Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Carob Aqueous Extract on Oxidative Stress, Proinflammatory Cytokines, Glucose and Lipid Concentrations in the Blood of Diabetic Rats.

Yıl 2025, Cilt: 18 Sayı: 3, 192 - 199, 03.10.2025

Öz

Herbal treatments offer potential benefits in controlling blood glucose levels and preventing diabetes-related complications. This study was conducted to determine the effects of the application of carob fruit aqueous extract prepared by ultrasound-assisted extraction (UAE) method on oxidative stress, glycemic level, proinflammatory cytokines and lipid profile levels in the blood of rats with experimental diabetes induced by streptozotocin-nicotinamide (STZ-NA) model. Forty male Wistar Albino (200-250 g live weight) animals used in the study were divided into four groups as normal control, diabetic control, normal group given 200 mg.kg-1 carob aqueous extract and diabetic group given 200 mg.kg-1 carob aqueous extract. At the end of the 21-day study, plasma glucose, hemoglobin A1C (HbA1c), insulin, homeostatic model assessment of insulin resistance (HOMA-IR), malondialdehyde (MDA), reduced glutathione (GSH), proinflammatory cytokines interleukin 1-beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), total cholesterol, triglyceride, leptin and 25-hydroxy vitamin D levels were measured in blood samples taken from all animals. Carob aqueous extract treatment did not cause a significant decrease in high glucose, HbA1c and HOMA-IR values caused by diabetes. The blood insulin levels were not affected by the treatments. Diabetes increased MDA, IL-6 and triglyceride levels (p<0.05), while carob aqueous extract treatment to diabetic animals did not affect these parameters. However, carob aqueous extract treatment to diabetic animals increased GSH levels (p<0.05). The treatments had no effect on IL-1β, TNF-α, total cholesterol and leptin levels. Conclusively, the carob fruit aqueous extract treatment did not have an effect on controlling diabetes-related hyperglycemia.

Proje Numarası

22.SAG.BİL.04

Kaynakça

  • Akinlade, O. M., Owoyele, B. V., & Soladoye, A. O. (2021). Streptozotocin-induced type 1 and 2 diabetes in rodents: a model for studying diabetic cardiac autonomic neuropathy. African health sciences, 21(2), 719–727. https://doi.org/10.4314/ahs.v21i2.30
  • Aloud, A. A., Veeramani, C., Govindasamy, C., Alsaif, M. A., & Al-Numair, K. S. (2018). Galangin, a natural flavonoid reduces mitochondrial oxidative damage in streptozotocin-induced diabetic rats. Redox report : communications in free radical research, 23(1), 29–34. https://doi.org/10.1080/13510002.2017.1365224
  • Aly, Y. E., Abdou, A. S., Rashad, M. M., & Nassef, M. M. (2016). Effect of exercise on serum vitamin D and tissue vitamin D receptors in experimentally induced type 2 Diabetes Mellitus. Journal of advanced research, 7(5), 671–679. https://doi.org/10.1016/j.jare.2016.07.001
  • Behl, T., Gupta, A., Albratty, M., Najmi, A., Meraya, A. M., Alhazmi, H. A., Anwer, M. K., Bhatia, S., & Bungau, S. G. (2022). Alkaloidal Phytoconstituents for Diabetes Management: Exploring the Unrevealed Potential. Molecules (Basel, Switzerland), 27(18), 5851. https://doi.org/10.3390/molecules27185851
  • Beutler, E., Duron, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. The Journal of laboratory and clinical medicine, 61, 882–888.
  • Brassesco, M. E., Brandão, T. R., Silva, C. L., & Pintado, M. (2021). Carob bean (Ceratonia siliqua L.): A new perspective for functional food. Trends in Food Science & Technology, 114, 310-322. https://doi.org/10.1016/j.tifs.2021.05.037
  • Cloete L. (2022). Diabetes mellitus: an overview of the types, symptoms, complications and management. Nursing standard (Royal College of Nursing (Great Britain) : 1987), 37(1), 61–66. https://doi.org/10.7748/ns.2021.e11709
  • Demesa, A. G., Saavala, S., Pöysä, M., & Koiranen, T. (2024). Overview and Toxicity Assessment of Ultrasound-Assisted Extraction of Natural Ingredients from Plants. Foods, 13(19), 3066. https://doi.org/10.3390/foods13193066
  • Dludla, P. V., Mabhida, S. E., Ziqubu, K., Nkambule, B. B., Mazibuko-Mbeje, S. E., Hanser, S., Basson, A. K., Pheiffer, C., & Kengne, A. P. (2023). Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World journal of diabetes, 14(3), 130–146. https://doi.org/10.4239/wjd.v14.i3.130
  • Draper, H. H., & Hadley, M. (1990). Malondialdehyde determination as index of lipid peroxidation. Methods in enzymology, 186, 421–431. https://doi.org/10.1016/0076-6879(90)86135-i
  • El-Beih, N. M., Ramadan, G., El-Husseiny, E. A., & Hussein, A. M. (2019). Effects of pomegranate aril juice and its punicalagin on some key regulators of insulin resistance and oxidative liver injury in streptozotocin-nicotinamide type 2 diabetic rats. Molecular biology reports, 46(4), 3701–3711. https://doi.org/10.1007/s11033-019-04813-8
  • Eleazu, C. O., Eleazu, K. C., Chukwuma, S., & Essien, U. N. (2013). Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of diabetes and metabolic disorders, 12(1), 60. https://doi.org/10.1186/2251-6581-12-60
  • Fatani, S. H., Babakr, A. T., NourEldin, E. M., & Almarzouki, A. A. (2016). Lipid peroxidation is associated with poor control of type-2 diabetes mellitus. Diabetes & metabolic syndrome, 10(2 Suppl 1), S64–S67. https://doi.org/10.1016/j.dsx.2016.01.028
  • Federiuk, I. F., Casey, H. M., Quinn, M. J., Wood, M. D., & Ward, W. K. (2004). Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment. Comparative medicine, 54(3), 252–257.
  • German, J. P., Wisse, B. E., Thaler, J. P., Oh-I, S., Sarruf, D. A., Ogimoto, K., Kaiyala, K. J., Fischer, J. D., Matsen, M. E., Taborsky, G. J., Jr, Schwartz, M. W., & Morton, G. J. (2010). Leptin deficiency causes insulin resistance induced by uncontrolled diabetes. Diabetes, 59(7), 1626–1634. https://doi.org/10.2337/db09-1918
  • Hazra, P., Istiak, A. S. M. E., Koly, K. N., Akter, F., Ferdous, M. F., Das, S. R., Hasan, M.I., Haque, A., Hayat, S., Sultana, N., & Rafiq, K. (2023). Comparative Efficacy of Combined Formulation of Andrographis paniculata, Lagerstroemia speciosa and Tribulus terrestris with Glimepiride on Renal and Pancreatic Injury in Alloxan Induced Type-1 Diabetic Mice. European Journal of Veterinary Medicine, 3(3), 14-20. https://doi.org/10.24018/ejvetmed.2023.3.3.97
  • Ighodaro, O. M., Adeosun, A. M., & Akinloye, O. A. (2017). Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina (Kaunas, Lithuania), 53(6), 365–374. https://doi.org/10.1016/j.medici.2018.02.001
  • Kado, S., Nagase, T., & Nagata, N. (1999). Circulating levels of interleukin-6, its soluble receptor and interleukin-6/interleukin-6 receptor complexes in patients with type 2 diabetes mellitus. Acta diabetologica, 36(1-2), 67–72. https://doi.org/10.1007/s005920050147
  • Kane, J. P., Pullinger, C. R., Goldfine, I. D., & Malloy, M. J. (2021). Dyslipidemia and diabetes mellitus: Role of lipoprotein species and interrelated pathways of lipid metabolism in diabetes mellitus. Current opinion in pharmacology, 61, 21–27. https://doi.org/10.1016/j.coph.2021.08.013
  • King G. L. (2008). The role of inflammatory cytokines in diabetes and its complications. Journal of periodontology, 79(8 Suppl), 1527–1534. https://doi.org/10.1902/jop.2008.080246
  • Kottaisamy, C. P. D., Raj, D. S., Prasanth Kumar, V., & Sankaran, U. (2021). Experimental animal models for diabetes and its related complications-a review. Laboratory animal research, 37(1), 23. https://doi.org/10.1186/s42826-021-00101-4
  • Kuchmerovska, Т.М., Donchenko, G.V., Tychonenko, T.M., Guzyk, M.M., Yanitska, L.V., Stepanenko, S.P., & Klimenko, А.P. (2012). Nicotinamide influence on functional state of pancreatic cells. Ukrainian Biochemical Journal, 84, 81–88.
  • Kumar, S., Narwal, S., Kumar, V., & Prakash, O. (2011). α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy reviews, 5(9), 19–29. https://doi.org/10.4103/0973-7847.79096
  • Laaraj, S., Hussain, A., Mouhaddach, A., Noutfia, Y., Gorsi, F. I., Yaqub, S., Hussain, I., Nisar, R., Salmaoui, S., & Elfazazi, K. (2024). Benefits and Antihyperglycemic Potential of Carob Fruit (Ceratonia siliqua L.) - An Overview. Ecological Engineering & Environmental Technology, 25(3), 124-132. https://doi.org/10.12912/27197050/178456
  • Laaraj, S., Salmaoui, S., Addi, M., El-Rhouttais, C., Tikent, A., Elbouzidi, A., Taibi, M., Hano, C., Noutfia, Y., & Elfazazi, K. (2023). Carob (Ceratonia siliqua L.) seed constituents: A comprehensive review of composition, chemical profile, and diverse applications. Journal of Food Quality, 2023(1), 3438179. https://doi.org/10.1155/2023/3438179
  • Lv, Q. Z., Long, J. T., Gong, Z. F., Nong, K. Y., Liang, X. M., Qin, T., Huang, W., & Yang, L. (2021). Current state of knowledge on the antioxidant Nutritional effects and mechanisms of action of polyphenolic compounds. Natural Product Communications, 16(7), 1934578X211027745. https://doi.org/10.1177/1934578X211027745
  • Macho-González, A., Garcimartín, A., López-Oliva, M. E., Ruiz-Roso, B., Martín de la Torre, I., Bastida, S., Benedí, J., & Sánchez-Muniz, F. J. (2019). Can Carob-Fruit-Extract-Enriched Meat Improve the Lipoprotein Profile, VLDL-Oxidation, and LDL Receptor Levels Induced by an Atherogenic Diet in STZ-NAD-Diabetic Rats?. Nutrients, 11(2), 332. https://doi.org/10.3390/nu11020332
  • Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412–419. https://doi.org/10.1007/BF00280883
  • Moumou, M., Mokhtari, I., Milenkovic, D., Amrani, S., & Harnafi, H. (2023). Carob (Ceratonia siliqua L.): A comprehensive review on traditional uses, chemical composition, pharmacological effects and toxicology (2002-2022). Journal of Biologically Active Products from Nature, 13(3), 179-223. https://doi.org/10.1080/22311866.2023.2237481
  • Mughni, A., Ekasaputra, V. M., Susanto, R. T., Prasetya, A. T., Putranto, I., & Erlangga, D. (2023). HOMA-IR level in obese type 2 diabetic rat model treated by Sleeve gastrectomy and pancreatic omentoplasty. Journal of Experimental and Clinical Medicine, 40(1), 27-30. https://doi.org/10.52142/omujecm.40.1.6
  • Nakamura, T., Terajima, T., Ogata, T., Ueno, K., Hashimoto, N., Ono, K., & Yano, S. (2006). Establishment and pathophysiological characterization of type 2 diabetic mouse model produced by streptozotocin and nicotinamide. Biological & pharmaceutical bulletin, 29(6), 1167–1174. https://doi.org/10.1248/bpb.29.1167
  • Nemet, M., Vasilić, M., & Tomas, A. (2022). Lipid-Lowering Effects of Carob Extracts (Ceratonia siliqua): Proposed Mechanisms and Clinical Importance. Frontiers in pharmacology,13,921123. https://doi.org/10.3389/fphar.2022.921123
  • Nzekwe, S., Morakinyo, A., Oguntibeju, O., & Ayeleso, A. (2020). Effect of taraxacum officinale leaf extract on liver antioxidant status in streptozotocin-induced diabetic male wistar rats. African Journal of Biomedical Research, 23(3), 421-428.
  • Pellegrini, V., La Grotta, R., Carreras, F., Giuliani, A., Sabbatinelli, J., Olivieri, F., Berra, C. C., Ceriello, A., & Prattichizzo, F. (2024). Inflammatory Trajectory of Type 2 Diabetes: Novel Opportunities for Early and Late Treatment. Cells, 13(19), 1662. https://doi.org/10.3390/cells13191662
  • Qasem, M. A., Noordin, M. I., Arya, A., Alsalahi, A., & Jayash, S. N. (2018). Evaluation of the glycemic effect of Ceratonia siliqua pods (Carob) on a streptozotocin-nicotinamide induced diabetic rat model. PeerJ, 6, e4788. https://doi.org/10.7717/peerj.4788
  • Riaz, R., Parveen, S., Shafiq, N., Ali, A., & Rashid, M. (2024). Virtual screening, ADME prediction, drug-likeness, and molecular docking analysis of Fagonia indica chemical constituents against antidiabetic targets. Molecular diversity, 10.1007/s11030-024-10897-7. Advance online publication. https://doi.org/10.1007/s11030-024-10897-7
  • Ridker, P. M., & Rane, M. (2021). Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circulation research, 128(11), 1728–1746. https://doi.org/10.1161/CIRCRESAHA.121.319077
  • Rodríguez, I. A., Serafini, M., Alves, I. A., Lang, K. L., Silva, F. R. M. B., & Aragón, D. M. (2022). Natural Products as Outstanding Alternatives in Diabetes Mellitus: A Patent Review. Pharmaceutics, 15(1), 85. https://doi.org/10.3390/pharmaceutics15010085
  • Roseiro, L.B., Duarte, L.C., Oliveira, D.L., Roque, R., Bernardo-Gil, M.G., Martins, A.I., Sepúlveda, C., Almeida, J., Meireles, M., Gírio, F.M., & Rauter, A. P. (2013). Supercritical, ultrasound and conventional extracts from carob (Ceratonia siliqua L.) biomass: Effect on the phenolic profile and antiproliferative activity. Industrial Crops and Products, 47, 132-138. https://doi.org/10.1016/j.indcrop.2013.02.026
  • Rtibi, K., Selmi, S., Grami, D., Saidani, K., Sebai, H., Amri, M., Eto, B., & Marzouki, L. (2017). Ceratonia siliqua L. (immature carob bean) inhibits intestinal glucose absorption, improves glucose tolerance and protects against alloxan-induced diabetes in rat. Journal of the science of food and agriculture, 97(8), 2664–2670. https://doi.org/10.1002/jsfa.8091
  • Schwartz, M. W., & Porte Jr, D. (2005). Diabetes, obesity, and the brain. Science, 307(5708), 375-379. https://doi.org/10.1126/science.1104344
  • Shrivastav, D., Kumbhakar, S. K., Srivastava, S., & Singh, D. D. (2024). Natural product-based treatment potential for type 2 diabetes mellitus and cardiovascular disease. World journal of diabetes, 15(7), 1603–1614. https://doi.org/10.4239/wjd.v15.i7.1603
  • Singh, R., Gholipourmalekabadi, M., & Shafikhani, S. H. (2024). Animal models for type 1 and type 2 diabetes: advantages and limitations. Frontiers in endocrinology, 15, 1359685. https://doi.org/10.3389/fendo.2024.1359685
  • Soliman, N. A. (2001). Effect of experimentally induced diabetes mellitus on serum leptin level and the role of insulin replacement therapy. The Egyptian Journal of Hospital Medicine, 3(1), 190-208. https://doi.org/10.21608/ejhm.2001.18912
  • Sugden, M., & Holness, M. (2011). Pathophysiology of diabetic dyslipidemia:implications for atherogenesis and treatment. Clinical Lipidology, 6(4), 401–411. https://doi.org/10.2217/clp.11.32
  • Szkudelski T. (2012). Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Experimental biology and medicine (Maywood, N.J.), 237(5), 481–490. https://doi.org/10.1258/ebm.2012.011372
  • Uehara, K., Santoleri, D., Whitlock, A. E. G., & Titchenell, P. M. (2023). Insulin Regulation of Hepatic Lipid Homeostasis. Comprehensive Physiology, 13(3), 4785–4809. https://doi.org/10.1002/cphy.c220015

Diyabetik Sıçanların Kanında Keçiboynuzu Sulu Ekstraktının Oksidatif Stres, Proinflamatuar Sitokinler, Glikoz ve Lipid Düzeylerine Etkisi

Yıl 2025, Cilt: 18 Sayı: 3, 192 - 199, 03.10.2025

Öz

Bitkisel tedaviler, kan glikoz seviyelerinin kontrol altına alınması ve diyabetle ilişkili komplikasyonların önlenmesinde potansiyel faydalar sunmaktadır. Bu çalışmada; streptozotosin-nikotinamid (STZ-NA) modelle deneysel diyabet oluşturulan sıçanlara ultrasonik-destekli ekstraksiyon (UAE) yöntemiyle hazırlanmış keçiboynuzu meyvesi sulu ekstraktı uygulamasının kan oksidatif stres, glisemik düzey, proinflamatuar sitokin ve lipit profil düzeylerine etkilerinin belirlenmesi amacıyla yapıldı. Çalışmada 40 adet erkek Wistar Albino (200-250g canlı ağırlık) hayvan kullanıldı. Deneydeki hayvanlar normal kontrol, diyabetik kontrol, 200 mg/kg keçiboynuzu ekstraktı verilen normal ve 200 mg/kg keçiboynuzu ekstraktı verilen diyabetik grup olmak üzere dört gruba ayrıldı. Toplam 21 gün süren çalışmanın sonunda tüm hayvanlardan alınan kan örneklerinde; plazma glikoz, hemoglobin A1C (HbA1c), insülin, insülin direncinin homeostatik model değerlendirmesi (HOMA-IR), malondialdehid (MDA), indirgenmiş glutatyon (GSH), proinflamatuar sitokinler interlökin 1-beta (IL-1β), tümör nekroz faktörü-alfa (TNF-α), interlökin-6 (IL-6), total kolesterol, trigliserit, leptin ve 25-hidroksi vitamin D düzeyleri ölçüldü. Keçiboynuzu ekstraktı uygulaması, diyabetin yol açtığı yüksek glikoz, HbA1c ve HOMA-IR değerlerinde önemli bir düşüşe neden olmadı. Uygulamaların kan insülin düzeylerine etkisi olmadı. Diyabet; MDA, IL-6 ve trigliserit düzeylerini artırırken (p<0.05), keçiboynuzu sulu ekstrakt uygulamasının bu değerlere etkisi gözlenmedi. Bununla birlikte, diyabetli hayvanlara keçiboynuzu sulu ekstraktı verilmesi, GSH düzeylerini yükseltmiştir (p<0.05). Uygulamaların IL-1β, TNF-α, total kolesterol ve leptin düzeylerine etkisi bulunmadı. Sonuç olarak, keçiboynuzu meyvesi sulu ekstraktının, diyabete bağlı hiperglisemiyi kontrol etmede etkinliğinin bulunmadığı kanaatine varıldı.

Proje Numarası

22.SAG.BİL.04

Kaynakça

  • Akinlade, O. M., Owoyele, B. V., & Soladoye, A. O. (2021). Streptozotocin-induced type 1 and 2 diabetes in rodents: a model for studying diabetic cardiac autonomic neuropathy. African health sciences, 21(2), 719–727. https://doi.org/10.4314/ahs.v21i2.30
  • Aloud, A. A., Veeramani, C., Govindasamy, C., Alsaif, M. A., & Al-Numair, K. S. (2018). Galangin, a natural flavonoid reduces mitochondrial oxidative damage in streptozotocin-induced diabetic rats. Redox report : communications in free radical research, 23(1), 29–34. https://doi.org/10.1080/13510002.2017.1365224
  • Aly, Y. E., Abdou, A. S., Rashad, M. M., & Nassef, M. M. (2016). Effect of exercise on serum vitamin D and tissue vitamin D receptors in experimentally induced type 2 Diabetes Mellitus. Journal of advanced research, 7(5), 671–679. https://doi.org/10.1016/j.jare.2016.07.001
  • Behl, T., Gupta, A., Albratty, M., Najmi, A., Meraya, A. M., Alhazmi, H. A., Anwer, M. K., Bhatia, S., & Bungau, S. G. (2022). Alkaloidal Phytoconstituents for Diabetes Management: Exploring the Unrevealed Potential. Molecules (Basel, Switzerland), 27(18), 5851. https://doi.org/10.3390/molecules27185851
  • Beutler, E., Duron, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. The Journal of laboratory and clinical medicine, 61, 882–888.
  • Brassesco, M. E., Brandão, T. R., Silva, C. L., & Pintado, M. (2021). Carob bean (Ceratonia siliqua L.): A new perspective for functional food. Trends in Food Science & Technology, 114, 310-322. https://doi.org/10.1016/j.tifs.2021.05.037
  • Cloete L. (2022). Diabetes mellitus: an overview of the types, symptoms, complications and management. Nursing standard (Royal College of Nursing (Great Britain) : 1987), 37(1), 61–66. https://doi.org/10.7748/ns.2021.e11709
  • Demesa, A. G., Saavala, S., Pöysä, M., & Koiranen, T. (2024). Overview and Toxicity Assessment of Ultrasound-Assisted Extraction of Natural Ingredients from Plants. Foods, 13(19), 3066. https://doi.org/10.3390/foods13193066
  • Dludla, P. V., Mabhida, S. E., Ziqubu, K., Nkambule, B. B., Mazibuko-Mbeje, S. E., Hanser, S., Basson, A. K., Pheiffer, C., & Kengne, A. P. (2023). Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World journal of diabetes, 14(3), 130–146. https://doi.org/10.4239/wjd.v14.i3.130
  • Draper, H. H., & Hadley, M. (1990). Malondialdehyde determination as index of lipid peroxidation. Methods in enzymology, 186, 421–431. https://doi.org/10.1016/0076-6879(90)86135-i
  • El-Beih, N. M., Ramadan, G., El-Husseiny, E. A., & Hussein, A. M. (2019). Effects of pomegranate aril juice and its punicalagin on some key regulators of insulin resistance and oxidative liver injury in streptozotocin-nicotinamide type 2 diabetic rats. Molecular biology reports, 46(4), 3701–3711. https://doi.org/10.1007/s11033-019-04813-8
  • Eleazu, C. O., Eleazu, K. C., Chukwuma, S., & Essien, U. N. (2013). Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of diabetes and metabolic disorders, 12(1), 60. https://doi.org/10.1186/2251-6581-12-60
  • Fatani, S. H., Babakr, A. T., NourEldin, E. M., & Almarzouki, A. A. (2016). Lipid peroxidation is associated with poor control of type-2 diabetes mellitus. Diabetes & metabolic syndrome, 10(2 Suppl 1), S64–S67. https://doi.org/10.1016/j.dsx.2016.01.028
  • Federiuk, I. F., Casey, H. M., Quinn, M. J., Wood, M. D., & Ward, W. K. (2004). Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment. Comparative medicine, 54(3), 252–257.
  • German, J. P., Wisse, B. E., Thaler, J. P., Oh-I, S., Sarruf, D. A., Ogimoto, K., Kaiyala, K. J., Fischer, J. D., Matsen, M. E., Taborsky, G. J., Jr, Schwartz, M. W., & Morton, G. J. (2010). Leptin deficiency causes insulin resistance induced by uncontrolled diabetes. Diabetes, 59(7), 1626–1634. https://doi.org/10.2337/db09-1918
  • Hazra, P., Istiak, A. S. M. E., Koly, K. N., Akter, F., Ferdous, M. F., Das, S. R., Hasan, M.I., Haque, A., Hayat, S., Sultana, N., & Rafiq, K. (2023). Comparative Efficacy of Combined Formulation of Andrographis paniculata, Lagerstroemia speciosa and Tribulus terrestris with Glimepiride on Renal and Pancreatic Injury in Alloxan Induced Type-1 Diabetic Mice. European Journal of Veterinary Medicine, 3(3), 14-20. https://doi.org/10.24018/ejvetmed.2023.3.3.97
  • Ighodaro, O. M., Adeosun, A. M., & Akinloye, O. A. (2017). Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina (Kaunas, Lithuania), 53(6), 365–374. https://doi.org/10.1016/j.medici.2018.02.001
  • Kado, S., Nagase, T., & Nagata, N. (1999). Circulating levels of interleukin-6, its soluble receptor and interleukin-6/interleukin-6 receptor complexes in patients with type 2 diabetes mellitus. Acta diabetologica, 36(1-2), 67–72. https://doi.org/10.1007/s005920050147
  • Kane, J. P., Pullinger, C. R., Goldfine, I. D., & Malloy, M. J. (2021). Dyslipidemia and diabetes mellitus: Role of lipoprotein species and interrelated pathways of lipid metabolism in diabetes mellitus. Current opinion in pharmacology, 61, 21–27. https://doi.org/10.1016/j.coph.2021.08.013
  • King G. L. (2008). The role of inflammatory cytokines in diabetes and its complications. Journal of periodontology, 79(8 Suppl), 1527–1534. https://doi.org/10.1902/jop.2008.080246
  • Kottaisamy, C. P. D., Raj, D. S., Prasanth Kumar, V., & Sankaran, U. (2021). Experimental animal models for diabetes and its related complications-a review. Laboratory animal research, 37(1), 23. https://doi.org/10.1186/s42826-021-00101-4
  • Kuchmerovska, Т.М., Donchenko, G.V., Tychonenko, T.M., Guzyk, M.M., Yanitska, L.V., Stepanenko, S.P., & Klimenko, А.P. (2012). Nicotinamide influence on functional state of pancreatic cells. Ukrainian Biochemical Journal, 84, 81–88.
  • Kumar, S., Narwal, S., Kumar, V., & Prakash, O. (2011). α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy reviews, 5(9), 19–29. https://doi.org/10.4103/0973-7847.79096
  • Laaraj, S., Hussain, A., Mouhaddach, A., Noutfia, Y., Gorsi, F. I., Yaqub, S., Hussain, I., Nisar, R., Salmaoui, S., & Elfazazi, K. (2024). Benefits and Antihyperglycemic Potential of Carob Fruit (Ceratonia siliqua L.) - An Overview. Ecological Engineering & Environmental Technology, 25(3), 124-132. https://doi.org/10.12912/27197050/178456
  • Laaraj, S., Salmaoui, S., Addi, M., El-Rhouttais, C., Tikent, A., Elbouzidi, A., Taibi, M., Hano, C., Noutfia, Y., & Elfazazi, K. (2023). Carob (Ceratonia siliqua L.) seed constituents: A comprehensive review of composition, chemical profile, and diverse applications. Journal of Food Quality, 2023(1), 3438179. https://doi.org/10.1155/2023/3438179
  • Lv, Q. Z., Long, J. T., Gong, Z. F., Nong, K. Y., Liang, X. M., Qin, T., Huang, W., & Yang, L. (2021). Current state of knowledge on the antioxidant Nutritional effects and mechanisms of action of polyphenolic compounds. Natural Product Communications, 16(7), 1934578X211027745. https://doi.org/10.1177/1934578X211027745
  • Macho-González, A., Garcimartín, A., López-Oliva, M. E., Ruiz-Roso, B., Martín de la Torre, I., Bastida, S., Benedí, J., & Sánchez-Muniz, F. J. (2019). Can Carob-Fruit-Extract-Enriched Meat Improve the Lipoprotein Profile, VLDL-Oxidation, and LDL Receptor Levels Induced by an Atherogenic Diet in STZ-NAD-Diabetic Rats?. Nutrients, 11(2), 332. https://doi.org/10.3390/nu11020332
  • Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412–419. https://doi.org/10.1007/BF00280883
  • Moumou, M., Mokhtari, I., Milenkovic, D., Amrani, S., & Harnafi, H. (2023). Carob (Ceratonia siliqua L.): A comprehensive review on traditional uses, chemical composition, pharmacological effects and toxicology (2002-2022). Journal of Biologically Active Products from Nature, 13(3), 179-223. https://doi.org/10.1080/22311866.2023.2237481
  • Mughni, A., Ekasaputra, V. M., Susanto, R. T., Prasetya, A. T., Putranto, I., & Erlangga, D. (2023). HOMA-IR level in obese type 2 diabetic rat model treated by Sleeve gastrectomy and pancreatic omentoplasty. Journal of Experimental and Clinical Medicine, 40(1), 27-30. https://doi.org/10.52142/omujecm.40.1.6
  • Nakamura, T., Terajima, T., Ogata, T., Ueno, K., Hashimoto, N., Ono, K., & Yano, S. (2006). Establishment and pathophysiological characterization of type 2 diabetic mouse model produced by streptozotocin and nicotinamide. Biological & pharmaceutical bulletin, 29(6), 1167–1174. https://doi.org/10.1248/bpb.29.1167
  • Nemet, M., Vasilić, M., & Tomas, A. (2022). Lipid-Lowering Effects of Carob Extracts (Ceratonia siliqua): Proposed Mechanisms and Clinical Importance. Frontiers in pharmacology,13,921123. https://doi.org/10.3389/fphar.2022.921123
  • Nzekwe, S., Morakinyo, A., Oguntibeju, O., & Ayeleso, A. (2020). Effect of taraxacum officinale leaf extract on liver antioxidant status in streptozotocin-induced diabetic male wistar rats. African Journal of Biomedical Research, 23(3), 421-428.
  • Pellegrini, V., La Grotta, R., Carreras, F., Giuliani, A., Sabbatinelli, J., Olivieri, F., Berra, C. C., Ceriello, A., & Prattichizzo, F. (2024). Inflammatory Trajectory of Type 2 Diabetes: Novel Opportunities for Early and Late Treatment. Cells, 13(19), 1662. https://doi.org/10.3390/cells13191662
  • Qasem, M. A., Noordin, M. I., Arya, A., Alsalahi, A., & Jayash, S. N. (2018). Evaluation of the glycemic effect of Ceratonia siliqua pods (Carob) on a streptozotocin-nicotinamide induced diabetic rat model. PeerJ, 6, e4788. https://doi.org/10.7717/peerj.4788
  • Riaz, R., Parveen, S., Shafiq, N., Ali, A., & Rashid, M. (2024). Virtual screening, ADME prediction, drug-likeness, and molecular docking analysis of Fagonia indica chemical constituents against antidiabetic targets. Molecular diversity, 10.1007/s11030-024-10897-7. Advance online publication. https://doi.org/10.1007/s11030-024-10897-7
  • Ridker, P. M., & Rane, M. (2021). Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circulation research, 128(11), 1728–1746. https://doi.org/10.1161/CIRCRESAHA.121.319077
  • Rodríguez, I. A., Serafini, M., Alves, I. A., Lang, K. L., Silva, F. R. M. B., & Aragón, D. M. (2022). Natural Products as Outstanding Alternatives in Diabetes Mellitus: A Patent Review. Pharmaceutics, 15(1), 85. https://doi.org/10.3390/pharmaceutics15010085
  • Roseiro, L.B., Duarte, L.C., Oliveira, D.L., Roque, R., Bernardo-Gil, M.G., Martins, A.I., Sepúlveda, C., Almeida, J., Meireles, M., Gírio, F.M., & Rauter, A. P. (2013). Supercritical, ultrasound and conventional extracts from carob (Ceratonia siliqua L.) biomass: Effect on the phenolic profile and antiproliferative activity. Industrial Crops and Products, 47, 132-138. https://doi.org/10.1016/j.indcrop.2013.02.026
  • Rtibi, K., Selmi, S., Grami, D., Saidani, K., Sebai, H., Amri, M., Eto, B., & Marzouki, L. (2017). Ceratonia siliqua L. (immature carob bean) inhibits intestinal glucose absorption, improves glucose tolerance and protects against alloxan-induced diabetes in rat. Journal of the science of food and agriculture, 97(8), 2664–2670. https://doi.org/10.1002/jsfa.8091
  • Schwartz, M. W., & Porte Jr, D. (2005). Diabetes, obesity, and the brain. Science, 307(5708), 375-379. https://doi.org/10.1126/science.1104344
  • Shrivastav, D., Kumbhakar, S. K., Srivastava, S., & Singh, D. D. (2024). Natural product-based treatment potential for type 2 diabetes mellitus and cardiovascular disease. World journal of diabetes, 15(7), 1603–1614. https://doi.org/10.4239/wjd.v15.i7.1603
  • Singh, R., Gholipourmalekabadi, M., & Shafikhani, S. H. (2024). Animal models for type 1 and type 2 diabetes: advantages and limitations. Frontiers in endocrinology, 15, 1359685. https://doi.org/10.3389/fendo.2024.1359685
  • Soliman, N. A. (2001). Effect of experimentally induced diabetes mellitus on serum leptin level and the role of insulin replacement therapy. The Egyptian Journal of Hospital Medicine, 3(1), 190-208. https://doi.org/10.21608/ejhm.2001.18912
  • Sugden, M., & Holness, M. (2011). Pathophysiology of diabetic dyslipidemia:implications for atherogenesis and treatment. Clinical Lipidology, 6(4), 401–411. https://doi.org/10.2217/clp.11.32
  • Szkudelski T. (2012). Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Experimental biology and medicine (Maywood, N.J.), 237(5), 481–490. https://doi.org/10.1258/ebm.2012.011372
  • Uehara, K., Santoleri, D., Whitlock, A. E. G., & Titchenell, P. M. (2023). Insulin Regulation of Hepatic Lipid Homeostasis. Comprehensive Physiology, 13(3), 4785–4809. https://doi.org/10.1002/cphy.c220015
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Anatomi ve Fizyoloji
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Mehmet Talha Avşar 0000-0002-8347-8688

Abdullah Eryavuz 0000-0001-8602-2400

Proje Numarası 22.SAG.BİL.04
Erken Görünüm Tarihi 19 Eylül 2025
Yayımlanma Tarihi 3 Ekim 2025
Gönderilme Tarihi 25 Kasım 2024
Kabul Tarihi 1 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 3

Kaynak Göster

APA Avşar, M. T., & Eryavuz, A. (2025). The Effect of Carob Aqueous Extract on Oxidative Stress, Proinflammatory Cytokines, Glucose and Lipid Concentrations in the Blood of Diabetic Rats. Kocatepe Veterinary Journal, 18(3), 192-199. https://doi.org/10.30607/kvj.1591051
AMA Avşar MT, Eryavuz A. The Effect of Carob Aqueous Extract on Oxidative Stress, Proinflammatory Cytokines, Glucose and Lipid Concentrations in the Blood of Diabetic Rats. Kocatepe Veterinary Journal. Ekim 2025;18(3):192-199. doi:10.30607/kvj.1591051
Chicago Avşar, Mehmet Talha, ve Abdullah Eryavuz. “The Effect of Carob Aqueous Extract on Oxidative Stress, Proinflammatory Cytokines, Glucose and Lipid Concentrations in the Blood of Diabetic Rats”. Kocatepe Veterinary Journal 18, sy. 3 (Ekim 2025): 192-99. https://doi.org/10.30607/kvj.1591051.
EndNote Avşar MT, Eryavuz A (01 Ekim 2025) The Effect of Carob Aqueous Extract on Oxidative Stress, Proinflammatory Cytokines, Glucose and Lipid Concentrations in the Blood of Diabetic Rats. Kocatepe Veterinary Journal 18 3 192–199.
IEEE M. T. Avşar ve A. Eryavuz, “The Effect of Carob Aqueous Extract on Oxidative Stress, Proinflammatory Cytokines, Glucose and Lipid Concentrations in the Blood of Diabetic Rats”., Kocatepe Veterinary Journal, c. 18, sy. 3, ss. 192–199, 2025, doi: 10.30607/kvj.1591051.
ISNAD Avşar, Mehmet Talha - Eryavuz, Abdullah. “The Effect of Carob Aqueous Extract on Oxidative Stress, Proinflammatory Cytokines, Glucose and Lipid Concentrations in the Blood of Diabetic Rats”. Kocatepe Veterinary Journal 18/3 (Ekim2025), 192-199. https://doi.org/10.30607/kvj.1591051.
JAMA Avşar MT, Eryavuz A. The Effect of Carob Aqueous Extract on Oxidative Stress, Proinflammatory Cytokines, Glucose and Lipid Concentrations in the Blood of Diabetic Rats. Kocatepe Veterinary Journal. 2025;18:192–199.
MLA Avşar, Mehmet Talha ve Abdullah Eryavuz. “The Effect of Carob Aqueous Extract on Oxidative Stress, Proinflammatory Cytokines, Glucose and Lipid Concentrations in the Blood of Diabetic Rats”. Kocatepe Veterinary Journal, c. 18, sy. 3, 2025, ss. 192-9, doi:10.30607/kvj.1591051.
Vancouver Avşar MT, Eryavuz A. The Effect of Carob Aqueous Extract on Oxidative Stress, Proinflammatory Cytokines, Glucose and Lipid Concentrations in the Blood of Diabetic Rats. Kocatepe Veterinary Journal. 2025;18(3):192-9.