Araştırma Makalesi
BibTex RIS Kaynak Göster

Damascus Keçilerinde Süt Yağ Asidi Profili ile SCD, FASN ve SREBPF1 Genlerinin Ekspresyon Seviyeleri Arasındaki İlişki

Yıl 2020, Cilt: 13 Sayı: 3, 294 - 303, 30.09.2020
https://doi.org/10.30607/kvj.728554

Öz

Bu çalışmada, doymuş yağ asidi içeriği düşük (LSFA) ve yüksek (HSFA) olan keçi sütlerinde SCD, FASN, SREBPF1 genlerinin ekspresyon düzeyleri ile süt yağ asidi profilleri ve aralarındaki ilişki araştırılmıştır. HSFA grubunda süt somatik hücrelerinde SCD, FASN ve SREBPF1 genleri, LSFA grubuna göre yaklaşık sırasıyla 7, 9 ve 4 kat daha fazla ifade edilmiştir (P<0,01). Ayrıca, SCD ve FASN (0,907; P<0,001), SCD ve SREBPF1 (0,628; P<0,001), FASN ve SREBPF1 (0,720; P <0,001) genleri arasında pozitif korelasyonlar tespit edilmiştir. C6:0 (Kaproik asit) ile SCD (0,468; P<0,05) ve SREBPF1 (0,388; P<0,05) genleri arasında pozitif ve önemli korelasyonlar bulunmuştur. Bununla birlikte, bu üç genin tamamı ile C8:0 (Kaprik asit) ve C10:0 (Kaprilik asit) yağ asitleri arasında pozitif korelasyonlar belirlenmiştir. Süt örneklerinde C14:0 (Miristik asit) ve SREBPF1 geni arasında pozitif korelasyon gözlenmiştir (0,469; P<0,05). Ayrıca, koku indeksi ile SCD (0,553; P<0,01), FASN (0,444; P<0,05), SREBPF1 (0,499, P<0,05) genleri arasında pozitif korelasyon tespit edilmiştir. Sonuçlar, SCD, FASN ve SREBPF1 genlerinin keçilerin süt yağ asidi profili ve süt kalitesi üzerinde önemli etkileri olduğunu ve bu genlerin keçilerde seleksiyon uygulamalarında aday olabileceğini göstermiştir.

Kaynakça

  • Akcapınar H, Ozbeyaz C. Hayvan yetiştiriciliği Temel Bilgileri. Kariyer Matbaacılık Ltd. Şti., Ankara, Turkey 1999; pp.1-15.
  • Alim MA, Fan YP, Wu XP, Xie Y, Zhang Y, Zhang SL, Sun DX, Zhang Q, Liu L, Guo G. Genetic effects of stearoyl-coenzyme A desaturase (SCD) polymorphism on milk production traits in the Chinese dairy population. Mol Biol Rep. 2012; 39:8733-8740.
  • Balthazar CF, Pimentel TC, Ferrão LL, Almada CN, Santillo A, Albenzio M, Freitas MQ. Sheep milk: Physicochemical characteristics and relevance for functional food development. Compr Rev Food Sci Food Saf. 2017; 16(2): 247-262.
  • Bernard L, Leroux C, Chilliard Y. Expression and Nutritional Regulation of Lipogenic Genes, In: The Ruminant Lactating Mammary Gland. In Bioactive Components of Milk, Springer, New York, USA 2008; pp. 67-108.
  • Bionaz M, Loor JJ. Gene networks driving bovine milk fat synthesis during the lactation cycle, BMC Genomics. 2008; 9(1): 366.
  • Ceballos LS, Morales ER, Adarve GT, Castro JD, Martínez LP. Composition of goat and cow milk produced under similar conditions and analysed by identical methodology. J Food Compos Anal. 2009; 22(4): 322-329.
  • Chilliard Y, Ferlay A, Rouel J, Lamberet GA. Review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J Dairy Sci. 2003; 86(5):1751-1770.
  • Colman E, Waegeman W, De Baets B, Fievez V. Prediction of subacute ruminal acidosis based on milk fatty acids: A comparison of linear discriminant and support vector machine approaches for model development. Comput Electron Agric. 2015; 111(1):179-185.
  • Contee G, Mele M, Chessa S, Castiglioni B, Serra A, Pagnacco G, Secchiari P. Diacylglycerol acyltransferase 1, stearoyl-CoA desaturase 1, and sterol regulatory element binding protein 1 gene polymorphisms and milk fatty acid composition in in Italian Brown cattle. J Dairy Sci. 2010; 93:753-763.
  • Crisà A, Ferrè F, Chillemi G, Moioli B. RNA-Sequencing for profiling goat milk transcriptome in colostrum and mature milk. BMC Vet. Res. 2016; 12(1):264-285.
  • Anonymous (2020a). FAOSTAT. http://www.fao.org/faostat/en/#data; Accession date: 02.03.2020.
  • Anonymous (2020b). Food and Agriculture Organization of the United Nations. http://www.fao.org/home/en/; Accession date: 02.03.2020.
  • Feng S, Salter AM, Parr T, Garnsworth PC. Extraction and Quantitative Analysis of Stearoyl-Coenzyme A Desaturase mRNA From Dairy Cow Milk Somatic Cells. J Dairy Sci. 2007; 90(9):4128-4136.
  • Haile AB, Zhang W, Wang W, Yang D, Yi Y, Luo J. Fatty acid synthase (FASN) gene polymorphism and early lactation milk fat composition in Xinong Saanen goats. Small Ruminant Res. 2016; 138:1-11.
  • Han LQ, Gao TY, Yang GY, Loor JJ. Overexpression of SREBF chaperone (SCAP) enhances nuclear SREBP1 translocation to upregulate fatty acid synthase (FASN) gene expression in bovine mammary epithelial cells. J Dairy Sci. 2018; 101(7):6523-6531.
  • Huang GM, Jiang QH, Cai C, Qu M, Shen W. SCD1 negatively regulates autophagy-induced cell death in human hepatocellular carcinoma through inactivation of the AMPK signaling pathway. Cancer Lett. 2015; 358:180-190.
  • Idamokoro EM, Muchenje V, Afolayan AJ, Hugo A. Comparative fatty-acid profile and atherogenicity index of milk from free grazing Nguni, Boer and non-descript goats in South Africa. Pastoralism. 2019; 9(1):4.
  • Jacobs AAA, Dijkstra J, Hendriks WH, Van Baal J, Van Vuuren AM. Comparison between Stearoyl‐Coa Desaturase Expression in Milk Somatic Cells and in Mammary Tissue of Lactating Dairy Cows. J Anim Physiol A. N. 2013; 97(2):353-362.
  • Keskin M, Biçer O. Effects of milk replacer on kid growth and farm profitability in the Shami goat. Turk J Vet Anim Sci, 2002; 26(5): 1133-1136.
  • Kompan D, Komprej A. The effect of fatty acids in goat milk on health. In Milk Production-An Up-to-Date Overview of Animal Nutrition, Management and Health. IntechOpen. NY, USA 2012. pp: 12-15.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 2001; 25(4): 402-408.
  • Moioli B, D’andrea M, Pilla F. Candidate Genes Affecting Sheep and Goat Milk Quality. Small Ruminant Research. 2007; 68(1-2):179-192.
  • Murrieta CM, Hess BW, Scholljegerdes EJ, Engle TE, Hossner KL, Moss GE, Rule DC. Evaluation of milk somatic cells as a source of mRNA for study of lipogenesis in the mammary gland of lactating beef cows supplemented with dietary high-linoleate safflower seeds. J Anim Sci. 2006; 84(9): 2399-2405.
  • Novotná K, Ptáček M, Fantová M, Nohejlová L, Stádník L, Okrouhlá M, Peták Z. Impact of Concentrate Level and Stage of Lactation on Fatty Acid Composition in Goat Milk. Scientia Agriculturae Bohemica. 2019; 50(3):171-175.
  • Ozkan H, Yakan A. Genomic Selection in Animal Breeding: Past, Present. Lalahan Hay. Araşt. Enst. Derg. 2017; 57(2):112-117.
  • Raynal-Ljutovac K, Gaborit P, Lauret A. The relationship between quality criteria of goat milk, its technological properties and the quality of the final products. Small Ruminant Res. 2005; 60(1-2):167-177.
  • Rudolph MC, Monks JJ, Burns VV, Phistry MM, Marians RR, Foote MRM, Bauman DED, Anderson DMS, Neville MCM. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium. Am. J. Physiol. Endocrinol. Metab. 2010; 299:918–927.
  • Silanikove N, Leitner G, Merin U, Prosser CG. Recent advances in exploiting goat's milk: quality, safety and production aspects. Small Ruminant Res. 2010; 89(2-3):110-124.
  • Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med. 2008; 233(6):674-688.
  • Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr. 2010; 91(3):502-509.
  • Southam AD, Khanim FL, Hayden RE, Constantinou JK, Koczula KM, Michell RH, Viant MR, Drayson MT, Bunce CM. Drug Redeployment to Kill Leukemia and Lymphoma Cells by Disrupting SCD1-Mediated Synthesis of Monounsaturated Fatty Acids. Cancer Res. 2015; 75:2530-2540.
  • Ulbricht TL, Southgate DT. Coronary heart disease: seven dietary factors. The Lancet. 1991; 338: 985-992.
  • World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013-2020. World Health Organization. 2013.
  • Xu HF, Luo J, Zhao WS, Yang YC, Tian HB, Shi HB, Bionaz M. Overexpression of SREBP1 (sterol regulatory element binding protein 1) Promotes de novo Fatty Acid Synthesis and Triacylglycerol Accumulation in Goat Mammary Epithelial Cells. J Dairy Sci. 2016; 99(1):783-795.
  • Yakan A, Ozkan, H, Sakar AE, Ates CT, Kocak O, Dogruer G, Ozbeyaz C. Milk yield and quality traits in different lactation stages of Damascus goats: Concentrate and pasture based feeding systems. Ankara Univ Vet Fak Derg. 2019; 66(2):117-129.
  • Yao D, Luo J, He Q, Shi H, Li J, Wang H, Loor, JJ. SCD1 alters long‐chain fatty acid (LCFA) composition and its expression is directly regulated by SREBP‐1 and PPARγ 1 in dairy goat mammary cells. J Cell Physiol. 2017; 232(3):635-649.
  • Yurchenkoo S, Sats A, Tatar V, Kaart T, Mootse H, Jõudu I. Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chem. 2018; 254:326–332.

The Relationship Between Milk Fatty Acid Profile and Expression Levels of SCD, FASN and SREBPF1 Genes in Damascus Dairy Goats

Yıl 2020, Cilt: 13 Sayı: 3, 294 - 303, 30.09.2020
https://doi.org/10.30607/kvj.728554

Öz

In this study, the relationship between the expression levels of SCD, FASN, SREBPF1 genes and milk fatty acid profiles in goat milks with low (LSFA) and high (HSFA) saturated fatty acid content was investigated and correlated. In HSFA group, SCD, FASN and SREBPF1 genes were approximately 7, 9 and 4 folds more expressed than LSFA in milk somatic cells, respectively (P<0.01). Also, positive correlations were determined between SCD and FASN (0.907; P<0.001), SCD and SREBPF1 (0.628; P<0.001), FASN and SREBPF1 (0.720; P <0.001) genes. Positive and important correlation was found between C6:0 (Caproic acid) and SCD (0.468; P<0.05) and SREBPF1 (0.388; P<0.05) genes. On the other hand, positive correlations were found between all of these three genes and C8:0 (Capric acid) and C10:0 (Caprylic acid). In milk samples, C14:0 (Myristic acid) and SREBPF1 genes were correlated positively (0.469; P<0.05). Moreover, positive correlation was found between the odour index and SCD (0.553; P<0.01), FASN (0.444; P<0.05), SREBPF1 (0.499, P<0.05) genes. The results showed that SCD, FASN and SREBPF1 genes have important effects on the milk fatty acid profile and milk quality of goats and these genes may be candidate in selection applications in goats.

Kaynakça

  • Akcapınar H, Ozbeyaz C. Hayvan yetiştiriciliği Temel Bilgileri. Kariyer Matbaacılık Ltd. Şti., Ankara, Turkey 1999; pp.1-15.
  • Alim MA, Fan YP, Wu XP, Xie Y, Zhang Y, Zhang SL, Sun DX, Zhang Q, Liu L, Guo G. Genetic effects of stearoyl-coenzyme A desaturase (SCD) polymorphism on milk production traits in the Chinese dairy population. Mol Biol Rep. 2012; 39:8733-8740.
  • Balthazar CF, Pimentel TC, Ferrão LL, Almada CN, Santillo A, Albenzio M, Freitas MQ. Sheep milk: Physicochemical characteristics and relevance for functional food development. Compr Rev Food Sci Food Saf. 2017; 16(2): 247-262.
  • Bernard L, Leroux C, Chilliard Y. Expression and Nutritional Regulation of Lipogenic Genes, In: The Ruminant Lactating Mammary Gland. In Bioactive Components of Milk, Springer, New York, USA 2008; pp. 67-108.
  • Bionaz M, Loor JJ. Gene networks driving bovine milk fat synthesis during the lactation cycle, BMC Genomics. 2008; 9(1): 366.
  • Ceballos LS, Morales ER, Adarve GT, Castro JD, Martínez LP. Composition of goat and cow milk produced under similar conditions and analysed by identical methodology. J Food Compos Anal. 2009; 22(4): 322-329.
  • Chilliard Y, Ferlay A, Rouel J, Lamberet GA. Review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J Dairy Sci. 2003; 86(5):1751-1770.
  • Colman E, Waegeman W, De Baets B, Fievez V. Prediction of subacute ruminal acidosis based on milk fatty acids: A comparison of linear discriminant and support vector machine approaches for model development. Comput Electron Agric. 2015; 111(1):179-185.
  • Contee G, Mele M, Chessa S, Castiglioni B, Serra A, Pagnacco G, Secchiari P. Diacylglycerol acyltransferase 1, stearoyl-CoA desaturase 1, and sterol regulatory element binding protein 1 gene polymorphisms and milk fatty acid composition in in Italian Brown cattle. J Dairy Sci. 2010; 93:753-763.
  • Crisà A, Ferrè F, Chillemi G, Moioli B. RNA-Sequencing for profiling goat milk transcriptome in colostrum and mature milk. BMC Vet. Res. 2016; 12(1):264-285.
  • Anonymous (2020a). FAOSTAT. http://www.fao.org/faostat/en/#data; Accession date: 02.03.2020.
  • Anonymous (2020b). Food and Agriculture Organization of the United Nations. http://www.fao.org/home/en/; Accession date: 02.03.2020.
  • Feng S, Salter AM, Parr T, Garnsworth PC. Extraction and Quantitative Analysis of Stearoyl-Coenzyme A Desaturase mRNA From Dairy Cow Milk Somatic Cells. J Dairy Sci. 2007; 90(9):4128-4136.
  • Haile AB, Zhang W, Wang W, Yang D, Yi Y, Luo J. Fatty acid synthase (FASN) gene polymorphism and early lactation milk fat composition in Xinong Saanen goats. Small Ruminant Res. 2016; 138:1-11.
  • Han LQ, Gao TY, Yang GY, Loor JJ. Overexpression of SREBF chaperone (SCAP) enhances nuclear SREBP1 translocation to upregulate fatty acid synthase (FASN) gene expression in bovine mammary epithelial cells. J Dairy Sci. 2018; 101(7):6523-6531.
  • Huang GM, Jiang QH, Cai C, Qu M, Shen W. SCD1 negatively regulates autophagy-induced cell death in human hepatocellular carcinoma through inactivation of the AMPK signaling pathway. Cancer Lett. 2015; 358:180-190.
  • Idamokoro EM, Muchenje V, Afolayan AJ, Hugo A. Comparative fatty-acid profile and atherogenicity index of milk from free grazing Nguni, Boer and non-descript goats in South Africa. Pastoralism. 2019; 9(1):4.
  • Jacobs AAA, Dijkstra J, Hendriks WH, Van Baal J, Van Vuuren AM. Comparison between Stearoyl‐Coa Desaturase Expression in Milk Somatic Cells and in Mammary Tissue of Lactating Dairy Cows. J Anim Physiol A. N. 2013; 97(2):353-362.
  • Keskin M, Biçer O. Effects of milk replacer on kid growth and farm profitability in the Shami goat. Turk J Vet Anim Sci, 2002; 26(5): 1133-1136.
  • Kompan D, Komprej A. The effect of fatty acids in goat milk on health. In Milk Production-An Up-to-Date Overview of Animal Nutrition, Management and Health. IntechOpen. NY, USA 2012. pp: 12-15.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 2001; 25(4): 402-408.
  • Moioli B, D’andrea M, Pilla F. Candidate Genes Affecting Sheep and Goat Milk Quality. Small Ruminant Research. 2007; 68(1-2):179-192.
  • Murrieta CM, Hess BW, Scholljegerdes EJ, Engle TE, Hossner KL, Moss GE, Rule DC. Evaluation of milk somatic cells as a source of mRNA for study of lipogenesis in the mammary gland of lactating beef cows supplemented with dietary high-linoleate safflower seeds. J Anim Sci. 2006; 84(9): 2399-2405.
  • Novotná K, Ptáček M, Fantová M, Nohejlová L, Stádník L, Okrouhlá M, Peták Z. Impact of Concentrate Level and Stage of Lactation on Fatty Acid Composition in Goat Milk. Scientia Agriculturae Bohemica. 2019; 50(3):171-175.
  • Ozkan H, Yakan A. Genomic Selection in Animal Breeding: Past, Present. Lalahan Hay. Araşt. Enst. Derg. 2017; 57(2):112-117.
  • Raynal-Ljutovac K, Gaborit P, Lauret A. The relationship between quality criteria of goat milk, its technological properties and the quality of the final products. Small Ruminant Res. 2005; 60(1-2):167-177.
  • Rudolph MC, Monks JJ, Burns VV, Phistry MM, Marians RR, Foote MRM, Bauman DED, Anderson DMS, Neville MCM. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium. Am. J. Physiol. Endocrinol. Metab. 2010; 299:918–927.
  • Silanikove N, Leitner G, Merin U, Prosser CG. Recent advances in exploiting goat's milk: quality, safety and production aspects. Small Ruminant Res. 2010; 89(2-3):110-124.
  • Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med. 2008; 233(6):674-688.
  • Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr. 2010; 91(3):502-509.
  • Southam AD, Khanim FL, Hayden RE, Constantinou JK, Koczula KM, Michell RH, Viant MR, Drayson MT, Bunce CM. Drug Redeployment to Kill Leukemia and Lymphoma Cells by Disrupting SCD1-Mediated Synthesis of Monounsaturated Fatty Acids. Cancer Res. 2015; 75:2530-2540.
  • Ulbricht TL, Southgate DT. Coronary heart disease: seven dietary factors. The Lancet. 1991; 338: 985-992.
  • World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013-2020. World Health Organization. 2013.
  • Xu HF, Luo J, Zhao WS, Yang YC, Tian HB, Shi HB, Bionaz M. Overexpression of SREBP1 (sterol regulatory element binding protein 1) Promotes de novo Fatty Acid Synthesis and Triacylglycerol Accumulation in Goat Mammary Epithelial Cells. J Dairy Sci. 2016; 99(1):783-795.
  • Yakan A, Ozkan, H, Sakar AE, Ates CT, Kocak O, Dogruer G, Ozbeyaz C. Milk yield and quality traits in different lactation stages of Damascus goats: Concentrate and pasture based feeding systems. Ankara Univ Vet Fak Derg. 2019; 66(2):117-129.
  • Yao D, Luo J, He Q, Shi H, Li J, Wang H, Loor, JJ. SCD1 alters long‐chain fatty acid (LCFA) composition and its expression is directly regulated by SREBP‐1 and PPARγ 1 in dairy goat mammary cells. J Cell Physiol. 2017; 232(3):635-649.
  • Yurchenkoo S, Sats A, Tatar V, Kaart T, Mootse H, Jõudu I. Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chem. 2018; 254:326–332.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Cerrahi
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Hüseyin Özkan 0000-0001-5753-8985

Akın Yakan 0000-0002-9248-828X

Yayımlanma Tarihi 30 Eylül 2020
Kabul Tarihi 20 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 13 Sayı: 3

Kaynak Göster

APA Özkan, H., & Yakan, A. (2020). The Relationship Between Milk Fatty Acid Profile and Expression Levels of SCD, FASN and SREBPF1 Genes in Damascus Dairy Goats. Kocatepe Veterinary Journal, 13(3), 294-303. https://doi.org/10.30607/kvj.728554
AMA Özkan H, Yakan A. The Relationship Between Milk Fatty Acid Profile and Expression Levels of SCD, FASN and SREBPF1 Genes in Damascus Dairy Goats. kvj. Eylül 2020;13(3):294-303. doi:10.30607/kvj.728554
Chicago Özkan, Hüseyin, ve Akın Yakan. “The Relationship Between Milk Fatty Acid Profile and Expression Levels of SCD, FASN and SREBPF1 Genes in Damascus Dairy Goats”. Kocatepe Veterinary Journal 13, sy. 3 (Eylül 2020): 294-303. https://doi.org/10.30607/kvj.728554.
EndNote Özkan H, Yakan A (01 Eylül 2020) The Relationship Between Milk Fatty Acid Profile and Expression Levels of SCD, FASN and SREBPF1 Genes in Damascus Dairy Goats. Kocatepe Veterinary Journal 13 3 294–303.
IEEE H. Özkan ve A. Yakan, “The Relationship Between Milk Fatty Acid Profile and Expression Levels of SCD, FASN and SREBPF1 Genes in Damascus Dairy Goats”, kvj, c. 13, sy. 3, ss. 294–303, 2020, doi: 10.30607/kvj.728554.
ISNAD Özkan, Hüseyin - Yakan, Akın. “The Relationship Between Milk Fatty Acid Profile and Expression Levels of SCD, FASN and SREBPF1 Genes in Damascus Dairy Goats”. Kocatepe Veterinary Journal 13/3 (Eylül 2020), 294-303. https://doi.org/10.30607/kvj.728554.
JAMA Özkan H, Yakan A. The Relationship Between Milk Fatty Acid Profile and Expression Levels of SCD, FASN and SREBPF1 Genes in Damascus Dairy Goats. kvj. 2020;13:294–303.
MLA Özkan, Hüseyin ve Akın Yakan. “The Relationship Between Milk Fatty Acid Profile and Expression Levels of SCD, FASN and SREBPF1 Genes in Damascus Dairy Goats”. Kocatepe Veterinary Journal, c. 13, sy. 3, 2020, ss. 294-03, doi:10.30607/kvj.728554.
Vancouver Özkan H, Yakan A. The Relationship Between Milk Fatty Acid Profile and Expression Levels of SCD, FASN and SREBPF1 Genes in Damascus Dairy Goats. kvj. 2020;13(3):294-303.

13520    13521       13522   1352314104

14105         14106        14107       14108