Türkiye'de Yeni Sığır Mastitis Ajanları ve Antimikrobiyal Duyarlılıklarının Araştırılması
Yıl 2019,
, 400 - 406, 31.12.2019
Beytullah Kenar
,
Adil Aksoy
,
Zahide Köse
Öz
Türkiye’deki sütçü ineklerinin üretim ve kalitesine
olumsuz yönde etkileyen ve süt endüstrisine ekonomik olarak büyük bir zarar
oluşturan yeni ortaya çıkan sığır mastitis etkenleri bulunmaktadır. Giderek
artan bu sorunun üstesinden gelmek için, bu sektörde mastitis ve ülkedeki
inekleri etkileyen diğer bakteriyel enfeksiyonların önlenmesi ve yönetilmesi
amacıyla antimikrobiyaller kullanılmaktadır. Bununla birlikte, antimikrobiyal
direncin (AMR) oluşumu hem hayvan hem de insan kontaminantlarında artmaktadır. Türkiye’deki
sütçü ineklerinden ortaya çıkan sığır mastitis etkenlerinde antimikrobiyal
direncin oluşumu ve özellikleri açıkça ortaya konmuştur. Sonuç olarak, bu
araştırmanın amacı, Türkiye'de ilk kez tespit edilen inek mastitis etkenlerini
ve bu patojenlerin antimikrobiyal duyarlılığını değerlendirmektir. Bu
araştırmada Afyon Kocatepe Üniversitesi Veteriner Fakültesi Teşhis ve Analiz Laboratuarında
klinik mastitisin değerlendirilmesi için 2014-2018 yılları arasında 61 adet
mastitisli süt örneği incelenmiştir. Bu süt örneklerinden Türkiye’de ilk kez
izole edilen 25 sığır mastitis ajanı değerlendirilmiştir.. Mevcut araştırmanın
sonucu, AMR'nin gelişimini azaltmak için Türkiye çiftliklerindeki enfeksiyon
yönetiminin planlanmasının yanı sıra antimikrobiyal geliştirilmesinin
gerekliliğini de ortaya koymuştur. VITEK Compact® 2 yöntemi Streptococcus uberis'in maksimum AMR, Globicatella
sulfidifaciens’in ise minimum AMR geliştirdiğini göstermiştir.
Çalışma, ortaya çıkan sığır mastitis sayısının doğrudan sürü büyüklüğü ile
orantılı olduğunu da ortaya koymuştur.
Kaynakça
- Alvarez-Uria G, Gandra S, Mandal S, Laxminarayan R, Global forecast of antimicrobial resistance in invasive isolates ofescherichia coli andklebsiella pneumonia. Int J Infect Dis. 2018; 68:50-53.
- Cheng J, Herman Qu W, Barkema HW, Nobrega DB, Gao J, Liu G1, De Buck J, Kastelic JP3, Sun H4, Han B, Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large chinese dairy herds. J Dairy Sci. 2019; 1-11.
- Cavassin ED, de Figueiredo LF, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, Marangoni VS, Zucolotto V, Levin AS, Costa SF, Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnology. 2015; 13(1):64.
- CLSI, C. (2015) Performance standards for antimicrobial susceptibility testing: 25th informational supplement. clsi document m100-s25. clinical and laboratory standards institute.
- CLSI M100S (2016) Performance standards for antimicrobial susceptibility testing, 26th edition. 950 west valley road, suite 2500, wayne, pa 19087 USA.
- Das A, Guha C, Biswas U, Jana PS, Chatterjee A, & Samanta I, Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in west bengal Vet World. 2017; 10(5):517-520.
- Du J, Wang X, Luo H, Wang Y, Liu X, Zhou X, Epidemiological investigation of non-albicans candida species recovered from mycotic mastitis of cows in yinchuan, ningxia of china BMC Vet Res. 2018; 14(1):251.
- Dhikusooka MT, Ayebazibwe C, Namatovu A, Belsham GJ, Siegismund HR, Wekesa SN, Balinda SN, Muwanika VB, Tjørnehøj K, Unrecognized circulation of sat 1 foot-and-mouth disease virus in cattle herds around queen elizabeth national park in uganda BMC Vet Res. 2016; 12(1):5.
- Eldesouky I, Mohamed N, Khalaf D, Salama A, Elsify A, Ombarak R, El-Ballal S, Effat M, Al Shabrawy M, Candida mastitis in dairy cattle with molecular detection of candida albicans. Kafkas Univ J Fac Vet Med. 2016; 22(3):461-4.
- Erbaş G, Parın U, Kirkan Ş, Savaşan S, Özavci V, Yüksel HT, Identification of candida strains with nested pcr in bovine mastitis and determination of antifungal susceptibilities. Turkish J Vet Anim Sci. 2017; 41(6):757-763.
- Gao J, Barkema HW, Zhang L, Liu G, Deng Z, Cai L, Shan R, Zhang S, Zou J, Kastelic JP, Han B, The incidence of clinical mastitis and distribution of pathogens on large chinese dairy farms. J Dairy Sci. 2017; 100(6):4797–4806.
- Gopal N, Hill C, Ross PR, Beresford TP, Fenelon MA, Cotter PD, The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in The Dairy Industry. Front Microbiol. 2015; 6:1418.
- Hosseinzadeh S, Saei HD, Staphylococcal species associated with bovine mastitis in the north west of Iran: emerging of coagulase-negative Staphylococci. Inte J Vet Sci Med. 2014; 2(1):27-34.
- Kaur R, Dhakad MS, Goyal R, Haque A, Mukhopadhyay G, Identification and antifungal susceptibility testing of candida species: a comparison of Vitek-2 system with conventional and molecular methods. J Glob Infect Dis. 2016; 8(4):139-146.
- Kadariya J, Smith T, Thapaliya D, Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. Biomed Res Int 2014: 827965. doi: 10.1155/2014/827965
- Ksouri S, Djebir S, Hadef Y, Benakhla A, Survey of bovine mycotic mastitis in different mammary gland statuses in two north-eastern regions of Algeria. Mycopathologia. 2015;179(3-4):327-331.
- Martí-Carrizosa M, Sánchez-Reus F, March F, Cantón E, Coll P, The implication of candida parapsilosis FKS1 and FKS2 mutations in reduced echinocandin susceptibility. Antimicrob Agents Chemother. 2015; 59(6):3570-3573.
- Martin P, Barkema HW, Brito LF, Narayana SG, Miglior F, Symposium review: novel strategies to genetically improve mastitis resistance in dairy cattle. J Dairy Sci. 2018; 101(3):2724-2736.
- Pohlmann A, Starick E, grund C, Höper D, Strebelow G, Globig A, Staubach C, Conraths FJ, Mettenleiter TC, Harder T, Beer M, Swarm Incursions of Reassortants of Highly Pathogenic Avian Influenza Virus Strain H5N8 and H5N5, Clade 2.3. 4.4 B, Germany, Winter 2016/17. Sci Rep. 2018; 8(1):15.
- Quinn PJ, ME Carter, B Markey, GR Carter, Bacterial Pathogens: Microscopy, Culture, And Identification. In: Clinical Veterinary Microbiology. Mosby, London, UK, Pp. 1999; 21-67.
- Rocha MFG, Alencar LP, Paiva MAN, Melo LM, Bandeira SP, Ponte YB, Sales JA, Guedes GM, Castelo-Branco DS, Bandeira TJ, Cordeiro RA, Pereira-Neto WA, Brandine GS, Moreira JL, Sidrim JJ, Brilhante RS Cross-resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: an environmental resistance school?. Mycoses. 2016; 59(5):281-290.
- Sağlam, A. G., Şahin, M., Çelik, E., Çelebi, Ö., Akça, D., & Otlu, S, The role of staphylococci in subclinical mastitis of cows and lytic phage isolation against to Staphylococcus aureus. Veterinary world, (2017; 10(12), 1481.
- Sartori LCA, Santos RC, Marin JM, Identification of candida species isolated from cows suffering mastitis in four brazilian states. Arquivo Brasileiro De Medicina Veterinária E Zootecnia. 2014; 66(5), 1615-1617.
- Seyedmousavi S, Bosco SMG, de Hoog S, Ebel F, Elad D, Gomes RR, Jacobsen ID, Jensen HE, Martel A, Mignon B, Pasmans F, Piecková E, Rodrigues AM, Singh K, Vicente VA, Wibbelt G, Wiederhold NP, Guillot J, Fungal infections in animals: a patchwork of different situations. Med Mycol. 2018; 56(suppl_1):S165-S187.
- Sonmez M, & Erbas G, Isolation and identification of Candida spp. from mastitis cattle milk and determination of antifungal susceptibilities. Int J Vet Sci. 2017; 6(2):104-107.
- Schukken Y, Chuff M, Moroni P, Gurjar A, Santisteban C, Welcome F, Zadoks RN. The “other” Gram-negative bacteria in mastitis: klebsiella, serratia, and more. Vet Clin North Am Food Anim Pract. 2014; 28:239–256.
- Stevens M, Antimicrobial consumption on flemish dairy herds: quantification, associated factors and mastitis management input as a basis for appropriate use (doctoral dissertation, ghent university). 2018.
- Sztachańska M, Barański W, Janowski T, Pogorzelska J, Zduńczyk S, Prevalence and etiological agents of subclinical mastitis at the end of lactation in nine dairy herds in North-East Poland. Pol J Vet Sci. 2016; 19(1):119-124.
- Vikram A, Bomberger J, Bibby KJ, Efflux as a glutaraldehyde resistance mechanism in pseudomonas fluorescens and pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2015; 59(6):3433-40.
- Xiao Fan X, Chen SC, Wang H, Sun ZY, Liao K, Chen SL, Yan Y, Kang M, Hu ZD, Chu YZ, Hu TS, Ni YX, Zou GL, Kong F, Xu YC, Antifungal Susceptibilities of Candida Glabrata Species Complex, Candida Krusei, Candida Parapsilosis Species Complex and Candida Tropicalis Causing Invasive Candidiasis in China: 3-Year National Surveillance. J Antimicrob Chemother. 2014; 70(3):802-810.
- WHO. (2015, September 14). Global Action Plan On Antimicrobial Resistance. Retrieved from http: / / www .who .int/ drug resistance/ global action.
- Zhang S, Piepers S, Shan R, Cai L, Mao S, Zou J, Ali T, De Vliegher S, Han B, Phenotypic and genotypic characterization of antimicrobial resistance profiles in streptococcus dysgalactiae isolated from bovine clinical mastitis in 5 provinces of china. J Dairy Sci. 2018; 101(4):3344–335.
The New Mastitis Agents Emerged in Cattle in Turkey and An Investigation of Their Antimicrobial Susceptibility
Yıl 2019,
, 400 - 406, 31.12.2019
Beytullah Kenar
,
Adil Aksoy
,
Zahide Köse
Öz
There are new
emerging cattle mastitis agents that have become a major burden economically on
the dairy industry because of their negatively affects on production and
quality in dairy cattle farming in Turkey,. To overcome this emerged problem,
antimicrobials are adopted in this sector to prevent and administrate mastitis
and other bacterial infections affecting cattle in the country. Nevertheless,
the occurrence of antimicrobial resistance (AMR) is increasing in both animal
and human contaminants. The occurrence and features of AMR of the emerging
cattle mastitis agents in dairy cattle in Turkey, have been manifested. As a
result, the goal of this research was to assess secluded emerging cattle mastitis
agents in Turkey and to appraise the antimicrobial susceptibility of these
pathogens. Sixty one milk samples from cattle wwith mastitis were collected
between 2014 and 2018 for assessment of clinical mastitis in diagnostic and analysis
laboratory of Faculty of Veterinary Medicine, Afyon Kocatepe University. Twenty five microorganism species arised as
cattle mastitis agents were assessed in these milk samples. The outcomes of the
present study identified the necessity for advancements in antimicrobial stewardship
as well as infection administration plans in Turkish farms to decrease the
occurence of AMR. VITEK Compact® 2 systemmethod showed that Streptococcus uberis had the maximum AMR
while Globicatella sulfidifaciens had
the minimum AMR. The study depicts that the number of cattle mastitis is
directly proportional to the size of the herd.
Kaynakça
- Alvarez-Uria G, Gandra S, Mandal S, Laxminarayan R, Global forecast of antimicrobial resistance in invasive isolates ofescherichia coli andklebsiella pneumonia. Int J Infect Dis. 2018; 68:50-53.
- Cheng J, Herman Qu W, Barkema HW, Nobrega DB, Gao J, Liu G1, De Buck J, Kastelic JP3, Sun H4, Han B, Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large chinese dairy herds. J Dairy Sci. 2019; 1-11.
- Cavassin ED, de Figueiredo LF, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, Marangoni VS, Zucolotto V, Levin AS, Costa SF, Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnology. 2015; 13(1):64.
- CLSI, C. (2015) Performance standards for antimicrobial susceptibility testing: 25th informational supplement. clsi document m100-s25. clinical and laboratory standards institute.
- CLSI M100S (2016) Performance standards for antimicrobial susceptibility testing, 26th edition. 950 west valley road, suite 2500, wayne, pa 19087 USA.
- Das A, Guha C, Biswas U, Jana PS, Chatterjee A, & Samanta I, Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in west bengal Vet World. 2017; 10(5):517-520.
- Du J, Wang X, Luo H, Wang Y, Liu X, Zhou X, Epidemiological investigation of non-albicans candida species recovered from mycotic mastitis of cows in yinchuan, ningxia of china BMC Vet Res. 2018; 14(1):251.
- Dhikusooka MT, Ayebazibwe C, Namatovu A, Belsham GJ, Siegismund HR, Wekesa SN, Balinda SN, Muwanika VB, Tjørnehøj K, Unrecognized circulation of sat 1 foot-and-mouth disease virus in cattle herds around queen elizabeth national park in uganda BMC Vet Res. 2016; 12(1):5.
- Eldesouky I, Mohamed N, Khalaf D, Salama A, Elsify A, Ombarak R, El-Ballal S, Effat M, Al Shabrawy M, Candida mastitis in dairy cattle with molecular detection of candida albicans. Kafkas Univ J Fac Vet Med. 2016; 22(3):461-4.
- Erbaş G, Parın U, Kirkan Ş, Savaşan S, Özavci V, Yüksel HT, Identification of candida strains with nested pcr in bovine mastitis and determination of antifungal susceptibilities. Turkish J Vet Anim Sci. 2017; 41(6):757-763.
- Gao J, Barkema HW, Zhang L, Liu G, Deng Z, Cai L, Shan R, Zhang S, Zou J, Kastelic JP, Han B, The incidence of clinical mastitis and distribution of pathogens on large chinese dairy farms. J Dairy Sci. 2017; 100(6):4797–4806.
- Gopal N, Hill C, Ross PR, Beresford TP, Fenelon MA, Cotter PD, The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in The Dairy Industry. Front Microbiol. 2015; 6:1418.
- Hosseinzadeh S, Saei HD, Staphylococcal species associated with bovine mastitis in the north west of Iran: emerging of coagulase-negative Staphylococci. Inte J Vet Sci Med. 2014; 2(1):27-34.
- Kaur R, Dhakad MS, Goyal R, Haque A, Mukhopadhyay G, Identification and antifungal susceptibility testing of candida species: a comparison of Vitek-2 system with conventional and molecular methods. J Glob Infect Dis. 2016; 8(4):139-146.
- Kadariya J, Smith T, Thapaliya D, Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. Biomed Res Int 2014: 827965. doi: 10.1155/2014/827965
- Ksouri S, Djebir S, Hadef Y, Benakhla A, Survey of bovine mycotic mastitis in different mammary gland statuses in two north-eastern regions of Algeria. Mycopathologia. 2015;179(3-4):327-331.
- Martí-Carrizosa M, Sánchez-Reus F, March F, Cantón E, Coll P, The implication of candida parapsilosis FKS1 and FKS2 mutations in reduced echinocandin susceptibility. Antimicrob Agents Chemother. 2015; 59(6):3570-3573.
- Martin P, Barkema HW, Brito LF, Narayana SG, Miglior F, Symposium review: novel strategies to genetically improve mastitis resistance in dairy cattle. J Dairy Sci. 2018; 101(3):2724-2736.
- Pohlmann A, Starick E, grund C, Höper D, Strebelow G, Globig A, Staubach C, Conraths FJ, Mettenleiter TC, Harder T, Beer M, Swarm Incursions of Reassortants of Highly Pathogenic Avian Influenza Virus Strain H5N8 and H5N5, Clade 2.3. 4.4 B, Germany, Winter 2016/17. Sci Rep. 2018; 8(1):15.
- Quinn PJ, ME Carter, B Markey, GR Carter, Bacterial Pathogens: Microscopy, Culture, And Identification. In: Clinical Veterinary Microbiology. Mosby, London, UK, Pp. 1999; 21-67.
- Rocha MFG, Alencar LP, Paiva MAN, Melo LM, Bandeira SP, Ponte YB, Sales JA, Guedes GM, Castelo-Branco DS, Bandeira TJ, Cordeiro RA, Pereira-Neto WA, Brandine GS, Moreira JL, Sidrim JJ, Brilhante RS Cross-resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: an environmental resistance school?. Mycoses. 2016; 59(5):281-290.
- Sağlam, A. G., Şahin, M., Çelik, E., Çelebi, Ö., Akça, D., & Otlu, S, The role of staphylococci in subclinical mastitis of cows and lytic phage isolation against to Staphylococcus aureus. Veterinary world, (2017; 10(12), 1481.
- Sartori LCA, Santos RC, Marin JM, Identification of candida species isolated from cows suffering mastitis in four brazilian states. Arquivo Brasileiro De Medicina Veterinária E Zootecnia. 2014; 66(5), 1615-1617.
- Seyedmousavi S, Bosco SMG, de Hoog S, Ebel F, Elad D, Gomes RR, Jacobsen ID, Jensen HE, Martel A, Mignon B, Pasmans F, Piecková E, Rodrigues AM, Singh K, Vicente VA, Wibbelt G, Wiederhold NP, Guillot J, Fungal infections in animals: a patchwork of different situations. Med Mycol. 2018; 56(suppl_1):S165-S187.
- Sonmez M, & Erbas G, Isolation and identification of Candida spp. from mastitis cattle milk and determination of antifungal susceptibilities. Int J Vet Sci. 2017; 6(2):104-107.
- Schukken Y, Chuff M, Moroni P, Gurjar A, Santisteban C, Welcome F, Zadoks RN. The “other” Gram-negative bacteria in mastitis: klebsiella, serratia, and more. Vet Clin North Am Food Anim Pract. 2014; 28:239–256.
- Stevens M, Antimicrobial consumption on flemish dairy herds: quantification, associated factors and mastitis management input as a basis for appropriate use (doctoral dissertation, ghent university). 2018.
- Sztachańska M, Barański W, Janowski T, Pogorzelska J, Zduńczyk S, Prevalence and etiological agents of subclinical mastitis at the end of lactation in nine dairy herds in North-East Poland. Pol J Vet Sci. 2016; 19(1):119-124.
- Vikram A, Bomberger J, Bibby KJ, Efflux as a glutaraldehyde resistance mechanism in pseudomonas fluorescens and pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2015; 59(6):3433-40.
- Xiao Fan X, Chen SC, Wang H, Sun ZY, Liao K, Chen SL, Yan Y, Kang M, Hu ZD, Chu YZ, Hu TS, Ni YX, Zou GL, Kong F, Xu YC, Antifungal Susceptibilities of Candida Glabrata Species Complex, Candida Krusei, Candida Parapsilosis Species Complex and Candida Tropicalis Causing Invasive Candidiasis in China: 3-Year National Surveillance. J Antimicrob Chemother. 2014; 70(3):802-810.
- WHO. (2015, September 14). Global Action Plan On Antimicrobial Resistance. Retrieved from http: / / www .who .int/ drug resistance/ global action.
- Zhang S, Piepers S, Shan R, Cai L, Mao S, Zou J, Ali T, De Vliegher S, Han B, Phenotypic and genotypic characterization of antimicrobial resistance profiles in streptococcus dysgalactiae isolated from bovine clinical mastitis in 5 provinces of china. J Dairy Sci. 2018; 101(4):3344–335.