Yeni doğan buzağılarda ishale neden olan en yaygın patojenler Escherichia coli (E. coli) ve rotavirüs’tür. Prokalsitonin (PCT), son zamanlarda bulaşıcı hastalıkların etiyolojisinin bakteriyel olup olmadığını belirlemek için yaygın olarak kullanılan bir parametredir. Demir (Fe) neredeyse tüm bakteri türleri için temel bir besin olup serum Fe düzeyleri yangısal bir biyobelirteç olarak kullanılmaktadır. Bu yüzden bu çalışmada E. coli ve rotavirüs ishallerinde serum Fe ve PCT düzeylerinin ayırıcı tanı değerini araştırmayı amaçladık. Çalışmanın materyalini 1-15 günlük 30 buzağı oluşturdu. Buzağılar E. coli (n=10), rotavirüs (n=10) ve kontrol (n=10) grubu olmak üzere 3 gruba ayrıldı. En yüksek PCT (P=0.005) ve CRP (P=0.003) değerleri ve en düşük Fe (P=0.000) değerleri E. coli grubundaki buzağılarda saptandı. Sonuç olarak, serum Fe düzeylerinin inflamatuar belirteç olarak kullanılabileceği ve 50 pg/mL'den yüksek PCT düzeylerinin buzağılarda E. coli’ye bağlı ishalin ayırıcı tanısında %100 duyarlılık ve %100 özgüllük ile kullanılabileceği belirlendi.
Alfieri AA, Parazzi ME, Takiuchi E, Médici KC, Alfieri AF. Frequency of group A rotavirus in diarrhoeic calves in Brazilian cattle herds, 1998-2002. Trop. Anim. Health Prod. 2006;38(7–8): 521–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17265766
Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet (London, England) 1993;341(8844): 515–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8094770
Ayoglu H, Sezer U, Akin M, Okyay D, Ayoglu F, Can M, Kucukosman G, Piskin O, Aydin B, Cimencan M, Gur A, Turan I. Selenium, copper, zinc, iron levels and mortality in patients with sepsis and systemic inflammatory response syndrome in Western Black Sea Region, Turkey. J. Pak. Med. Assoc. 2016;66(4): 447–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27122274
Barrington GM, Gay JM, Evermann JF. Biosecurity for neonatal gastrointestinal diseases. Vet. Clin. North Am. Food Anim. Pract. 2002;18(1): 7–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12064170
Baydar E, Dabak M. Serum iron as an indicator of acute inflammation in cattle. J. Dairy Sci. 2014;97(1): 222–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24268402
Becker KL, Snider R, Nylen ES. Procalcitonin in sepsis and systemic inflammation: a harmful biomarker and a therapeutic target. Br. J. Pharmacol. 2010;159(2): 253–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20002097
Bonelli F, Meucci V, Divers TJ, Jose-Cunilleras E, Corazza M, Tognetti R, Guidi G, Intorre L, Sgorbini M. Plasma Procalcitonin Concentration in Healthy Horses and Horses Affected by Systemic Inflammatory Response Syndrome. J. Vet. Intern. Med. 2015;29(6): 1689–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26474412
Borges AS, Divers TJ, Stokol T, Mohammed OH. Serum iron and plasma fibrinogen concentrations as indicators of systemic inflammatory diseases in horses. J. Vet. Intern. Med. 2007;21(3): 489–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17552456
Bullen JJ. The significance of iron in infection. Rev. Infect. Dis. 1981;3(6): 1127–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7043704
Carrol ED, Newland P, Riordan FAI, Thomson APJ, Curtis N, Hart CA. Procalcitonin as a diagnostic marker of meningococcal disease in children presenting with fever and a rash. Arch. Dis. Child. 2002;86(4): 282–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11919107
Ceciliani F, Giordano A, Spagnolo V. The systemic reaction during inflammation: the acute-phase proteins. Protein Pept. Lett. 2002;9(3): 211–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12144517
Cho Y-I, Yoon K-J. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. J. Vet. Sci. 2014;15(1): 1–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24378583
Cook N, Bridger J, Kendall K, Gomara MI, El-Attar L, Gray J. The zoonotic potential of rotavirus. J. Infect. 2004;48(4): 289–302. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15066329
Covington EW, Roberts MZ, Dong J. Procalcitonin Monitoring as a Guide for Antimicrobial Therapy: A Review of Current Literature. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018;38(5): 569–81. Available from: https://onlinelibrary.wiley.com/doi/10.1002/phar.2112
Değirmençay Ş, Kirbaş A, Aydin H, Aydin Ö, Aktaş MS, Kaman R. Evaluation of Serum Iron and Ferritin Levels as Inflammatory Markers in Calves with Bovine Respiratory Disease Complex. Acta Vet. Brno. 2022;72(1): 59–75. Available from: https://www.sciendo.com/article/10.2478/acve-2022-0005
Easley F, Holowaychuk MK, Lashnits EW, Nordone SK, Marr H, Birkenheuer AJ. Serum procalcitonin concentrations in dogs with induced endotoxemia. J. Vet. Intern. Med. 2020;34(2): 653–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31970837
Eckersall PD, Bell R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 2010;185(1): 23–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20621712
Ercan N, Tuzcu N, Başbug O, Tuzcu M, Alim A. Diagnostic value of serum procalcitonin, neopterin, and gamma interferon in neonatal calves with septicemic colibacillosis. J. Vet. Diagn. Invest. 2016;28(2): 180–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26965240
Fecteau G, Smith BP, George LW. Septicemia and meningitis in the newborn calf. Vet. Clin. North Am. Food Anim. Pract. 2009;25(1): 195–208, vii–viii. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19174289
Foster DM, Smith GW. Pathophysiology of Diarrhea in Calves. Vet. Clin. North Am. Food Anim. Pract. 2009;25(1): 13–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0749072008000911
Gendrel D, Raymond J, Coste J, Moulin F, Lorrot M, Guérin S, Ravilly S, Lefèvre H, Royer C, Lacombe C, Palmer P, Bohuon C. Comparison of procalcitonin with C-reactive protein, interleukin 6 and interferon-alpha for differentiation of bacterial vs. viral infections. Pediatr. Infect. Dis. J. 1999;18(10): 875–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10530583
Gilbert DN. Use of plasma procalcitonin levels as an adjunct to clinical microbiology. J. Clin. Microbiol. 2010;48(7): 2325–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20421436
Kirbas A, Kandemir FM, Celebi D, Hanedan B, Timurkan MO. The use of inflammatory markers as a diagnostic and prognostic approach in neonatal calves with septicaemia. Acta Vet. Hung. 2019;67(3): 360–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31549538
Limper M, de Kruif MD, Duits AJ, Brandjes DPM, van Gorp ECM. The diagnostic role of procalcitonin and other biomarkers in discriminating infectious from non-infectious fever. J. Infect. 2010;60(6): 409–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20347867
Lippi G, Cervellin G. Procalcitonin for diagnosing and monitoring bacterial infections: for or against? Clin. Chem. Lab. Med. 2018;56(8): 1193–5. Available from: https://www.degruyter.com/document/doi/10.1515/cclm-2018-0312/html
Lofstedt J, Dohoo IR, Duizer G. Model to predict septicemia in diarrheic calves. J. Vet. Intern. Med. 2019;13(2): 81–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10225596
Matur E, Eraslan E, Çötelioğlu U. Biology of procalcitonin and its potential role in veterinary medicine. J. Istanbul Vet. Sci. 2017;1(1): 16–27.
Meganck V, Hoflack G, Opsomer G. Advances in prevention and therapy of neonatal dairy calf diarrhoea: a systematical review with emphasis on colostrum management and fluid therapy. Acta Vet. Scand. 2014;56: 75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25431305
Müller B, Harbarth S, Stolz D, Bingisser R, Mueller C, Leuppi J, Nusbaumer C, Tamm M, Christ-Crain M. Diagnostic and prognostic accuracy of clinical and laboratory parameters in community-acquired pneumonia. BMC Infect. Dis. 2007;7: 10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17335562
Neumann S. Serum iron level as an indicator for inflammation in dogs and cats. Comp. Clin. Path. 2003;12(2): 90–4. Available from: http://link.springer.com/10.1007/s00580-003-0481-3
Petersen HH, Nielsen JP, Heegaard PMH. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res. 2004;35(2): 163–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15099494
Pfäfflin A, Schleicher E. Inflammation markers in point-of-care testing (POCT). Anal. Bioanal. Chem. 2009;393(5): 1473–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19104782
Ruokonen E, Ilkka L, Niskanen M, Takala J. Procalcitonin and neopterin as indicators of infection in critically ill patients. Acta Anaesthesiol. Scand. 2002;46(4): 398–404. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11952440
Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum Procalcitonin and C-Reactive Protein Levels as Markers of Bacterial Infection: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2004;39(2): 206–17. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1086/421997
Teschner D, Rieger M, Koopmann C, Gehlen H. Procalcitonin in horses with an acute colic. Pferdeheilkd. Equine Med. 2015;31(4): 371–7. Available from: https://www.pferdeheilkunde.de/10.21836/PEM20150407
Tsukano K, Shimamori T, Fukuda T, Nishi Y, Otsuka M, Kitade Y, Suzuki K. Serum iron concentration as a marker of inflammation in young cows that underwent dehorning operation. J. Vet. Med. Sci. 2019;81(4): 626–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30828032
Tsukano K, Shimamori T, Suzuki K. Serum iron concentration in cattle with endotoxaemia. Acta Vet. Hung. 2020;68(1): 53–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32384071
Weinberg ED, Miklossy J. Iron withholding: a defense against disease. J. Alzheimers. Dis. 2008;13(4): 451–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18487852
Wolfisberg S, Gregoriano C, Schuetz P. Procalcitonin for individualizing antibiotic treatment: an update with a focus on COVID-19. Crit. Rev. Clin. Lab. Sci. 2022;59(1): 54–65. Available from: https://www.tandfonline.com/doi/full/10.1080/10408363.2021.1975637
Yurdakul İ, Aydoğdu U. The effects of local and systemic inflammatory status on iron metabolism and lipid profile in calves. Eurasian J. Vet. Sci. 2020;36(2): 121–6. Available from: http://eurasianjvetsci.org/pdf/pdf_EJVS_1288.pdf
Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Serum Iron Level as a Potential Predictor of Coronavirus Disease 2019 Severity and Mortality: A Retrospective Study. Open forum Infect. Dis. 2020;7(7): ofaa250. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32661499
Differential Diagnostic Value of Serum Procalcitonin and Iron Levels in Diarrheic Neonatal Calves Caused by Escherichia coli and Rotavirus
The most common enteropathogens causing diarrhea in neonatal calves are Escherichia coli (E. coli) and rotavirus. Procalcitonin (PCT) is a parameter that has recently become widely used to determine whether infectious diseases are caused by bacteria. Iron is an essential nutrient for almost all bacterial species, and serum iron levels are used as an inflammatory biomarker. Therefore, in this study, we aimed to investigate the differential diagnosis value of serum iron and procalcitonin levels in E. coli and rotavirus diarrhea. The material of the study consisted of 30 calves 1-15 days old. Three groups were formed as: E. coli (n=10), rotavirus (n=10) and control (n=10). Calves in the E. coli group had the highest PCT (P=0.005) and CRP (P=0.003) levels, as well as the lowest Fe (P=0.000) levels. As a result, it was determined that serum Fe levels could be used as an inflammatory marker and PCT levels higher than 50 pg/mL could be used in the differential diagnosis of E. coli diarrhea in calves with 100% sensitivity and 100% specificity.
Alfieri AA, Parazzi ME, Takiuchi E, Médici KC, Alfieri AF. Frequency of group A rotavirus in diarrhoeic calves in Brazilian cattle herds, 1998-2002. Trop. Anim. Health Prod. 2006;38(7–8): 521–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17265766
Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet (London, England) 1993;341(8844): 515–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8094770
Ayoglu H, Sezer U, Akin M, Okyay D, Ayoglu F, Can M, Kucukosman G, Piskin O, Aydin B, Cimencan M, Gur A, Turan I. Selenium, copper, zinc, iron levels and mortality in patients with sepsis and systemic inflammatory response syndrome in Western Black Sea Region, Turkey. J. Pak. Med. Assoc. 2016;66(4): 447–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27122274
Barrington GM, Gay JM, Evermann JF. Biosecurity for neonatal gastrointestinal diseases. Vet. Clin. North Am. Food Anim. Pract. 2002;18(1): 7–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12064170
Baydar E, Dabak M. Serum iron as an indicator of acute inflammation in cattle. J. Dairy Sci. 2014;97(1): 222–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24268402
Becker KL, Snider R, Nylen ES. Procalcitonin in sepsis and systemic inflammation: a harmful biomarker and a therapeutic target. Br. J. Pharmacol. 2010;159(2): 253–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20002097
Bonelli F, Meucci V, Divers TJ, Jose-Cunilleras E, Corazza M, Tognetti R, Guidi G, Intorre L, Sgorbini M. Plasma Procalcitonin Concentration in Healthy Horses and Horses Affected by Systemic Inflammatory Response Syndrome. J. Vet. Intern. Med. 2015;29(6): 1689–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26474412
Borges AS, Divers TJ, Stokol T, Mohammed OH. Serum iron and plasma fibrinogen concentrations as indicators of systemic inflammatory diseases in horses. J. Vet. Intern. Med. 2007;21(3): 489–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17552456
Bullen JJ. The significance of iron in infection. Rev. Infect. Dis. 1981;3(6): 1127–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7043704
Carrol ED, Newland P, Riordan FAI, Thomson APJ, Curtis N, Hart CA. Procalcitonin as a diagnostic marker of meningococcal disease in children presenting with fever and a rash. Arch. Dis. Child. 2002;86(4): 282–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11919107
Ceciliani F, Giordano A, Spagnolo V. The systemic reaction during inflammation: the acute-phase proteins. Protein Pept. Lett. 2002;9(3): 211–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12144517
Cho Y-I, Yoon K-J. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. J. Vet. Sci. 2014;15(1): 1–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24378583
Cook N, Bridger J, Kendall K, Gomara MI, El-Attar L, Gray J. The zoonotic potential of rotavirus. J. Infect. 2004;48(4): 289–302. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15066329
Covington EW, Roberts MZ, Dong J. Procalcitonin Monitoring as a Guide for Antimicrobial Therapy: A Review of Current Literature. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018;38(5): 569–81. Available from: https://onlinelibrary.wiley.com/doi/10.1002/phar.2112
Değirmençay Ş, Kirbaş A, Aydin H, Aydin Ö, Aktaş MS, Kaman R. Evaluation of Serum Iron and Ferritin Levels as Inflammatory Markers in Calves with Bovine Respiratory Disease Complex. Acta Vet. Brno. 2022;72(1): 59–75. Available from: https://www.sciendo.com/article/10.2478/acve-2022-0005
Easley F, Holowaychuk MK, Lashnits EW, Nordone SK, Marr H, Birkenheuer AJ. Serum procalcitonin concentrations in dogs with induced endotoxemia. J. Vet. Intern. Med. 2020;34(2): 653–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31970837
Eckersall PD, Bell R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 2010;185(1): 23–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20621712
Ercan N, Tuzcu N, Başbug O, Tuzcu M, Alim A. Diagnostic value of serum procalcitonin, neopterin, and gamma interferon in neonatal calves with septicemic colibacillosis. J. Vet. Diagn. Invest. 2016;28(2): 180–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26965240
Fecteau G, Smith BP, George LW. Septicemia and meningitis in the newborn calf. Vet. Clin. North Am. Food Anim. Pract. 2009;25(1): 195–208, vii–viii. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19174289
Foster DM, Smith GW. Pathophysiology of Diarrhea in Calves. Vet. Clin. North Am. Food Anim. Pract. 2009;25(1): 13–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0749072008000911
Gendrel D, Raymond J, Coste J, Moulin F, Lorrot M, Guérin S, Ravilly S, Lefèvre H, Royer C, Lacombe C, Palmer P, Bohuon C. Comparison of procalcitonin with C-reactive protein, interleukin 6 and interferon-alpha for differentiation of bacterial vs. viral infections. Pediatr. Infect. Dis. J. 1999;18(10): 875–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10530583
Gilbert DN. Use of plasma procalcitonin levels as an adjunct to clinical microbiology. J. Clin. Microbiol. 2010;48(7): 2325–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20421436
Kirbas A, Kandemir FM, Celebi D, Hanedan B, Timurkan MO. The use of inflammatory markers as a diagnostic and prognostic approach in neonatal calves with septicaemia. Acta Vet. Hung. 2019;67(3): 360–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31549538
Limper M, de Kruif MD, Duits AJ, Brandjes DPM, van Gorp ECM. The diagnostic role of procalcitonin and other biomarkers in discriminating infectious from non-infectious fever. J. Infect. 2010;60(6): 409–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20347867
Lippi G, Cervellin G. Procalcitonin for diagnosing and monitoring bacterial infections: for or against? Clin. Chem. Lab. Med. 2018;56(8): 1193–5. Available from: https://www.degruyter.com/document/doi/10.1515/cclm-2018-0312/html
Lofstedt J, Dohoo IR, Duizer G. Model to predict septicemia in diarrheic calves. J. Vet. Intern. Med. 2019;13(2): 81–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10225596
Matur E, Eraslan E, Çötelioğlu U. Biology of procalcitonin and its potential role in veterinary medicine. J. Istanbul Vet. Sci. 2017;1(1): 16–27.
Meganck V, Hoflack G, Opsomer G. Advances in prevention and therapy of neonatal dairy calf diarrhoea: a systematical review with emphasis on colostrum management and fluid therapy. Acta Vet. Scand. 2014;56: 75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25431305
Müller B, Harbarth S, Stolz D, Bingisser R, Mueller C, Leuppi J, Nusbaumer C, Tamm M, Christ-Crain M. Diagnostic and prognostic accuracy of clinical and laboratory parameters in community-acquired pneumonia. BMC Infect. Dis. 2007;7: 10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17335562
Neumann S. Serum iron level as an indicator for inflammation in dogs and cats. Comp. Clin. Path. 2003;12(2): 90–4. Available from: http://link.springer.com/10.1007/s00580-003-0481-3
Petersen HH, Nielsen JP, Heegaard PMH. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res. 2004;35(2): 163–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15099494
Pfäfflin A, Schleicher E. Inflammation markers in point-of-care testing (POCT). Anal. Bioanal. Chem. 2009;393(5): 1473–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19104782
Ruokonen E, Ilkka L, Niskanen M, Takala J. Procalcitonin and neopterin as indicators of infection in critically ill patients. Acta Anaesthesiol. Scand. 2002;46(4): 398–404. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11952440
Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum Procalcitonin and C-Reactive Protein Levels as Markers of Bacterial Infection: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2004;39(2): 206–17. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1086/421997
Teschner D, Rieger M, Koopmann C, Gehlen H. Procalcitonin in horses with an acute colic. Pferdeheilkd. Equine Med. 2015;31(4): 371–7. Available from: https://www.pferdeheilkunde.de/10.21836/PEM20150407
Tsukano K, Shimamori T, Fukuda T, Nishi Y, Otsuka M, Kitade Y, Suzuki K. Serum iron concentration as a marker of inflammation in young cows that underwent dehorning operation. J. Vet. Med. Sci. 2019;81(4): 626–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30828032
Tsukano K, Shimamori T, Suzuki K. Serum iron concentration in cattle with endotoxaemia. Acta Vet. Hung. 2020;68(1): 53–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32384071
Weinberg ED, Miklossy J. Iron withholding: a defense against disease. J. Alzheimers. Dis. 2008;13(4): 451–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18487852
Wolfisberg S, Gregoriano C, Schuetz P. Procalcitonin for individualizing antibiotic treatment: an update with a focus on COVID-19. Crit. Rev. Clin. Lab. Sci. 2022;59(1): 54–65. Available from: https://www.tandfonline.com/doi/full/10.1080/10408363.2021.1975637
Yurdakul İ, Aydoğdu U. The effects of local and systemic inflammatory status on iron metabolism and lipid profile in calves. Eurasian J. Vet. Sci. 2020;36(2): 121–6. Available from: http://eurasianjvetsci.org/pdf/pdf_EJVS_1288.pdf
Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Serum Iron Level as a Potential Predictor of Coronavirus Disease 2019 Severity and Mortality: A Retrospective Study. Open forum Infect. Dis. 2020;7(7): ofaa250. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32661499
Değirmençay, Ş., Eroğlu, M. S., & Eren, E. (2023). Differential Diagnostic Value of Serum Procalcitonin and Iron Levels in Diarrheic Neonatal Calves Caused by Escherichia coli and Rotavirus. Kocatepe Veterinary Journal, 16(1), 77-85. https://doi.org/10.30607/kvj.1205080
AMA
Değirmençay Ş, Eroğlu MS, Eren E. Differential Diagnostic Value of Serum Procalcitonin and Iron Levels in Diarrheic Neonatal Calves Caused by Escherichia coli and Rotavirus. kvj. Mart 2023;16(1):77-85. doi:10.30607/kvj.1205080
Chicago
Değirmençay, Şükrü, Muhammed Sertaç Eroğlu, ve Emre Eren. “Differential Diagnostic Value of Serum Procalcitonin and Iron Levels in Diarrheic Neonatal Calves Caused by Escherichia Coli and Rotavirus”. Kocatepe Veterinary Journal 16, sy. 1 (Mart 2023): 77-85. https://doi.org/10.30607/kvj.1205080.
EndNote
Değirmençay Ş, Eroğlu MS, Eren E (01 Mart 2023) Differential Diagnostic Value of Serum Procalcitonin and Iron Levels in Diarrheic Neonatal Calves Caused by Escherichia coli and Rotavirus. Kocatepe Veterinary Journal 16 1 77–85.
IEEE
Ş. Değirmençay, M. S. Eroğlu, ve E. Eren, “Differential Diagnostic Value of Serum Procalcitonin and Iron Levels in Diarrheic Neonatal Calves Caused by Escherichia coli and Rotavirus”, kvj, c. 16, sy. 1, ss. 77–85, 2023, doi: 10.30607/kvj.1205080.
ISNAD
Değirmençay, Şükrü vd. “Differential Diagnostic Value of Serum Procalcitonin and Iron Levels in Diarrheic Neonatal Calves Caused by Escherichia Coli and Rotavirus”. Kocatepe Veterinary Journal 16/1 (Mart 2023), 77-85. https://doi.org/10.30607/kvj.1205080.
JAMA
Değirmençay Ş, Eroğlu MS, Eren E. Differential Diagnostic Value of Serum Procalcitonin and Iron Levels in Diarrheic Neonatal Calves Caused by Escherichia coli and Rotavirus. kvj. 2023;16:77–85.
MLA
Değirmençay, Şükrü vd. “Differential Diagnostic Value of Serum Procalcitonin and Iron Levels in Diarrheic Neonatal Calves Caused by Escherichia Coli and Rotavirus”. Kocatepe Veterinary Journal, c. 16, sy. 1, 2023, ss. 77-85, doi:10.30607/kvj.1205080.
Vancouver
Değirmençay Ş, Eroğlu MS, Eren E. Differential Diagnostic Value of Serum Procalcitonin and Iron Levels in Diarrheic Neonatal Calves Caused by Escherichia coli and Rotavirus. kvj. 2023;16(1):77-85.