Araştırma Makalesi
BibTex RIS Kaynak Göster

Ratlarda Sodyum Valproat Kaynaklı Akciğer Hasarı Üzerine Rutin’in Etkilerinin Araştırılması

Yıl 2024, , 315 - 324, 03.01.2025
https://doi.org/10.30607/kvj.1522115

Öz

Sodium valproat (SVP), başta epilepsi olmak üzere migren ve bipolar bozukluklarda yaygın kullanılan bir ilaçtır. Tedavi edici özelliği yanı sıra yüksek doz ve uzun süre alımlarda çoğu organda toksik etki göstermektedir. Rutin flavanoit türevi doğal bir antioksidandır ve birçok toksikasyonda başarı ile kullanılmıştır. Sunulan çalışmada SVP kaynaklı akciğer hasarı üzerine rutin’ in etkilerinin araştırılması amaçlanmıştır. Çalışmada 35 Sprague Dawley rat kontrol, Rutin, SVP, SVP+Rutin 50 ve SVP+Rutin 100 olmak üzere beş eşit gruba ayrılarak 14 gün oral yolla uygulamalar devam etmiştir. Çalışma sonunda akciğer dokusu alınarak oksidatif stres (MDA, GSH, SOD, CAT, GPx, Nrf-2, HO-1), endoplazmik retikulum stresi (ATF-6, PERK), inflamasyon (NF-ĸB, TNF-α), apoptoz (Bax, Bcl-2, Caspase-3) ve otofaji (Beclin-1) parametreleri incelenmiştir. Elde edilen veriler SVP’ nin antioksidan enzim aktivitelerini azaltarak savunma sistemini zayıflattığını, lipid peroksidasyonu, inflamasyonu, apoptozisi ve otofajiyi artırarak hücrede hasarın artmasına neden olduğu göstermiştir. SVP ile birlikte rutin 50 ve rutin 100 dozlarının antioksidan savunma sistemini güçlendirdiği, lipid peroksidasyonunu, endoplasmik retikulum stresini, inflamasyonu, apoptoz ve otofajiyi baskılayarak hücreyi hasardan korumada etkili olduğu tespit edildi. Sonuç olarak SVP kaynaklı akciğer hasarına karşı rutin kullanımının faydalı olduğu belirlendi.

Proje Numarası

None

Kaynakça

  • Aebi, H. (1984). Catalase in vitro. In Methods in Enzymology (Vol. 105, pp. 121-126). Academic press.
  • Abu-Risha, S. E., Sokar, S. S., Elzorkany, K. E., & Elsisi, A. E. (2024). Donepezil and quercetin alleviate valproate-induced testicular oxidative stress, inflammation and apoptosis: Imperative roles of AMPK/SIRT1/PGC-1α and p38-MAPK/NF-κB/IL-1β signaling cascades. Int. Immunopharmacol,, 134, 112240. https://doi.org/10.1016/j.intimp.2024.112240
  • Akaras, N., Kandemir, F. M., Şimşek, H., Gür, C., & Aygörmez, S. (2023a). Antioxidant, Antiinflammatory, and Antiapoptotic Effects of Rutin in Spleen Toxicity Induced by Sodium Valproate in Rats. Tr. J. Nature Sci., 12(2), 138-144. https://doi.org/10.46810/tdfd.1299663
  • Akaras, N., Ileriturk, M., Gur, C., Kucukler, S., Oz, M., & Kandemir, F. M. (2023b). The protective effects of chrysin on cadmium-induced pulmonary toxicity; a multi-biomarker approach. Environ. Sci. Pollut. Res., 30(38), 89479-89494. https://doi.org/10.1007/s11356-023-28747-8
  • Akarsu, S. A., Kankılıç, N. A., & Erdoğan, E. (2023a). Investigation of the Effects of Rutin on Valproic Acid Induced Testicular Damage in Rats. Kocatepe Vet. J., 16(3), 260-268. https://doi.org/10.30607/kvj.1295945
  • Akarsu, S. A., Gür, C., İleritürk, M., Akaras, N., Küçükler, S., & Kandemir, F. M. (2023b). Effect of syringic acid on oxidative stress, autophagy, apoptosis, inflammation pathways against testicular damage induced by lead acetate. J. Trace Elem. Med. Biol., 80, 127315. https://doi.org/10.1016/j.jtemb.2023.127315
  • Aksu, E. H., Kandemir, F. M., Küçükler, S., & Mahamadu, A. (2018). Improvement in colistin‐induced reproductive damage, apoptosis, and autophagy in testes via reducing oxidative stress by chrysin. Journal of biochemical and molecular toxicology, 32(11), e22201. https://doi.org/10.1002/jbt.22201
  • Akcılar, R., Akcılar, A., Şimşek, H., Koçak, F. E., Koçak, C., Yümün, G., & Bayat, Z. (2015a). Hyperbaric oxygen treatment ameliorates lung injury in paraquat intoxicated rats. International Journal of Clinical and Experimental Pathology, 8(10), 13034.
  • Akcılar, R., Akcılar, A., Koçak, C., Koçak, F. E., Bayat, Z., Şimşek, H., ... & Savran, B. (2015b). Effects of Ukrain on intestinal apoptosis caused by ischemia-reperfusion injury in rats. International Journal of Clinical and Experimental Medicine, 8(12), 22158.
  • Al-Rafiah, A. R., & Mehdar, K. M. (2021). Histopathological and biochemical assessment of neuroprotective effects of sodium valproate and lutein on the pilocarpine albino rat model of epilepsy. Behav. Neurol., 2021(1), 5549638. https://doi.org/10.1155/2021/5549638
  • Aydin, M., Cevik, A., Kandemir, F. M., Yuksel, M., & Apaydin, A. M. (2009). Evaluation of hormonal change, biochemical parameters, and histopathological status of uterus in rats exposed to 50-Hz electromagnetic field. Toxicol. Ind. Health, 25(3), 153-158. 10.1177/0748233709102717
  • Chaudhary, S., Ganjoo, P., Raiusddin, S., & Parvez, S. (2015). Nephroprotective activities of quercetin with potential relevance to oxidative stress induced by valproic acid. Protoplasma, 252, 209-217. https://doi.org/10.1007/s00709-014-0670-8
  • Chen, B., Wang, J. F., & Young, L. T. (2000). Chronic valproate treatment increases expression of endoplasmic reticulum stress proteins in the rat cerebral cortex and hippocampus. Biol. Psychiatry, 48(7), 658-664. https://doi.org/10.1016/S0006-3223(00)00878-7
  • Çomaklı, S., Özdemir, S., Küçükler, S., & Kandemir, F. M. (2023). Beneficial effects of quercetin on vincristine‐induced liver injury in rats: Modulating the levels of Nrf2/HO‐1, NF‐kB/STAT3, and SIRT1/PGC‐1α. J. Biochem. Mol. Toxicol, 37(5), e23326. https://doi.org/10.1002/jbt.23326
  • Ekinci Akdemir, F. N., Yildirim, S., Kandemir, F. M., Aksu, E. H., Guler, M. C., Kiziltunc Ozmen, H., ... & Eser, G. (2019). The antiapoptotic and antioxidant effects of eugenol against cisplatin‐induced testicular damage in the experimental model. Andrologia, 51(9), e13353. https://doi.org/10.1111/and.13353
  • Ekinci Akdemir, F. N., Yıldırım, S., & Kandemir, F. M. (2022). The possible beneficial impacts of evodiamine on hepatotoxicity induced by cisplatin. Environ. Sci. Pollut. Res., 29(59), 89522-89529. https://doi.org/10.1007/s11356-022-22007-x
  • Genc, M., Kandemir, F. M., & Coban, O. (2019). Effects of in-ovo rutin injection to fertile Japanese quail (Coturnix Coturnix Japonica) egg on hatchability, embryonic death, hatchling weight, and hatchling liver oxidative and nitrosative stress. Braz. J. Poultry Sci., 21(01), eRBCA-2019. https://doi.org/10.1590/1806-9061-2018-0786
  • Gheena, S., Ezhilarasan, D., Shree Harini, K., & Rajeshkumar, S. (2022). Syringic acid and silymarin concurrent administration inhibits sodium valproate‐induced liver injury in rats. Environ. Toxicol., 37(9), 2143-2152. https://doi.org/10.1002/tox.23557
  • Gur, C., Kandemir, F. M., Caglayan, C., & Satıcı, E. (2022). Chemopreventive effects of hesperidin against paclitaxel-induced hepatotoxicity and nephrotoxicity via amendment of Nrf2/HO-1 and caspase-3/Bax/Bcl-2 signaling pathways. Chem. Biol. Interact., 365, 110073. https://doi.org/10.1016/j.cbi.2022.110073
  • Gur, C., & Kandemir, F. M. (2023). Molecular and biochemical investigation of the protective effects of rutin against liver and kidney toxicity caused by malathion administration in a rat model. Environ. Toxicol., 38(3), 555-565. https://doi.org/10.1002/tox.23700
  • Gur, C., Akarsu, S. A., Akaras, N., Tuncer, S. C., & Kandemir, F. M. (2023). Carvacrol reduces abnormal and dead sperm counts by attenuating sodium arsenite‐induced oxidative stress, inflammation, apoptosis, and autophagy in the testicular tissues of rats. Environ. Toxicol., 38(6), 1265-1276. https://doi.org/10.1002/tox.23762
  • Ileriturk, M., Ileriturk, D., Kandemir, O., Akaras, N., Simsek, H., Erdogan, E., & Kandemir, F. M. (2024). Naringin attenuates oxaliplatin‐induced nephrotoxicity and hepatotoxicity: A molecular, biochemical, and histopathological approach in a rat model. Journal of Biochemical and Molecular Toxicology, 38(1), e23604.
  • Kandemir, F. M., Ileriturk, M., & Gur, C. (2022). Rutin protects rat liver and kidney from sodium valproate-induce damage by attenuating oxidative stress, ER stress, inflammation, apoptosis and autophagy. Mol. Biol. Rep., 49(7), 6063-6074. https://doi.org/10.1007/s11033-022-07395-0
  • Kandemir, F. M., Caglayan, C., Darendelioğlu, E., Küçükler, S., İzol, E., & Kandemir, Ö. (2021). Modulatory effects of carvacrol against cadmium-induced hepatotoxicity and nephrotoxicity by molecular targeting regulation. Life Sci., 277, 119610. https://doi.org/10.1016/j.lfs.2021.119610
  • Kandemir, F. M., Ozkaraca, M., Küçükler, S., Caglayan, C., & Hanedan, B. (2018). Preventive effects of hesperidin on diabetic nephropathy induced by streptozotocin via modulating TGF-β1 and oxidative DNA damage. Toxin Rev., 37(4), 287-293. https://doi.org/10.1080/15569543.2017.1364268
  • Kankılıç, N. A., Şimşek, H., Akaras, N., Gür, C., İleritürk, M., Küçükler, S., ... & Kandemir, F. M. (2024a). Protective effects of naringin on colistin‐induced damage in rat testicular tissue: Modulating the levels of Nrf‐2/HO‐1, AKT‐2/FOXO1A, Bax/Bcl2/Caspase‐3, and Beclin‐1/LC3A/LC3B signaling pathways. J. Biochem. Mol. Toxicol., 38(2), e23643. https://doi.org/10.1002/jbt.23643
  • Kankılıç, N. A., Küçükler, S., Gür, C., Akarsu, S. A., Akaras, N., Şimşek, H., ... & Kandemir, F. M. (2024c). Naringin protects against paclitaxel‐induced toxicity in rat testicular tissues by regulating genes in pro‐inflammatory cytokines, oxidative stress, apoptosis, and JNK/MAPK signaling pathways. J. Biochem. Mol. Toxicol, 38(7), e23751. https://doi.org/10.1002/jbt.23751
  • Kankılıç, N. A., Şimşek, H., Akaras, N., Gür, C., Küçükler, S., İleritürk, M., ... & Kandemir, F. M. (2024). The ameliorative effects of chrysin on bortezomib-induced nephrotoxicity in rats: reduces oxidative stress, endoplasmic reticulum stress, inflammation damage, apoptotic and autophagic death. Food Chem. Toxicol., 114791. https://doi.org/10.1016/j.fct.2024.114791
  • Keleş, O.N., Can, S., Çığşar, S., Çolak, S., Erol, H.S., Akaras, N., Erdemci, B., Bilgin, B.Ç., Can, İ., Ünal, B., Halıcı, M.B. (2014). Bortezomib-Induced Liver Damage in Rats. Kafkas Vet. Fak. Derg. 20(6):929-938. https://doi.org/10.9775/kvfd.2014.11413
  • Kocak, C., Kocak, F. E., Akcilar, R., Isiklar, O. O., Kocak, H., Bayat, Z., ... & Altuntas, I. (2016). Molecular and biochemical evidence on the protective effects of embelin and carnosic acid in isoproterenol-induced acute myocardial injury in rats. Life sciences, 147, 15-23. https://doi.org/10.1016/j.lfs.2016.01.038
  • Koroglu, O. F., Gunata, M., Vardi, N., Yildiz, A., Ates, B., Colak, C., ... & Parlakpinar, H. (2021). Protective effects of naringin on valproic acid-induced hepatotoxicity in rats. Tissue and Cell, 72, 101526. https://doi.org/10.1016/j.tice.2021.101526
  • Kuzu, M., Kandemir, F. M., Yıldırım, S., Çağlayan, C., & Küçükler, S. (2021). Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin. Environ. Sci. Pollut. Res., 28, 10818-10831. https://doi.org/10.1007/s11356-020-11327-5
  • Küçükler, S., Kandemir, F. M., Özdemir, S., Çomaklı, S., & Caglayan, C. (2021). Protective effects of rutin against deltamethrin-induced hepatotoxicity and nephrotoxicity in rats via regulation of oxidative stress, inflammation, and apoptosis. Environ. Sci. Pollut. Res., 28, 62975-62990. https://doi.org/10.1007/s11356-021-15190-w
  • Livak KJ, Schmittgen TD (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193(1), 265-275.
  • Matkovics, B. (1988). Determination of enzyme activity in lipid peroxidation and glutathione pathways. Laboratoriumi Diagnosztika, 15, 248-250.
  • Nanau, R. M., & Neuman, M. G. (2013). Adverse drug reactions induced by valproic acid. Clin. Biochem., 46(15), 1323-1338. https://doi.org/10.1016/j.clinbiochem.2013.06.012
  • Oztay, F., Tunali, S., Kayalar, O., & Yanardag, R. (2020). The protective effect of vitamin U on valproic acid‐induced lung toxicity in rats via amelioration of oxidative stress. J. Biochem. Mol. Toxicol., 34(12), e22602. https://doi.org/10.1002/jbt.22602
  • Placer, Z. A., Cushman, L. L., & Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem, 16(2), 359-364.
  • Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal. Biochem., 25, 192-205.
  • Semis, H. S., Gur, C., Ileriturk, M., Kandemir, F. M., & Kaynar, O. (2022). Evaluation of therapeutic effects of quercetin against Achilles tendinopathy in rats via oxidative stress, inflammation, apoptosis, autophagy, and metalloproteinases. Am.J. Sports Med., 50(2), 486-498. https://doi.org/10.1177/03635465211059821
  • Semis, H. S., Kandemir, F.M., Kaynar, Ö., Dogan, T., & Arikan, Ş.M. (2021). The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life Sci. 287: 120104. https://doi.org/10.1016/j.lfs.2021.120104
  • Sun, Y. I., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clin. Chem., 34(3), 497-500.
  • Şimşek, H., Demiryürek, Ş., Demir, T., Atabay, H. D., Çeribasi, A. O., Bayraktar, R., Kaplan, D. S., Öztuzcu, S., & Cengiz, B. (2016). Assessment of expressions of Bcl-XL, b-FGF, Bmp-2, Caspase-3, PDGFR-α, Smad1 and TGF-β1 genes in a rat model of lung ischemia/reperfusion. Iranian journal of basic medical sciences, 19(2), 209–214.
  • Simsek, H., & Akaras, N. (2023). Acacetin ameliorates acetylsalicylic acid-induced gastric ulcer in rats by interfering with oxidative stress, inflammation, and apoptosis. International Journal of Medical Biochemistry, 6(2).
  • Şimşek, H., Akaras, N., Gür, C., Küçükler, S., & Kandemir, F. M. (2023a). Beneficial effects of Chrysin on Cadmium‐induced nephrotoxicity in rats: Modulating the levels of Nrf2/HO‐1, RAGE/NLRP3, and Caspase-3/Bax/Bcl-2 signaling pathways. Gene, 875, 147502. https://doi.org/10.1016/j.gene.2023.147502
  • Şimşek, H., Küçükler, S., Gür, C., İleritürk, M., Aygörmez, S., & Kandemir, F. M. (2023b). Protective effects of zingerone against sodium arsenite-induced lung toxicity: A multi-biomarker approach. Iran. J. Basic Med. Sci., 26(9), 1098. https://dx.doi.org/10.22038/IJBMS.2023.71905.15623
  • Şimşek, H., Küçükler, S., Gür, C., Akaras, N., & Kandemir, F. M. (2023). Protective effects of sinapic acid against lead acetate-induced nephrotoxicity: a multi-biomarker approach. Environmental Science and Pollution Research, 30(45), 101208-101222.
  • Tabeshpour, J., Mehri, S., Abnous, K., & Hosseinzadeh, H. (2020). Role of oxidative stress, MAPKinase and apoptosis pathways in the protective effects of thymoquinone against acrylamide-induced central nervous system toxicity in rat. Neurochem. Res., 45, 254-267. https://doi.org/10.1007/s11064-019-02908-z
  • Tuncer, S. Ç., Akarsu, S. A., Küçükler, S., Gür, C., & Kandemir, F. M. (2023a). Effects of sinapic acid on lead acetate‐induced oxidative stress, apoptosis and inflammation in testicular tissue. Environ. Toxicol., 38(11), 2656-2667. https://doi.org/10.1002/tox.23900
  • Tuncer, S. Ç., Gür, C., Akaras, N., & Kandemir, F. M. (2023b). Protectıve Effect of Rutın on Oxidative Stress, Inflammation and Apoptosis in Valproat-Induced Gastrıc Toxicity. Med. J. SDU., 30(3), 334-342. https://dx.doi.org/10.17343/sdutfd.1251167
  • Tuncer, S. Ç., Küçükler, S., Gür, C., Aygörmez, S., & Kandemir, F. M. (2023c). Effects of chrysin in cadmium-induced testicular toxicity in the rat; role of multi-pathway regulation. Mol. Biol. Rep., 50(10), 8305-8318.https://doi.org/10.1007/s11033-023-08715-8
  • Yesildag, K., Gur, C., Ileriturk, M., & Kandemir, F. M. (2022). Evaluation of oxidative stress, inflammation, apoptosis, oxidative DNA damage and metalloproteinases in the lungs of rats treated with cadmium and carvacrol. Mol. Biol. Rep., 1-11.https://doi.org/10.1007/s11033-021-06948-z
  • Yıldız, M. O., Çelik, H., Caglayan, C., Kandemir, F. M., Gür, C., Bayav, İ. & Kandemir, Ö. (2022). Neuromodulatory effects of hesperidin against sodium fluoride-induced neurotoxicity in rats: Involvement of neuroinflammation, endoplasmic reticulum stress, apoptosis and autophagy. Neurotoxicology, 90, 197-204.https://doi.org/10.1016/j.neuro.2022.04.002
  • Zhou, L., Chen, L., Zeng, X., Liao, J., & Ouyang, D. (2020). Ginsenoside compound K alleviates sodium valproate-induced hepatotoxicity in rats via antioxidant effect, regulation of peroxisome pathway and iron homeostasis. Toxicol. Appl. Pharmacol., 386, 114829. https://doi.org/10.1016/j.taap.2019.114829

Investigation of the Effects of Rutin on Sodium Valproate-Induced Lung Damage in Rats

Yıl 2024, , 315 - 324, 03.01.2025
https://doi.org/10.30607/kvj.1522115

Öz

Sodium valproate (SVP) is a drug widely used in epilepsy, migraine, and bipolar disorders. In addition to its therapeutic properties, it has toxic effects on many organs in high doses and prolonged intake. Rutin flavonoid derivative is a natural antioxidant and has been successfully used in many toxications. In the present study, it was aimed to investigate the effects of rutin on SVP-induced lung injury. In the study, 35 Sprague Dawley rats were divided into five equal groups as control, routine, SVP, SVP+Rutin 50 and SVP+Rutin 100 and oral administration was continued for 14 days. At the end of the study, lung tissue was obtained and oxidative stress (MDA, GSH, SOD, CAT, GPx, Nrf-2, HO-1), endoplasmic reticulum stress (ATF-6, PERK), inflammation (NF-ĸB, TNF-α), apoptosis (Bax, Bcl-2, Caspase-3) and autophagy (Beclin-1) parameters were analyzed. The data obtained showed that SVP weakened the defense system by decreasing antioxidant enzyme activities and increased lipid peroxidation, inflammation, apoptosis, and autophagy, leading to increased cell damage. It was determined that SVP and rutin 50 and rutin 100 doses strengthened the antioxidant defense system, suppressed lipid peroxidation, endoplasmic reticulum stress, inflammation, apoptosis, and autophagy, and were effective in protecting the cell from damage. As a result, it was determined that rutin use was beneficial against SVP-induced lung injury.

Etik Beyan

This study was carried out at the Ataturk University Research Animals Application Center. This research was approved by The Ethics Committee of Ataturk University (meeting number 2023/14, dated 25.12.2023 and decision number 212)

Destekleyen Kurum

None

Proje Numarası

None

Kaynakça

  • Aebi, H. (1984). Catalase in vitro. In Methods in Enzymology (Vol. 105, pp. 121-126). Academic press.
  • Abu-Risha, S. E., Sokar, S. S., Elzorkany, K. E., & Elsisi, A. E. (2024). Donepezil and quercetin alleviate valproate-induced testicular oxidative stress, inflammation and apoptosis: Imperative roles of AMPK/SIRT1/PGC-1α and p38-MAPK/NF-κB/IL-1β signaling cascades. Int. Immunopharmacol,, 134, 112240. https://doi.org/10.1016/j.intimp.2024.112240
  • Akaras, N., Kandemir, F. M., Şimşek, H., Gür, C., & Aygörmez, S. (2023a). Antioxidant, Antiinflammatory, and Antiapoptotic Effects of Rutin in Spleen Toxicity Induced by Sodium Valproate in Rats. Tr. J. Nature Sci., 12(2), 138-144. https://doi.org/10.46810/tdfd.1299663
  • Akaras, N., Ileriturk, M., Gur, C., Kucukler, S., Oz, M., & Kandemir, F. M. (2023b). The protective effects of chrysin on cadmium-induced pulmonary toxicity; a multi-biomarker approach. Environ. Sci. Pollut. Res., 30(38), 89479-89494. https://doi.org/10.1007/s11356-023-28747-8
  • Akarsu, S. A., Kankılıç, N. A., & Erdoğan, E. (2023a). Investigation of the Effects of Rutin on Valproic Acid Induced Testicular Damage in Rats. Kocatepe Vet. J., 16(3), 260-268. https://doi.org/10.30607/kvj.1295945
  • Akarsu, S. A., Gür, C., İleritürk, M., Akaras, N., Küçükler, S., & Kandemir, F. M. (2023b). Effect of syringic acid on oxidative stress, autophagy, apoptosis, inflammation pathways against testicular damage induced by lead acetate. J. Trace Elem. Med. Biol., 80, 127315. https://doi.org/10.1016/j.jtemb.2023.127315
  • Aksu, E. H., Kandemir, F. M., Küçükler, S., & Mahamadu, A. (2018). Improvement in colistin‐induced reproductive damage, apoptosis, and autophagy in testes via reducing oxidative stress by chrysin. Journal of biochemical and molecular toxicology, 32(11), e22201. https://doi.org/10.1002/jbt.22201
  • Akcılar, R., Akcılar, A., Şimşek, H., Koçak, F. E., Koçak, C., Yümün, G., & Bayat, Z. (2015a). Hyperbaric oxygen treatment ameliorates lung injury in paraquat intoxicated rats. International Journal of Clinical and Experimental Pathology, 8(10), 13034.
  • Akcılar, R., Akcılar, A., Koçak, C., Koçak, F. E., Bayat, Z., Şimşek, H., ... & Savran, B. (2015b). Effects of Ukrain on intestinal apoptosis caused by ischemia-reperfusion injury in rats. International Journal of Clinical and Experimental Medicine, 8(12), 22158.
  • Al-Rafiah, A. R., & Mehdar, K. M. (2021). Histopathological and biochemical assessment of neuroprotective effects of sodium valproate and lutein on the pilocarpine albino rat model of epilepsy. Behav. Neurol., 2021(1), 5549638. https://doi.org/10.1155/2021/5549638
  • Aydin, M., Cevik, A., Kandemir, F. M., Yuksel, M., & Apaydin, A. M. (2009). Evaluation of hormonal change, biochemical parameters, and histopathological status of uterus in rats exposed to 50-Hz electromagnetic field. Toxicol. Ind. Health, 25(3), 153-158. 10.1177/0748233709102717
  • Chaudhary, S., Ganjoo, P., Raiusddin, S., & Parvez, S. (2015). Nephroprotective activities of quercetin with potential relevance to oxidative stress induced by valproic acid. Protoplasma, 252, 209-217. https://doi.org/10.1007/s00709-014-0670-8
  • Chen, B., Wang, J. F., & Young, L. T. (2000). Chronic valproate treatment increases expression of endoplasmic reticulum stress proteins in the rat cerebral cortex and hippocampus. Biol. Psychiatry, 48(7), 658-664. https://doi.org/10.1016/S0006-3223(00)00878-7
  • Çomaklı, S., Özdemir, S., Küçükler, S., & Kandemir, F. M. (2023). Beneficial effects of quercetin on vincristine‐induced liver injury in rats: Modulating the levels of Nrf2/HO‐1, NF‐kB/STAT3, and SIRT1/PGC‐1α. J. Biochem. Mol. Toxicol, 37(5), e23326. https://doi.org/10.1002/jbt.23326
  • Ekinci Akdemir, F. N., Yildirim, S., Kandemir, F. M., Aksu, E. H., Guler, M. C., Kiziltunc Ozmen, H., ... & Eser, G. (2019). The antiapoptotic and antioxidant effects of eugenol against cisplatin‐induced testicular damage in the experimental model. Andrologia, 51(9), e13353. https://doi.org/10.1111/and.13353
  • Ekinci Akdemir, F. N., Yıldırım, S., & Kandemir, F. M. (2022). The possible beneficial impacts of evodiamine on hepatotoxicity induced by cisplatin. Environ. Sci. Pollut. Res., 29(59), 89522-89529. https://doi.org/10.1007/s11356-022-22007-x
  • Genc, M., Kandemir, F. M., & Coban, O. (2019). Effects of in-ovo rutin injection to fertile Japanese quail (Coturnix Coturnix Japonica) egg on hatchability, embryonic death, hatchling weight, and hatchling liver oxidative and nitrosative stress. Braz. J. Poultry Sci., 21(01), eRBCA-2019. https://doi.org/10.1590/1806-9061-2018-0786
  • Gheena, S., Ezhilarasan, D., Shree Harini, K., & Rajeshkumar, S. (2022). Syringic acid and silymarin concurrent administration inhibits sodium valproate‐induced liver injury in rats. Environ. Toxicol., 37(9), 2143-2152. https://doi.org/10.1002/tox.23557
  • Gur, C., Kandemir, F. M., Caglayan, C., & Satıcı, E. (2022). Chemopreventive effects of hesperidin against paclitaxel-induced hepatotoxicity and nephrotoxicity via amendment of Nrf2/HO-1 and caspase-3/Bax/Bcl-2 signaling pathways. Chem. Biol. Interact., 365, 110073. https://doi.org/10.1016/j.cbi.2022.110073
  • Gur, C., & Kandemir, F. M. (2023). Molecular and biochemical investigation of the protective effects of rutin against liver and kidney toxicity caused by malathion administration in a rat model. Environ. Toxicol., 38(3), 555-565. https://doi.org/10.1002/tox.23700
  • Gur, C., Akarsu, S. A., Akaras, N., Tuncer, S. C., & Kandemir, F. M. (2023). Carvacrol reduces abnormal and dead sperm counts by attenuating sodium arsenite‐induced oxidative stress, inflammation, apoptosis, and autophagy in the testicular tissues of rats. Environ. Toxicol., 38(6), 1265-1276. https://doi.org/10.1002/tox.23762
  • Ileriturk, M., Ileriturk, D., Kandemir, O., Akaras, N., Simsek, H., Erdogan, E., & Kandemir, F. M. (2024). Naringin attenuates oxaliplatin‐induced nephrotoxicity and hepatotoxicity: A molecular, biochemical, and histopathological approach in a rat model. Journal of Biochemical and Molecular Toxicology, 38(1), e23604.
  • Kandemir, F. M., Ileriturk, M., & Gur, C. (2022). Rutin protects rat liver and kidney from sodium valproate-induce damage by attenuating oxidative stress, ER stress, inflammation, apoptosis and autophagy. Mol. Biol. Rep., 49(7), 6063-6074. https://doi.org/10.1007/s11033-022-07395-0
  • Kandemir, F. M., Caglayan, C., Darendelioğlu, E., Küçükler, S., İzol, E., & Kandemir, Ö. (2021). Modulatory effects of carvacrol against cadmium-induced hepatotoxicity and nephrotoxicity by molecular targeting regulation. Life Sci., 277, 119610. https://doi.org/10.1016/j.lfs.2021.119610
  • Kandemir, F. M., Ozkaraca, M., Küçükler, S., Caglayan, C., & Hanedan, B. (2018). Preventive effects of hesperidin on diabetic nephropathy induced by streptozotocin via modulating TGF-β1 and oxidative DNA damage. Toxin Rev., 37(4), 287-293. https://doi.org/10.1080/15569543.2017.1364268
  • Kankılıç, N. A., Şimşek, H., Akaras, N., Gür, C., İleritürk, M., Küçükler, S., ... & Kandemir, F. M. (2024a). Protective effects of naringin on colistin‐induced damage in rat testicular tissue: Modulating the levels of Nrf‐2/HO‐1, AKT‐2/FOXO1A, Bax/Bcl2/Caspase‐3, and Beclin‐1/LC3A/LC3B signaling pathways. J. Biochem. Mol. Toxicol., 38(2), e23643. https://doi.org/10.1002/jbt.23643
  • Kankılıç, N. A., Küçükler, S., Gür, C., Akarsu, S. A., Akaras, N., Şimşek, H., ... & Kandemir, F. M. (2024c). Naringin protects against paclitaxel‐induced toxicity in rat testicular tissues by regulating genes in pro‐inflammatory cytokines, oxidative stress, apoptosis, and JNK/MAPK signaling pathways. J. Biochem. Mol. Toxicol, 38(7), e23751. https://doi.org/10.1002/jbt.23751
  • Kankılıç, N. A., Şimşek, H., Akaras, N., Gür, C., Küçükler, S., İleritürk, M., ... & Kandemir, F. M. (2024). The ameliorative effects of chrysin on bortezomib-induced nephrotoxicity in rats: reduces oxidative stress, endoplasmic reticulum stress, inflammation damage, apoptotic and autophagic death. Food Chem. Toxicol., 114791. https://doi.org/10.1016/j.fct.2024.114791
  • Keleş, O.N., Can, S., Çığşar, S., Çolak, S., Erol, H.S., Akaras, N., Erdemci, B., Bilgin, B.Ç., Can, İ., Ünal, B., Halıcı, M.B. (2014). Bortezomib-Induced Liver Damage in Rats. Kafkas Vet. Fak. Derg. 20(6):929-938. https://doi.org/10.9775/kvfd.2014.11413
  • Kocak, C., Kocak, F. E., Akcilar, R., Isiklar, O. O., Kocak, H., Bayat, Z., ... & Altuntas, I. (2016). Molecular and biochemical evidence on the protective effects of embelin and carnosic acid in isoproterenol-induced acute myocardial injury in rats. Life sciences, 147, 15-23. https://doi.org/10.1016/j.lfs.2016.01.038
  • Koroglu, O. F., Gunata, M., Vardi, N., Yildiz, A., Ates, B., Colak, C., ... & Parlakpinar, H. (2021). Protective effects of naringin on valproic acid-induced hepatotoxicity in rats. Tissue and Cell, 72, 101526. https://doi.org/10.1016/j.tice.2021.101526
  • Kuzu, M., Kandemir, F. M., Yıldırım, S., Çağlayan, C., & Küçükler, S. (2021). Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin. Environ. Sci. Pollut. Res., 28, 10818-10831. https://doi.org/10.1007/s11356-020-11327-5
  • Küçükler, S., Kandemir, F. M., Özdemir, S., Çomaklı, S., & Caglayan, C. (2021). Protective effects of rutin against deltamethrin-induced hepatotoxicity and nephrotoxicity in rats via regulation of oxidative stress, inflammation, and apoptosis. Environ. Sci. Pollut. Res., 28, 62975-62990. https://doi.org/10.1007/s11356-021-15190-w
  • Livak KJ, Schmittgen TD (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193(1), 265-275.
  • Matkovics, B. (1988). Determination of enzyme activity in lipid peroxidation and glutathione pathways. Laboratoriumi Diagnosztika, 15, 248-250.
  • Nanau, R. M., & Neuman, M. G. (2013). Adverse drug reactions induced by valproic acid. Clin. Biochem., 46(15), 1323-1338. https://doi.org/10.1016/j.clinbiochem.2013.06.012
  • Oztay, F., Tunali, S., Kayalar, O., & Yanardag, R. (2020). The protective effect of vitamin U on valproic acid‐induced lung toxicity in rats via amelioration of oxidative stress. J. Biochem. Mol. Toxicol., 34(12), e22602. https://doi.org/10.1002/jbt.22602
  • Placer, Z. A., Cushman, L. L., & Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem, 16(2), 359-364.
  • Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal. Biochem., 25, 192-205.
  • Semis, H. S., Gur, C., Ileriturk, M., Kandemir, F. M., & Kaynar, O. (2022). Evaluation of therapeutic effects of quercetin against Achilles tendinopathy in rats via oxidative stress, inflammation, apoptosis, autophagy, and metalloproteinases. Am.J. Sports Med., 50(2), 486-498. https://doi.org/10.1177/03635465211059821
  • Semis, H. S., Kandemir, F.M., Kaynar, Ö., Dogan, T., & Arikan, Ş.M. (2021). The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life Sci. 287: 120104. https://doi.org/10.1016/j.lfs.2021.120104
  • Sun, Y. I., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clin. Chem., 34(3), 497-500.
  • Şimşek, H., Demiryürek, Ş., Demir, T., Atabay, H. D., Çeribasi, A. O., Bayraktar, R., Kaplan, D. S., Öztuzcu, S., & Cengiz, B. (2016). Assessment of expressions of Bcl-XL, b-FGF, Bmp-2, Caspase-3, PDGFR-α, Smad1 and TGF-β1 genes in a rat model of lung ischemia/reperfusion. Iranian journal of basic medical sciences, 19(2), 209–214.
  • Simsek, H., & Akaras, N. (2023). Acacetin ameliorates acetylsalicylic acid-induced gastric ulcer in rats by interfering with oxidative stress, inflammation, and apoptosis. International Journal of Medical Biochemistry, 6(2).
  • Şimşek, H., Akaras, N., Gür, C., Küçükler, S., & Kandemir, F. M. (2023a). Beneficial effects of Chrysin on Cadmium‐induced nephrotoxicity in rats: Modulating the levels of Nrf2/HO‐1, RAGE/NLRP3, and Caspase-3/Bax/Bcl-2 signaling pathways. Gene, 875, 147502. https://doi.org/10.1016/j.gene.2023.147502
  • Şimşek, H., Küçükler, S., Gür, C., İleritürk, M., Aygörmez, S., & Kandemir, F. M. (2023b). Protective effects of zingerone against sodium arsenite-induced lung toxicity: A multi-biomarker approach. Iran. J. Basic Med. Sci., 26(9), 1098. https://dx.doi.org/10.22038/IJBMS.2023.71905.15623
  • Şimşek, H., Küçükler, S., Gür, C., Akaras, N., & Kandemir, F. M. (2023). Protective effects of sinapic acid against lead acetate-induced nephrotoxicity: a multi-biomarker approach. Environmental Science and Pollution Research, 30(45), 101208-101222.
  • Tabeshpour, J., Mehri, S., Abnous, K., & Hosseinzadeh, H. (2020). Role of oxidative stress, MAPKinase and apoptosis pathways in the protective effects of thymoquinone against acrylamide-induced central nervous system toxicity in rat. Neurochem. Res., 45, 254-267. https://doi.org/10.1007/s11064-019-02908-z
  • Tuncer, S. Ç., Akarsu, S. A., Küçükler, S., Gür, C., & Kandemir, F. M. (2023a). Effects of sinapic acid on lead acetate‐induced oxidative stress, apoptosis and inflammation in testicular tissue. Environ. Toxicol., 38(11), 2656-2667. https://doi.org/10.1002/tox.23900
  • Tuncer, S. Ç., Gür, C., Akaras, N., & Kandemir, F. M. (2023b). Protectıve Effect of Rutın on Oxidative Stress, Inflammation and Apoptosis in Valproat-Induced Gastrıc Toxicity. Med. J. SDU., 30(3), 334-342. https://dx.doi.org/10.17343/sdutfd.1251167
  • Tuncer, S. Ç., Küçükler, S., Gür, C., Aygörmez, S., & Kandemir, F. M. (2023c). Effects of chrysin in cadmium-induced testicular toxicity in the rat; role of multi-pathway regulation. Mol. Biol. Rep., 50(10), 8305-8318.https://doi.org/10.1007/s11033-023-08715-8
  • Yesildag, K., Gur, C., Ileriturk, M., & Kandemir, F. M. (2022). Evaluation of oxidative stress, inflammation, apoptosis, oxidative DNA damage and metalloproteinases in the lungs of rats treated with cadmium and carvacrol. Mol. Biol. Rep., 1-11.https://doi.org/10.1007/s11033-021-06948-z
  • Yıldız, M. O., Çelik, H., Caglayan, C., Kandemir, F. M., Gür, C., Bayav, İ. & Kandemir, Ö. (2022). Neuromodulatory effects of hesperidin against sodium fluoride-induced neurotoxicity in rats: Involvement of neuroinflammation, endoplasmic reticulum stress, apoptosis and autophagy. Neurotoxicology, 90, 197-204.https://doi.org/10.1016/j.neuro.2022.04.002
  • Zhou, L., Chen, L., Zeng, X., Liao, J., & Ouyang, D. (2020). Ginsenoside compound K alleviates sodium valproate-induced hepatotoxicity in rats via antioxidant effect, regulation of peroxisome pathway and iron homeostasis. Toxicol. Appl. Pharmacol., 386, 114829. https://doi.org/10.1016/j.taap.2019.114829
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Biyokimya
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Özge Kandemir 0000-0001-8884-4168

Cihan Gür 0000-0001-6775-7858

Proje Numarası None
Erken Görünüm Tarihi 12 Aralık 2024
Yayımlanma Tarihi 3 Ocak 2025
Gönderilme Tarihi 25 Temmuz 2024
Kabul Tarihi 30 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kandemir, Ö., & Gür, C. (2025). Investigation of the Effects of Rutin on Sodium Valproate-Induced Lung Damage in Rats. Kocatepe Veterinary Journal, 17(4), 315-324. https://doi.org/10.30607/kvj.1522115
AMA Kandemir Ö, Gür C. Investigation of the Effects of Rutin on Sodium Valproate-Induced Lung Damage in Rats. kvj. Ocak 2025;17(4):315-324. doi:10.30607/kvj.1522115
Chicago Kandemir, Özge, ve Cihan Gür. “Investigation of the Effects of Rutin on Sodium Valproate-Induced Lung Damage in Rats”. Kocatepe Veterinary Journal 17, sy. 4 (Ocak 2025): 315-24. https://doi.org/10.30607/kvj.1522115.
EndNote Kandemir Ö, Gür C (01 Ocak 2025) Investigation of the Effects of Rutin on Sodium Valproate-Induced Lung Damage in Rats. Kocatepe Veterinary Journal 17 4 315–324.
IEEE Ö. Kandemir ve C. Gür, “Investigation of the Effects of Rutin on Sodium Valproate-Induced Lung Damage in Rats”, kvj, c. 17, sy. 4, ss. 315–324, 2025, doi: 10.30607/kvj.1522115.
ISNAD Kandemir, Özge - Gür, Cihan. “Investigation of the Effects of Rutin on Sodium Valproate-Induced Lung Damage in Rats”. Kocatepe Veterinary Journal 17/4 (Ocak 2025), 315-324. https://doi.org/10.30607/kvj.1522115.
JAMA Kandemir Ö, Gür C. Investigation of the Effects of Rutin on Sodium Valproate-Induced Lung Damage in Rats. kvj. 2025;17:315–324.
MLA Kandemir, Özge ve Cihan Gür. “Investigation of the Effects of Rutin on Sodium Valproate-Induced Lung Damage in Rats”. Kocatepe Veterinary Journal, c. 17, sy. 4, 2025, ss. 315-24, doi:10.30607/kvj.1522115.
Vancouver Kandemir Ö, Gür C. Investigation of the Effects of Rutin on Sodium Valproate-Induced Lung Damage in Rats. kvj. 2025;17(4):315-24.

13520    13521       13522   1352314104

14105         14106        14107       14108