Endoplasmic reticulum (ER) stress has recently acquired increasing importance in the pathogenesis of obesity-associated kidney disease. N-acetylcysteine, otherwise known as NAC, is an antioxidant that works directly and indirectly by increasing the production of antioxidants in cells. A diet consisting of 60% calories from fat was used to establish the obesity model for the present investigation. In the NAC and obesity + NAC (ObNAC) groups, NAC was administered by intragastric tube at 150 mg/kg for eight weeks. GRP78 and PERK expressions were determined immunohistochemically in sections collected from kidney tissues at the end of the experiment. The GRP78 H score was significantly higher in the obese group than in the control, NAC, and ObNAC groups (p<0.01). The ObNAC group H-score was significantly lower than that of the obese group (p < 0.01) but was not different from the control and NAC groups. The obese group PERK H-score was also significantly higher than the control, NAC, and ObNAC groups (p<0.01). In the ObNAC group, the H-score was significantly lower than that in the obese group (p<0.01) and significantly higher than those in the control and NAC groups (p<0.01). Increasing changes in stress markers may be improved by NAC application, since obesity induced by a high-fat diet activates ER stress in kidney tissue.
Adams, C. J., Kopp, M. C., Larburu, N., Nowak, P. R., & Ali, M. M. U. (2019). Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1. Frontiers in Molecular Biosciences, 6. https://doi.org/10.3389/fmolb.2019.00011
Ajoolabady, A., Liu, S., Klionsky, D. J., Lip, G. Y. H., Tuomilehto, J., Kavalakatt, S., Pereira, D. M., Samali, A., & Ren, J. (2022). ER stress in obesity pathogenesis and management. Trends in Pharmacological Sciences, 43(2), 97–109. https://doi.org/10.1016/j.tips.2021.11.011
Ajoolabady, A., Wang, S., Kroemer, G., Klionsky, D. J., Uversky, V. N., Sowers, J. R., Aslkhodapasandhokmabad, H., Bi, Y., Ge, J., & Ren, J. (2021). ER Stress in Cardiometabolic Diseases: From Molecular Mechanisms to Therapeutics. Endocrine Reviews, 42(6), 839–871. https://doi.org/10.1210/endrev/bnab006
Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., Luís, A., McCarthy, N., Montibeller, L., More, S., Papaioannou, A., Püschel, F., Sassano, M. L., Skoko, J., Agostinis, P., de Belleroche, J., Eriksson, L. A., Fulda, S., Gorman, A. M., & Samali, A. (2019). Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. The FEBS Journal, 286(2), 241–278. https://doi.org/10.1111/febs.14608
Angelidi, A. M., Belanger, M. J., Kokkinos, A., Koliaki, C. C., & Mantzoros, C. S. (2022). Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy. Endocrine Reviews, 43(3), 507–557. https://doi.org/10.1210/endrev/bnab034
Bhattarai, K. R., Riaz, T. A., Kim, H.-R., & Chae, H. J. (2021). The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling. Experimental & Molecular Medicine, 53(2), 151–167. https://doi.org/10.1038/s12276-021-00560-8
Burgos-Morón, E., Abad-Jiménez, Z., Martinez de Maranon, A., Iannantuoni, F., Escribano-López, I., López-Domènech, S., & Víctor, V. M. (2019). Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. Journal of Clinical Medicine, 8(9), 1385. https://doi.org/10.3390/jcm8091385
Chen, J., Guo, Y., Zeng, W., Huang, L., Pang, Q., Nie, L., Mu, J., Yuan, F., & Feng, B. (2014). ER stress triggers MCP-1 expression through SET7/9-induced histone methylation in the kidneys of db/db mice. American Journal of Physiology-Renal Physiology, 306(8), F916–F925. https://doi.org/10.1152/ajprenal.00697.2012
Chen, Y., Wu, Z., Zhao, S., & Xiang, R. (2016). Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity. Scientific Reports, 6(1), 27486. https://doi.org/10.1038/srep27486
Cherngwelling, R., Pengrattanachot, N., Swe, M. T., Thongnak, L., Promsan, S., Phengpol, N., Sutthasupha, P., & Lungkaphin, A. (2021). Agomelatine protects against obesity-induced renal injury by inhibiting endoplasmic reticulum stress/apoptosis pathway in rats. Toxicology and Applied Pharmacology, 425, 115601. https://doi.org/10.1016/j.taap.2021.115601
Chong, W., Shastri, M., & Eri, R. (2017). Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology. International Journal of Molecular Sciences, 18(4), 771. https://doi.org/10.3390/ijms18040771
Cui, X., Zhang, Y., Lu, Y., & Xiang, M. (2022). ROS and Endoplasmic Reticulum Stress in Pulmonary Disease. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.879204
Dean, O., Giorlando, F., & Berk, M. (2011). N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. Journal of Psychiatry & Neuroscience, 36(2), 78–86. https://doi.org/10.1503/jpn.100057
Dludla, P. V., Mazibuko-Mbeje, S. E., Nyambuya, T. M., Mxinwa, V., Tiano, L., Marcheggiani, F., Cirilli, I., Louw, J., & Nkambule, B. B. (2019). The beneficial effects of N-acetyl cysteine (NAC) against obesity associated complications: A systematic review of pre-clinical studies. Pharmacological Research, 146, 104332. https://doi.org/10.1016/j.phrs.2019.104332
Elbini Dhouib, I., Jallouli, M., Annabi, A., Gharbi, N., Elfazaa, S., & Lasram, M. M. (2016). A minireview on N -acetylcysteine: An old drug with new approaches. Life Sciences, 151, 359–363. https://doi.org/10.1016/j.lfs.2016.03.003
Gu, Y., Huang, F., Wang, Y., Chen, C., Wu, S., Zhou, S., Hei, Z., & Yuan, D. (2018). Connexin32 plays a crucial role in ROS-mediated endoplasmic reticulum stress apoptosis signaling pathway in ischemia reperfusion-induced acute kidney injury. Journal of Translational Medicine, 16(1), 117. https://doi.org/10.1186/s12967-018-1493-8
Hetz, C., & Papa, F. R. (2018). The unfolded protein response and cell fate control. Molecular cell, 69(2), 169-181. https://doi.org/10.1016/j.molcel.2017.06.017
Ho, E., Chen, G., & Bray, T. M. (1999). Supplementation of N‐acetylcysteine inhibits NFκB activation and protects against alloxan‐induced diabetes in CD‐1 mice. The FASEB journal, 13(13), 1845-1854. https://doi.org/10.1096/fasebj.13.13.1845
Hu, Y., Wang, Y., Yan, T., Feng, D., Ba, Y., Zhang, H., Zhu, J., Cheng, X., Cui, L., & Huang, H. (2019). N-acetylcysteine alleviates fluoride-induced testicular apoptosis by modulating IRE1α/JNK signaling and nuclear Nrf2 activation. Reproductive Toxicology, 84, 98–107. https://doi.org/10.1016/j.reprotox.2019.01.001
Kawasaki, N., Asada, R., Saito, A., Kanemoto, S., & Imaizumi, K. (2012). Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Scientific Reports, 2(1), 799. https://doi.org/10.1038/srep00799
Kim, G. W., Lin, J. E., Blomain, E. S., & Waldman, S. A. (2013). Antiobesity Pharmacotherapy: New Drugs and Emerging Targets. Clinical Pharmacology & Therapeutics, 95(1), 53–66. https://doi.org/10.1038/clpt.2013.204
La Russa, D., Giordano, F., Marrone, A., Parafati, M., Janda, E., & Pellegrino, D. (2019). Oxidative Imbalance and Kidney Damage in Cafeteria Diet-Induced Rat Model of Metabolic Syndrome: Effect of Bergamot Polyphenolic Fraction. Antioxidants, 8(3), 66. https://doi.org/10.3390/antiox8030066
Lee, E. S., Kim, H. M., Kang, J. S., Lee, E. Y., Yadav, D., Kwon, M.-H., Kim, Y. M., Kim, H. S., & Chung, C. H. (2016). Oleanolic acid and N-acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model. Nephrology Dialysis Transplantation, 31(3), 391–400. https://doi.org/10.1093/ndt/gfv377
Lee, J., & Ozcan, U. (2014). Unfolded Protein Response Signaling and Metabolic Diseases. Journal of Biological Chemistry, 289(3), 1203–1211. https://doi.org/10.1074/jbc.R113.534743
Li, B., Leung, J. C. K., Chan, L. Y. Y., Yiu, W. H., Li, Y., Lok, S. W. Y., Liu, W. H., Chan, K. W., Tse, H. F., Lai, K. N., & Tang, S. C. W. (2019). Amelioration of Endoplasmic Reticulum Stress by Mesenchymal Stem Cells via Hepatocyte Growth Factor/c-Met Signaling in Obesity-Associated Kidney Injury. Stem Cells Translational Medicine, 8(9), 898–910. https://doi.org/10.1002/sctm.18-0265
Lin, T., Lee, J., Kang, J., Shin, H., Lee, J., & Jin, D. (2019). Endoplasmic Reticulum (ER) Stress and Unfolded Protein Response (UPR) in Mammalian Oocyte Maturation and Preimplantation Embryo Development. International Journal of Molecular Sciences, 20(2), 409. https://doi.org/10.3390/ijms20020409
Liñares-Pose, L., Rial-Pensado, E., Estévez-Salguero, Á., Milbank, E., González-García, I., Rodríguez, C., Seoane-Collazo, P., Martinez-Sánchez, N., Nogueiras, R., Prieto, D., Diéguez, C., Contreras, C., & López, M. (2018). Genetic Targeting of GRP78 in the VMH Improves Obesity Independently of Food Intake. Genes, 9(7), 357. https://doi.org/10.3390/genes9070357
Liu, G., Sun, Y., Li, Z., Song, T., Wang, H., Zhang, Y., & Ge, Z. (2008). Apoptosis induced by endoplasmic reticulum stress involved in diabetic kidney disease. Biochemical and biophysical research communications, 370(4), 651-656. https://doi.org/10.1016/j.bbrc.2008.04.031
Lu, Y., Zhang, Y., Lou, Y., Cui, W., & Miao, L. (2020). Sulforaphane suppresses obesity-related glomerulopathy-induced damage by enhancing autophagy via Nrf2. Life Sciences, 258, 118153. https://doi.org/10.1016/j.lfs.2020.118153
Masenga, S. K., Kabwe, L. S., Chakulya, M., & Kirabo, A. (2023). Mechanisms of Oxidative Stress in Metabolic Syndrome. International Journal of Molecular Sciences, 24(9), 7898. https://doi.org/10.3390/ijms24097898
Munusamy, S., do Carmo, J. M., Hosler, J. P., & Hall, J. E. (2015). Obesity-induced changes in kidney mitochondria and endoplasmic reticulum in the presence or absence of leptin. American Journal of Physiology-Renal Physiology, 309(8), F731–F743. https://doi.org/10.1152/ajprenal.00188.2015
Pengrattanachot, N., Cherngwelling, R., Jaikumkao, K., Pongchaidecha, A., Thongnak, L., Swe, M. T., Chatsudthipong, V., & Lungkaphin, A. (2020). Atorvastatin attenuates obese-induced kidney injury and impaired renal organic anion transporter 3 function through inhibition of oxidative stress and inflammation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1866(6), 165741. https://doi.org/10.1016/j.bbadis.2020.165741
Promsan, S., Thongnak, L., Pengrattanachot, N., Phengpol, N., Sutthasupha, P., & Lungkaphin, A. (2022). Agomelatine, a structural analog of melatonin, improves kidney dysfunction through regulating the AMPK/mTOR signaling pathway to promote autophagy in obese rats. Food and Chemical Toxicology, 165, 113190. https://doi.org/10.1016/j.fct.2022.113190
Samuni, Y., Goldstein, S., Dean, O. M., & Berk, M. (2013). The chemistry and biological activities of N-acetylcysteine. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(8), 4117–4129. https://doi.org/10.1016/j.bbagen.2013.04.016
Santos, P., Herrmann, A. P., Benvenutti, R., Noetzold, G., Giongo, F., Gama, C. S., Piato, A. L., & Elisabetsky, E. (2017). Anxiolytic properties of N -acetylcysteine in mice. Behavioural Brain Research, 317, 461–469. https://doi.org/10.1016/j.bbr.2016.10.010
Sarvani, C., Sireesh, D., & Ramkumar, K. M. (2017). Unraveling the role of ER stress inhibitors in the context of metabolic diseases. Pharmacological Research, 119, 412–421. https://doi.org/10.1016/j.phrs.2017.02.018
Schwarz, D. S., & Blower, M. D. (2016). The endoplasmic reticulum: structure, function and response to cellular signaling. Cellular and molecular life sciences, 73, 79-94. https://doi.org/10.1007/s00018-015-2052-6
Sun, Y., Pu, L. Y., Lu, L., Wang, X.-H., Zhang, F., & Rao, J. H. (2014). N-acetylcysteine attenuates reactive-oxygen-species-mediated endoplasmic reticulum stress during liver ischemia-reperfusion injury. World Journal of Gastroenterology, 20(41), 15289–15298. https://doi.org/10.3748/wjg.v20.i41.15289
Tanaka, Y., Gleason, C. E., Tran, P. O. T., Harmon, J. S., & Robertson, R. P. (1999). Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proceedings of the National Academy of Sciences, 96(19), 10857-10862. https://doi.org/10.1073/pnas.96.19.10857
Tatar, M., Tufekci, K. K., Uslu, S., & Öner, J. (2023). Expression of ADAMTS 1-4-8 and placental growth factor in ovary and oviduct during pregnancy in the first trimester. Anatomia, Histologia, Embryologia. 52, 619– 626. https://doi.org/10.1111/ahe.12922
Tsai, C. C., Chen, Y. J., Yu, H. R., Huang, L. T., Tain, Y. L., Lin, I. C., Sheen, J. M., Wang, P. W., & Tiao, M. M. (2020). Long term N-acetylcysteine administration rescues liver steatosis via endoplasmic reticulum stress with unfolded protein response in mice. Lipids in Health and Disease, 19(1), 105. https://doi.org/10.1186/s12944-020-01274-y
Tüfekci, K. K., Bakirhan, E. G., & Terzi, F. (2023). A Maternal High-Fat Diet Causes Anxiety-Related Behaviors by Altering Neuropeptide Y1 Receptor and Hippocampal Volumes in Rat Offspring: the Potential Effect of N-Acetylcysteine. Molecular Neurobiology, 60(3), 1499–1514. https://doi.org/10.1007/s12035-022-03158-x
Tümer, N. B. (2020). N-acetyl cysteine attenuates ferroptosis mediated lung injury induced by lower limb ischaemia/reperfusion. Turkish Journal of Clinics and Laboratory, 11(4), 288–293. https://doi.org/10.18663/tjcl.769961
Wang, C., Wu, M., Arvapalli, R., Dai, X., Mahmood, M., Driscoll, H., Rice, K. M., & Blough, E. (2014). Acetaminophen Attenuates Obesity-Related Renal Injury Through ER-Mediated Stress Mechanisms. Cellular Physiology and Biochemistry, 33(4), 1139–1148. https://doi.org/10.1159/000358683
Xu, T., Sheng, Z., & Yao, L. (2017). Obesity-related glomerulopathy: pathogenesis, pathologic, clinical characteristics and treatment. Frontiers of Medicine, 11(3), 340–348. https://doi.org/10.1007/s11684-017-0570-3
Zafarullah, M., Li, W. Q., Sylvester, J., & Ahmad, M. (2003). Molecular mechanisms of N -acetylcysteine actions. Cellular and Molecular Life Sciences (CMLS), 60(1), 6–20. https://doi.org/10.1007/s000180300001
Zeeshan, H., Lee, G., Kim, H. R., & Chae, H. J. (2016). Endoplasmic Reticulum Stress and Associated ROS. International Journal of Molecular Sciences, 17(3), 327. https://doi.org/10.3390/ijms17030327
Zhang, L., Zhu, Z., Liu, J., Zhu, Z., & Hu, Z. (2014). Protective effect of N-acetylcysteine (NAC) on renal ischemia/reperfusion injury through Nrf2 signaling pathway. Journal of Receptors and Signal Transduction, 34(5), 396–400. https://doi.org/10.3109/10799893.2014.908916
Zhao, S., Liu, Y., Wang, F., Xu, D., & Xie, P. (2018). N-acetylcysteine protects against microcystin-LR-induced endoplasmic reticulum stress and germ cell apoptosis in zebrafish testes. Chemosphere, 204, 463–473. https://doi.org/10.1016/j.chemosphere.2018.04.020
Obez Sıçanların Böbrek Dokularında N-Asetilsistein Kullanımının Endoplazmik Retikulum Stresi Üzerine Etkisi
Endoplazmik retikulum (ER) stresi son zamanlarda obezite ile ilişkili böbrek hastalığının patogenezinde artan bir önem kazanmıştır. N-asetilsistein (NAC), hücrelerde antioksidan üretimini artırarak doğrudan ve dolaylı olarak çalışan bir antioksidandır. Çalışmada, kalorinin %60’ını yağdan elde eden bir diyet ile obezite modeli oluşturuldu. NAC ve obezite + NAC (ObNAC) gruplarında NAC intragastrik tüp ile 150 mg/kg dozunda sekiz hafta süreyle uygulandı. Deney sonunda elde edilen böbrek dokularından alınan kesitlerde GRP78 ve PERK ekspresyonları immünohistokimyasal olarak belirlendi. GRP78'in H skoru obez grubunda kontrol, NAC ve ObNAC gruplarına göre anlamlı olarak yüksekti (p<0.01). ObNAC grubundaki H skoru, obez grubundan önemli ölçüde düşüktü (p < 0.01). Ayrıca bu grubun skoru kontrol ve NAC gruplarıyla benzerdi. Obez grubunda PERK H skoru kontrol, NAC ve ObNAC gruplarına göre anlamlı olarak yüksekti (p<0.01). ObNAC grubunda H skoru obez grubuna göre anlamlı olarak düşük (p<0.01), kontrol ve NAC gruplarına göre anlamlı olarak yüksekti (p<0.01). Yüksek yağlı diyet ile oluşan obezite böbrek dokusunda ER stresine neden olduğundan stres belirteçlerinde artan değişikliklerin NAC uygulaması ile iyileştirilebileceği düşünülebilir.
Adams, C. J., Kopp, M. C., Larburu, N., Nowak, P. R., & Ali, M. M. U. (2019). Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1. Frontiers in Molecular Biosciences, 6. https://doi.org/10.3389/fmolb.2019.00011
Ajoolabady, A., Liu, S., Klionsky, D. J., Lip, G. Y. H., Tuomilehto, J., Kavalakatt, S., Pereira, D. M., Samali, A., & Ren, J. (2022). ER stress in obesity pathogenesis and management. Trends in Pharmacological Sciences, 43(2), 97–109. https://doi.org/10.1016/j.tips.2021.11.011
Ajoolabady, A., Wang, S., Kroemer, G., Klionsky, D. J., Uversky, V. N., Sowers, J. R., Aslkhodapasandhokmabad, H., Bi, Y., Ge, J., & Ren, J. (2021). ER Stress in Cardiometabolic Diseases: From Molecular Mechanisms to Therapeutics. Endocrine Reviews, 42(6), 839–871. https://doi.org/10.1210/endrev/bnab006
Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., Luís, A., McCarthy, N., Montibeller, L., More, S., Papaioannou, A., Püschel, F., Sassano, M. L., Skoko, J., Agostinis, P., de Belleroche, J., Eriksson, L. A., Fulda, S., Gorman, A. M., & Samali, A. (2019). Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. The FEBS Journal, 286(2), 241–278. https://doi.org/10.1111/febs.14608
Angelidi, A. M., Belanger, M. J., Kokkinos, A., Koliaki, C. C., & Mantzoros, C. S. (2022). Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy. Endocrine Reviews, 43(3), 507–557. https://doi.org/10.1210/endrev/bnab034
Bhattarai, K. R., Riaz, T. A., Kim, H.-R., & Chae, H. J. (2021). The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling. Experimental & Molecular Medicine, 53(2), 151–167. https://doi.org/10.1038/s12276-021-00560-8
Burgos-Morón, E., Abad-Jiménez, Z., Martinez de Maranon, A., Iannantuoni, F., Escribano-López, I., López-Domènech, S., & Víctor, V. M. (2019). Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. Journal of Clinical Medicine, 8(9), 1385. https://doi.org/10.3390/jcm8091385
Chen, J., Guo, Y., Zeng, W., Huang, L., Pang, Q., Nie, L., Mu, J., Yuan, F., & Feng, B. (2014). ER stress triggers MCP-1 expression through SET7/9-induced histone methylation in the kidneys of db/db mice. American Journal of Physiology-Renal Physiology, 306(8), F916–F925. https://doi.org/10.1152/ajprenal.00697.2012
Chen, Y., Wu, Z., Zhao, S., & Xiang, R. (2016). Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity. Scientific Reports, 6(1), 27486. https://doi.org/10.1038/srep27486
Cherngwelling, R., Pengrattanachot, N., Swe, M. T., Thongnak, L., Promsan, S., Phengpol, N., Sutthasupha, P., & Lungkaphin, A. (2021). Agomelatine protects against obesity-induced renal injury by inhibiting endoplasmic reticulum stress/apoptosis pathway in rats. Toxicology and Applied Pharmacology, 425, 115601. https://doi.org/10.1016/j.taap.2021.115601
Chong, W., Shastri, M., & Eri, R. (2017). Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology. International Journal of Molecular Sciences, 18(4), 771. https://doi.org/10.3390/ijms18040771
Cui, X., Zhang, Y., Lu, Y., & Xiang, M. (2022). ROS and Endoplasmic Reticulum Stress in Pulmonary Disease. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.879204
Dean, O., Giorlando, F., & Berk, M. (2011). N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. Journal of Psychiatry & Neuroscience, 36(2), 78–86. https://doi.org/10.1503/jpn.100057
Dludla, P. V., Mazibuko-Mbeje, S. E., Nyambuya, T. M., Mxinwa, V., Tiano, L., Marcheggiani, F., Cirilli, I., Louw, J., & Nkambule, B. B. (2019). The beneficial effects of N-acetyl cysteine (NAC) against obesity associated complications: A systematic review of pre-clinical studies. Pharmacological Research, 146, 104332. https://doi.org/10.1016/j.phrs.2019.104332
Elbini Dhouib, I., Jallouli, M., Annabi, A., Gharbi, N., Elfazaa, S., & Lasram, M. M. (2016). A minireview on N -acetylcysteine: An old drug with new approaches. Life Sciences, 151, 359–363. https://doi.org/10.1016/j.lfs.2016.03.003
Gu, Y., Huang, F., Wang, Y., Chen, C., Wu, S., Zhou, S., Hei, Z., & Yuan, D. (2018). Connexin32 plays a crucial role in ROS-mediated endoplasmic reticulum stress apoptosis signaling pathway in ischemia reperfusion-induced acute kidney injury. Journal of Translational Medicine, 16(1), 117. https://doi.org/10.1186/s12967-018-1493-8
Hetz, C., & Papa, F. R. (2018). The unfolded protein response and cell fate control. Molecular cell, 69(2), 169-181. https://doi.org/10.1016/j.molcel.2017.06.017
Ho, E., Chen, G., & Bray, T. M. (1999). Supplementation of N‐acetylcysteine inhibits NFκB activation and protects against alloxan‐induced diabetes in CD‐1 mice. The FASEB journal, 13(13), 1845-1854. https://doi.org/10.1096/fasebj.13.13.1845
Hu, Y., Wang, Y., Yan, T., Feng, D., Ba, Y., Zhang, H., Zhu, J., Cheng, X., Cui, L., & Huang, H. (2019). N-acetylcysteine alleviates fluoride-induced testicular apoptosis by modulating IRE1α/JNK signaling and nuclear Nrf2 activation. Reproductive Toxicology, 84, 98–107. https://doi.org/10.1016/j.reprotox.2019.01.001
Kawasaki, N., Asada, R., Saito, A., Kanemoto, S., & Imaizumi, K. (2012). Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Scientific Reports, 2(1), 799. https://doi.org/10.1038/srep00799
Kim, G. W., Lin, J. E., Blomain, E. S., & Waldman, S. A. (2013). Antiobesity Pharmacotherapy: New Drugs and Emerging Targets. Clinical Pharmacology & Therapeutics, 95(1), 53–66. https://doi.org/10.1038/clpt.2013.204
La Russa, D., Giordano, F., Marrone, A., Parafati, M., Janda, E., & Pellegrino, D. (2019). Oxidative Imbalance and Kidney Damage in Cafeteria Diet-Induced Rat Model of Metabolic Syndrome: Effect of Bergamot Polyphenolic Fraction. Antioxidants, 8(3), 66. https://doi.org/10.3390/antiox8030066
Lee, E. S., Kim, H. M., Kang, J. S., Lee, E. Y., Yadav, D., Kwon, M.-H., Kim, Y. M., Kim, H. S., & Chung, C. H. (2016). Oleanolic acid and N-acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model. Nephrology Dialysis Transplantation, 31(3), 391–400. https://doi.org/10.1093/ndt/gfv377
Lee, J., & Ozcan, U. (2014). Unfolded Protein Response Signaling and Metabolic Diseases. Journal of Biological Chemistry, 289(3), 1203–1211. https://doi.org/10.1074/jbc.R113.534743
Li, B., Leung, J. C. K., Chan, L. Y. Y., Yiu, W. H., Li, Y., Lok, S. W. Y., Liu, W. H., Chan, K. W., Tse, H. F., Lai, K. N., & Tang, S. C. W. (2019). Amelioration of Endoplasmic Reticulum Stress by Mesenchymal Stem Cells via Hepatocyte Growth Factor/c-Met Signaling in Obesity-Associated Kidney Injury. Stem Cells Translational Medicine, 8(9), 898–910. https://doi.org/10.1002/sctm.18-0265
Lin, T., Lee, J., Kang, J., Shin, H., Lee, J., & Jin, D. (2019). Endoplasmic Reticulum (ER) Stress and Unfolded Protein Response (UPR) in Mammalian Oocyte Maturation and Preimplantation Embryo Development. International Journal of Molecular Sciences, 20(2), 409. https://doi.org/10.3390/ijms20020409
Liñares-Pose, L., Rial-Pensado, E., Estévez-Salguero, Á., Milbank, E., González-García, I., Rodríguez, C., Seoane-Collazo, P., Martinez-Sánchez, N., Nogueiras, R., Prieto, D., Diéguez, C., Contreras, C., & López, M. (2018). Genetic Targeting of GRP78 in the VMH Improves Obesity Independently of Food Intake. Genes, 9(7), 357. https://doi.org/10.3390/genes9070357
Liu, G., Sun, Y., Li, Z., Song, T., Wang, H., Zhang, Y., & Ge, Z. (2008). Apoptosis induced by endoplasmic reticulum stress involved in diabetic kidney disease. Biochemical and biophysical research communications, 370(4), 651-656. https://doi.org/10.1016/j.bbrc.2008.04.031
Lu, Y., Zhang, Y., Lou, Y., Cui, W., & Miao, L. (2020). Sulforaphane suppresses obesity-related glomerulopathy-induced damage by enhancing autophagy via Nrf2. Life Sciences, 258, 118153. https://doi.org/10.1016/j.lfs.2020.118153
Masenga, S. K., Kabwe, L. S., Chakulya, M., & Kirabo, A. (2023). Mechanisms of Oxidative Stress in Metabolic Syndrome. International Journal of Molecular Sciences, 24(9), 7898. https://doi.org/10.3390/ijms24097898
Munusamy, S., do Carmo, J. M., Hosler, J. P., & Hall, J. E. (2015). Obesity-induced changes in kidney mitochondria and endoplasmic reticulum in the presence or absence of leptin. American Journal of Physiology-Renal Physiology, 309(8), F731–F743. https://doi.org/10.1152/ajprenal.00188.2015
Pengrattanachot, N., Cherngwelling, R., Jaikumkao, K., Pongchaidecha, A., Thongnak, L., Swe, M. T., Chatsudthipong, V., & Lungkaphin, A. (2020). Atorvastatin attenuates obese-induced kidney injury and impaired renal organic anion transporter 3 function through inhibition of oxidative stress and inflammation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1866(6), 165741. https://doi.org/10.1016/j.bbadis.2020.165741
Promsan, S., Thongnak, L., Pengrattanachot, N., Phengpol, N., Sutthasupha, P., & Lungkaphin, A. (2022). Agomelatine, a structural analog of melatonin, improves kidney dysfunction through regulating the AMPK/mTOR signaling pathway to promote autophagy in obese rats. Food and Chemical Toxicology, 165, 113190. https://doi.org/10.1016/j.fct.2022.113190
Samuni, Y., Goldstein, S., Dean, O. M., & Berk, M. (2013). The chemistry and biological activities of N-acetylcysteine. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(8), 4117–4129. https://doi.org/10.1016/j.bbagen.2013.04.016
Santos, P., Herrmann, A. P., Benvenutti, R., Noetzold, G., Giongo, F., Gama, C. S., Piato, A. L., & Elisabetsky, E. (2017). Anxiolytic properties of N -acetylcysteine in mice. Behavioural Brain Research, 317, 461–469. https://doi.org/10.1016/j.bbr.2016.10.010
Sarvani, C., Sireesh, D., & Ramkumar, K. M. (2017). Unraveling the role of ER stress inhibitors in the context of metabolic diseases. Pharmacological Research, 119, 412–421. https://doi.org/10.1016/j.phrs.2017.02.018
Schwarz, D. S., & Blower, M. D. (2016). The endoplasmic reticulum: structure, function and response to cellular signaling. Cellular and molecular life sciences, 73, 79-94. https://doi.org/10.1007/s00018-015-2052-6
Sun, Y., Pu, L. Y., Lu, L., Wang, X.-H., Zhang, F., & Rao, J. H. (2014). N-acetylcysteine attenuates reactive-oxygen-species-mediated endoplasmic reticulum stress during liver ischemia-reperfusion injury. World Journal of Gastroenterology, 20(41), 15289–15298. https://doi.org/10.3748/wjg.v20.i41.15289
Tanaka, Y., Gleason, C. E., Tran, P. O. T., Harmon, J. S., & Robertson, R. P. (1999). Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proceedings of the National Academy of Sciences, 96(19), 10857-10862. https://doi.org/10.1073/pnas.96.19.10857
Tatar, M., Tufekci, K. K., Uslu, S., & Öner, J. (2023). Expression of ADAMTS 1-4-8 and placental growth factor in ovary and oviduct during pregnancy in the first trimester. Anatomia, Histologia, Embryologia. 52, 619– 626. https://doi.org/10.1111/ahe.12922
Tsai, C. C., Chen, Y. J., Yu, H. R., Huang, L. T., Tain, Y. L., Lin, I. C., Sheen, J. M., Wang, P. W., & Tiao, M. M. (2020). Long term N-acetylcysteine administration rescues liver steatosis via endoplasmic reticulum stress with unfolded protein response in mice. Lipids in Health and Disease, 19(1), 105. https://doi.org/10.1186/s12944-020-01274-y
Tüfekci, K. K., Bakirhan, E. G., & Terzi, F. (2023). A Maternal High-Fat Diet Causes Anxiety-Related Behaviors by Altering Neuropeptide Y1 Receptor and Hippocampal Volumes in Rat Offspring: the Potential Effect of N-Acetylcysteine. Molecular Neurobiology, 60(3), 1499–1514. https://doi.org/10.1007/s12035-022-03158-x
Tümer, N. B. (2020). N-acetyl cysteine attenuates ferroptosis mediated lung injury induced by lower limb ischaemia/reperfusion. Turkish Journal of Clinics and Laboratory, 11(4), 288–293. https://doi.org/10.18663/tjcl.769961
Wang, C., Wu, M., Arvapalli, R., Dai, X., Mahmood, M., Driscoll, H., Rice, K. M., & Blough, E. (2014). Acetaminophen Attenuates Obesity-Related Renal Injury Through ER-Mediated Stress Mechanisms. Cellular Physiology and Biochemistry, 33(4), 1139–1148. https://doi.org/10.1159/000358683
Xu, T., Sheng, Z., & Yao, L. (2017). Obesity-related glomerulopathy: pathogenesis, pathologic, clinical characteristics and treatment. Frontiers of Medicine, 11(3), 340–348. https://doi.org/10.1007/s11684-017-0570-3
Zafarullah, M., Li, W. Q., Sylvester, J., & Ahmad, M. (2003). Molecular mechanisms of N -acetylcysteine actions. Cellular and Molecular Life Sciences (CMLS), 60(1), 6–20. https://doi.org/10.1007/s000180300001
Zeeshan, H., Lee, G., Kim, H. R., & Chae, H. J. (2016). Endoplasmic Reticulum Stress and Associated ROS. International Journal of Molecular Sciences, 17(3), 327. https://doi.org/10.3390/ijms17030327
Zhang, L., Zhu, Z., Liu, J., Zhu, Z., & Hu, Z. (2014). Protective effect of N-acetylcysteine (NAC) on renal ischemia/reperfusion injury through Nrf2 signaling pathway. Journal of Receptors and Signal Transduction, 34(5), 396–400. https://doi.org/10.3109/10799893.2014.908916
Zhao, S., Liu, Y., Wang, F., Xu, D., & Xie, P. (2018). N-acetylcysteine protects against microcystin-LR-induced endoplasmic reticulum stress and germ cell apoptosis in zebrafish testes. Chemosphere, 204, 463–473. https://doi.org/10.1016/j.chemosphere.2018.04.020
Tatar, M. (2023). The Effect of N-Acetylcysteine Use on Endoplasmic Reticulum Stress in the Kidney Tissues of Obese Rats. Kocatepe Veterinary Journal, 16(3), 301-309. https://doi.org/10.30607/kvj.1312847
AMA
Tatar M. The Effect of N-Acetylcysteine Use on Endoplasmic Reticulum Stress in the Kidney Tissues of Obese Rats. kvj. Eylül 2023;16(3):301-309. doi:10.30607/kvj.1312847
Chicago
Tatar, Musa. “The Effect of N-Acetylcysteine Use on Endoplasmic Reticulum Stress in the Kidney Tissues of Obese Rats”. Kocatepe Veterinary Journal 16, sy. 3 (Eylül 2023): 301-9. https://doi.org/10.30607/kvj.1312847.
EndNote
Tatar M (01 Eylül 2023) The Effect of N-Acetylcysteine Use on Endoplasmic Reticulum Stress in the Kidney Tissues of Obese Rats. Kocatepe Veterinary Journal 16 3 301–309.
IEEE
M. Tatar, “The Effect of N-Acetylcysteine Use on Endoplasmic Reticulum Stress in the Kidney Tissues of Obese Rats”, kvj, c. 16, sy. 3, ss. 301–309, 2023, doi: 10.30607/kvj.1312847.
ISNAD
Tatar, Musa. “The Effect of N-Acetylcysteine Use on Endoplasmic Reticulum Stress in the Kidney Tissues of Obese Rats”. Kocatepe Veterinary Journal 16/3 (Eylül 2023), 301-309. https://doi.org/10.30607/kvj.1312847.
JAMA
Tatar M. The Effect of N-Acetylcysteine Use on Endoplasmic Reticulum Stress in the Kidney Tissues of Obese Rats. kvj. 2023;16:301–309.
MLA
Tatar, Musa. “The Effect of N-Acetylcysteine Use on Endoplasmic Reticulum Stress in the Kidney Tissues of Obese Rats”. Kocatepe Veterinary Journal, c. 16, sy. 3, 2023, ss. 301-9, doi:10.30607/kvj.1312847.
Vancouver
Tatar M. The Effect of N-Acetylcysteine Use on Endoplasmic Reticulum Stress in the Kidney Tissues of Obese Rats. kvj. 2023;16(3):301-9.