected in 90 (75%) of the E. coli isolates obtained from 300 samples. mcr-1 gene was found in 8 (8.8%) of the isolates confirmed as E. coli. However, as a result of the PCR analysis, O45:H2, O103:H2, O121:H19, O145:H28, O26:H11, O111:H8 E. coli serogroups and virulence genes were not found in any isolate. Additionally, isolates 7 (7.7%), 5 (5.5%), 29 (32.2%), 23 (25.5%), 8 (8.8%), 10 (9%), 2 (2.2%) and 6 (6.6%). It was found to be acid resistant to tetracycline, erythromycin, gentamicin, azithromycin, imipenem, ampicillin and nalidixic acid, respectively.

Kaynakça

  • Papouskova A. (2020). Genomic analysis of Escherichia coli strains isolated from diseased chicken in the Czech Republic. BMC veterinary research, 16(1), 1-10. https://doi.org/10.1186/s12917-020-02407-2
  • Adiguzel, M. C., Baran, A., Wu, Z., Cengiz, S., Dai, L., Oz, C., & Sahin, O. (2021). Prevalence of colistin resistance in Escherichia coli in Eastern Turkey and genomic characterization of an mcr-1 positive strain from retail chicken meat. Microbial Drug Resistance, 27(3), 424-432. https://doi.org/10.1089/mdr.2020.0209
  • Adzitey, F. (2020). Incidence and antimicrobial susceptibility of Escherichia coli isolated from beef (meat muscle, liver and kidney) samples in Wa Abattoir, Ghana. Cogent Food & Agriculture, 6(1), 1718269. https://doi.org/10.1080/23311932.2020.1718269
  • Aklilu, E., & Raman, K. (2020). MCR-1 gene encoded colistin-resistant Escherichia coli in raw chicken meat and bean sprouts in Malaysia. International journal of microbiology, 2020. https://doi.org/10.1155/2020/8853582
  • Babolhavaeji, K., Shokoohizadeh, L., Yavari, M., Moradi, A., & Alikhani, M. Y. (2021). Prevalence of Shiga Toxin-Producing Escherichia coli O157 and Non-O157 Serogroups Isolated from Fresh Raw Beef Meat Samples in an Industrial Slaughterhouse. International journal of microbiology, 2021. https://doi.org/10.1155/2021/1978952
  • Bauer, A. W., M.D., Kirby, W. M. M., M.D., J. C. Sherris, M.D., M. Turck, M.D. (1966). Antibiotic Susceptibility Testing by a Standardized Single Disk Method. American Journal of Clinical Pathology, Volume 45, Issue 4_ts, April 1966, Pages 493–496.
  • Barel M, Hizlisoy H, Gungor C, Dishan A, Disli HB, Al S, Ertaş Onmaz N, Yildirim Y, Gonulalan, Z. Escherichia coli serogroups in slaughterhouses: Antibiotic susceptibility and molecular typing of isolates. Int J Food Microbiol. 2022; 371:109673. https://doi.org/10.1016/j.ijfoodmicro.2022.109673
  • Berglund, B. (2019). Acquired resistance to colistin via chromosomal and plasmid-mediated mechanisms in Klebsiella pneumoniae. Infectious Microbes & Diseases, 1(1), 10-19. doi: 10.1097/IM9.0000000000000002
  • Cho, Y. S., Koo, M. S., & Jang, H. J. (2020). Characterization of diarrheagenic Escherichia coli isolated from fresh beef, pork, and chicken meat in korean markets. Microbiology and Biotechnology Letters, 48(2), 121-128. https://doi.org/10.4014/mbl.1912.12005
  • Clermont, O., Christenson, J. K., Denamur, E., & Gordon, D. M. (2013). The C lermont Escherichia coli phylo‐typing method revisited: improvement of specificity and detection of new phylo‐groups. Environmental microbiology reports, 5(1), 58-65.CLSI, C. (2016). Performance standards for antimicrobial susceptibility testing. Clinical Lab Standards Institute, 35(3), 16-38. https://doi.org/10.1111/1758-2229.12019
  • Enany, M. E., Algammal, A. M., Nasef, S. A., Abo-Eillil, S. A., Bin-Jumah, M., Taha, A. E., & Allam, A. A. (2019). The occurrence of the multidrug resistance (MDR) and the prevalence of virulence genes and QACs resistance genes in E. coli isolated from environmental and avian sources. AMB Express, 9(1), 1-9. https://doi.org/10.1186/s13568-019-0920-4
  • Ghafur, A., Shankar, C., GnanaSoundari, P., Venkatesan, M., Mâni, D., Thirunarayanan, M. A., & Veeraraghavan, B. (2019). Detection of chromosomal and plasmid-mediated mechanisms of colistin resistance in Escherichia coli and Klebsiella pneumoniae from Indian food samples. Journal of global antimicrobial resistance, 16, 48-52. https://doi.org/10.1016/j.jgar.2018.09.005
  • Guo, S., Aung, K. T., Leekitcharoenphon, P., Tay, M. Y., Seow, K. L., Zhong, Y., & Schlundt, J. (2021). Prevalence and genomic analysis of ESBL-producing Escherichia coli in retail raw meats in Singapore. Journal of Antimicrobial Chemotherapy, 76(3), 601-605. https://doi.org/10.1093/jac/dkaa461
  • Hizlisoy, H., Al, S., Onmaz, N. E., Yildirim, Y., Gönülalan, Z., & Gümüşsoy, K. S. (2017). Antimicrobial resistance profiles and virulence factors of Escherichia coli O157 collected from a poultry processing plant. Turkish Journal of Veterinary & Animal Sciences, 41(1), 65-71. doi:10.3906/vet-1602-22
  • Indraswari, A., Haryanto, A., Suardana, I. W., & Widiasih, D. A. (2021). Isolation and detection of four major virulence genes in O157: H7 and non-O157 E. coli from beef at Yogyakarta Special Province, Indonesia. J. Anim. Health Prod, 9(4), 371-379. http://dx.doi.org/10.17582/journal.jahp/2021/9.4.371.379
  • Kassem, I. I., Nasser, N. A., & Salibi, J. (2020). Prevalence and loads of fecal pollution indicators and the antibiotic resistance phenotypes of Escherichia coli in raw minced beef in Lebanon. Foods, 9(11), 1543. https://doi.org/10.3390/foods9111543
  • Kim, Y. B., Yoon, M. Y., Ha, J. S., Seo, K. W., Noh, E. B., Son, S. H., & Lee, Y. J. (2020). Molecular characterization of avian pathogenic Escherichia coli from broiler chickens with colibacillosis. Poultry Science, 99(2), 1088-1095
  • Komijani, M., Shahin, K., Barazandeh, M., & Sajadi, M. (2018). Prevalence of extended- spectrum β-lactamases genes in clinical isolates of Pseudomonas aeruginosa. Medical Laboratory Journal, 12(5), 34-41. https://doi.org/10.1016/j.lwt.2021.112836
  • Koskeroglu, K., Barel, M., Hizlisoy, H., & Yildirim, Y. (2023). “Biofilm Formationand Antibiotic Resistance Profiles of Water-borne Pathogens. Research in Microbiology, 104056. https://doi.org/10.1016/j.resmic.2023.104056.
  • Liu, H., Zhu, B., Liang, B., Xu, X., Qiu, S., Jia, L., & Song, H. (2018). A novel mcr-1 variant carried by an IncI2-type plasmid identified from a multidrug resistant enterotoxigenic Escherichia coli. Frontiers in microbiology, 9, 815. https://doi.org/10.3389/fmicb.2018.00815
  • M. (2020). Characterization of Shiga toxin-producing Escherichia coli in raw beef from informal and commercial abattoirs. Plos one, 15(12), e0243828. https://doi.org/10.1371/journal.pone.0243828
  • Manges, A. R., Geum, H. M., Guo, A., Edens, T. J., Fibke, C. D., & Pitout, J. D. (2019). Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clinical microbiology reviews, 32(3), e00135-18. DOI: https://doi.org/10.1128/cmr.00135-18
  • Mashak, Z. (2018). Virulence genes and phenotypic evaluation of the antibiotic resistance of vero toxin producing Escherichia coli recovered from milk, meat, and vegetables. Jundishapur Journal of Microbiology, 11(5). DOI: https://doi.org/10.5812/jjm.62288
  • McLellan, J. E., Pitcher, J. I., Ballard, S. A., Grabsch, E. A., Bell, J. M., Barton, M., & Grayson, M. L. (2018). Superbugs in the supermarket? Assessing the rate of contamination with third-generation cephalosporin-resistant gram-negative bacteria in fresh Australian pork and chicken. Antimicrobial Resistance & Infection Control, 7(1), 1-7. https://doi.org/10.1186/s13756-018-0322-4
  • Mgaya, F. X., Matee, M. I., Muhairwa, A. P., & Hoza, A. S. (2021). Occurrence of multidrug resistant Escherichia coli in raw meat and cloaca swabs in poultry processed in slaughter slabs in Dar es Salaam, Tanzania. Antibiotics, 10(4), 343. https://doi.org/10.3390/antibiotics10040343
  • Mokhtar, A., & Karmi, M. (2021). Surveillance of food poisoning Escherichia coli (STEC) in ready-to-eat meat products in Aswan, Egypt. Egyptian Journal of Veterinary Sciences, 52(The 9th International Conference of Veterinary Research Division National Research Centre, Giza, Egypt 27th-29th September 2021), 41-50. DOI: 10.21608/ejvs.2021.94025.1277
  • Nehoya, K. N., Hamatui, N., Shilangale, R. P., Onywera, H., Kennedy, J., & Mwapagha, L.Paitan, Y. (2018). Current trends in antimicrobial resistance of Escherichia coli. Escherichia coli, a versatile pathogen, 181-211
  • Päivärinta, M., Latvio, S., Fredriksson-Ahomaa, M., & Heikinheimo, A. (2020). Whole genome sequence analysis of antimicrobial resistance genes, multilocus sequence types and plasmid sequences in ESBL/AmpC Escherichia coli isolated from broiler caecum and meat. International journal of food microbiology, 315, 108361. https://doi.org/10.1016/j.ijfoodmicro.2019.108361
  • Papouskova, A., Masarikova, M., Valcek, A., Senk, D., Cejkova, D., Jahodarova, E., & Cizek,Poirel, L., Madec, J. Y., Lupo, A., Schink, A. K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial resistance in Escherichia coli. Microbiology Spectrum, 6(4), 6-4. DOI: https://doi.org/10.1128/microbiolspec.arba-0026-2017
  • Redweik, G. A., Stromberg, Z. R., Van Goor, A., & Mellata, M. (2020). Protection against avian pathogenic Escherichia coli and Salmonella kentucky exhibited in chickens given both probiotics and live Salmonella vaccine. Poultry science, 99(2), 752-762. https://doi.org/10.1016/j.psj.2019.10.038
  • Rega, M., Carmosino, I., Bonilauri, P., Frascolla, V., Vismarra, A., & Bacci, C. (2021). Prevalence of ESβL, AmpC and Colistin-Resistant E. coli in meat: a comparison between pork and wild boar. Microorganisms, 9(2), 214. https://doi.org/10.3390/microorganisms9020214
  • Renter, D. G., Bohaychuk, V., Van Donkersgoed, J., & King, R. (2007). Presence of non-O157 Shiga toxin-producing Escherichia coli in feces from feedlot cattle in Alberta and absence on corresponding beef carcasses. Canadian journal of veterinary research, 71(3), 230
  • Shahin, K., Bao, H., Zhu, S., Soleimani-Delfan, A., He, T., Mansoorianfar, M., & Wang, R. (2022). Bio-control of O157: H7, and colistin-resistant MCR-1-positive Escherichia coli using a new designed broad host range phage cocktail. LWT, 154, 112836. https://doi.org/10.1016/j.lwt.2021.112836
  • Wasiński, B. (2019). Extra-intestinal pathogenic Escherichia coli–threat connected with food- borne infections. Annals of Agricultural and Environmental Medicine, 26(4), 532-537
  • Wolfensberger, A., Kuster, S. P., Marchesi, M., Zbinden, R., & Hombach, M. (2019). The effect of varying multidrug-resistence (MDR) definitions on rates of MDR gram-negative rods. Antimicrobial Resistance & Infection Control, 8(1), 1-9. https://doi.org/10.1186/s13756-019-0614-3
  • Zhang, S., Huang, Y., Chen, M., Yang, G., Zhang, J., Wu, Q., & Zhang, Y. (2022). Characterization of Escherichia coli O157: non-H7 isolated from retail food in China and first report of mcr-1/IncI2-carrying colistin-resistant E. coli O157: H26 and E. coli O157: H4. International Journal of Food Microbiology, 378, 109805. https://doi.org/10.1016/j.ijfoodmicro.2022.109805
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Gıda Hijyeni ve Teknolojisi
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Mukaddes Barel 0000-0002-1170-8632

Erken Görünüm Tarihi 8 Mart 2024
Yayımlanma Tarihi 31 Mart 2024
Gönderilme Tarihi 3 Ocak 2024
Kabul Tarihi 4 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Barel, M. (2024). Isolation and Molecular Characterization of Colistin-Resistant Escherichia coli in Raw Meat Samples. Kocatepe Veterinary Journal, 17(1), 48-54. https://doi.org/10.30607/kvj.1414055
AMA Barel M. Isolation and Molecular Characterization of Colistin-Resistant Escherichia coli in Raw Meat Samples. kvj. Mart 2024;17(1):48-54. doi:10.30607/kvj.1414055
Chicago Barel, Mukaddes. “Isolation and Molecular Characterization of Colistin-Resistant Escherichia Coli in Raw Meat Samples”. Kocatepe Veterinary Journal 17, sy. 1 (Mart 2024): 48-54. https://doi.org/10.30607/kvj.1414055.
EndNote Barel M (01 Mart 2024) Isolation and Molecular Characterization of Colistin-Resistant Escherichia coli in Raw Meat Samples. Kocatepe Veterinary Journal 17 1 48–54.
IEEE M. Barel, “Isolation and Molecular Characterization of Colistin-Resistant Escherichia coli in Raw Meat Samples”, kvj, c. 17, sy. 1, ss. 48–54, 2024, doi: 10.30607/kvj.1414055.
ISNAD Barel, Mukaddes. “Isolation and Molecular Characterization of Colistin-Resistant Escherichia Coli in Raw Meat Samples”. Kocatepe Veterinary Journal 17/1 (Mart 2024), 48-54. https://doi.org/10.30607/kvj.1414055.
JAMA Barel M. Isolation and Molecular Characterization of Colistin-Resistant Escherichia coli in Raw Meat Samples. kvj. 2024;17:48–54.
MLA Barel, Mukaddes. “Isolation and Molecular Characterization of Colistin-Resistant Escherichia Coli in Raw Meat Samples”. Kocatepe Veterinary Journal, c. 17, sy. 1, 2024, ss. 48-54, doi:10.30607/kvj.1414055.
Vancouver Barel M. Isolation and Molecular Characterization of Colistin-Resistant Escherichia coli in Raw Meat Samples. kvj. 2024;17(1):48-54.

13520    13521       13522   1352314104

14105         14106        14107       14108