Yıl 2020, Cilt 59 , Sayı 1, Sayfalar 25 - 34 2020-03-01

BOX-BEHNKEN DENEY TASARIMI İLE MİKRODALGA ENERJİLİ ISITMANIN YÜKSEK SÜLFÜRLÜ ALTIN FLOTASYON KONSANTRESİNE ETKİLERİ: OPTİMİZASYON VE MODELLEME

Birgül Benli BENLİ [1] , Atacan ADEM [2]


Bu çalışmada, mikrodalga enerjili ısıtmanın, refrakter özelliği gösteren düşük tenörlü altın konsantresine olan etkileri, Box-Behnken deney tasarımı yardımıyla kızdırma kaybı üzerinden modellenerek incelenmektedir. Mikrodalga enerji uygulandığında, ısıtma veya bölgesel kavurma prosesinin etkili parametreleri olarak güç (Watt), süre (dakika) ve kütle (g) bağımsız değişkenleri seçilerek 3 değişkenli Box-Behnken üzerinden 15 adet deney olarak tasarlanmış, bağımlı değişken için model eşitlikleri geliştirilmiştir. Ardından, Minitab programı yardımıyla, yanıt yüzey yöntemine göre etkili parametrelerin optimizasyonu incelenmiştir. Optimizasyon çalışmalarında kullanılan cevher, ülkemizin batı kesimi, Ege bölgesinden temin edilmiş, önceki çalışmalarımız sırasında Denver hücresinde flotasyonla nihai 4 ppm Au ve %21 kükürt içeriğine ulaştırılmıştır. Deneysel çalışmalar sonunda hesaplanan optimizasyon değerlendirmelerine göre 3 g miktardaki numunenin, 30 dakika süresince 680 W’lık mikrodalga enerjisinin aktarımının yeterli olduğu bulunmuştur.
Mikrodalga ısıtma, Refrakter altın, Sülfür, Box-Behnken tasarım, Optimizasyon
  • Acarkan, A., Önal, G., Alpyıldız, S., Açma, E., 2008. Recovery of Cobalt and Copper from Pyrite Concentrate. XXIV. International Mineral Processing Congress (IMPC), 24-28 Eylül, Beijing, China, 3069- 3074.
  • Ağaçayak, T., 2008. Karaçam (Eskişehir) Lateritik Nikel Cevherinin Fiziksel ve Kimyasal Yöntemlerle Zenginleştirilmesi. Doktora Tezi, Selçuk Üniversitesi, s. 215.
  • Akdağ, M., 2008. Investigation of Cobalt Solubilities from Pyrite Cinder in Sulphuric Acid Solution. IBSU Scientific Journal, 2, 2137-142.
  • Alves Dias P., Blagoeva D., Pavel C., Arvanitidis N., 2018. Cobalt: Demand-Supply Balances in the Transition to Electric Mobility. JRC Science for Policy Report, European Commission, EUR 29381 EN, Publications Office of the European Union, Luxembourg, ISBN 978- 92-79-94311-9, doi:10.2760/97710, JRC112285.
  • Anon, 2018. Eti Bakır Mazıdağı Metal Geri Kazanım ve Entegre Gübre Tesisleri. Sektör Maden, Yurt Madenciliğini Geliştirme Vakfı Yayını, 68 (7), 20-21. Antonijević, M. M., Dimitrijević, M., Janković, Z., 1997. Leaching of Pyrite with Hydrogen Peroxide in Sulphuric Acid. Hydrometallurgy, 46 (1), 71-83.
  • Arslan, C., Arslan, F., 2002. Recovery of Copper, Cobalt and Zinc from Copper Smelter and Converter Slags. Hydrometallurgy, 67, 1-7.
  • Aydın, O., 2012. Maden Kaynakları ve Potansiyeli ile Kastamonu. Madencilik Türkiye Dergisi, 25, 70-76.
  • Aydın, O., Kılıç, C., 2012. Antik Çağlardan Günümüzde Kobalt. Madencilik Türkiye Dergisi, 20, 70-75.
  • Bamber, A., Barnes, A., 2019. Nickel and Cobalt, Chapter 12.25, SME Mineral Processing & Extractive Metallurgy Handbook (Ed.: Dunne, Robert C. Kawatra, S. Komar Young, Courtney A.). Society for Mining, Metallurgy and Exploration (SME), s. 2312.
  • Baştürkçü, H., Acarkan, N., 2015. Lateritik Nikel Cevherleri. Madencilik Türkiye Dergisi, 48, 76-82.
  • Biswas, S., Mulaba-Bafubiandi, A. F., 2016. Extraction of Copper and Cobalt from Oxidized Ore using Organic Acids. Hydrometallurgy Conference 2016, Cape Town, 1-3 Ağustos, 193-200.
  • Bulut, G., 2006. Recovery of Copper and Cobalt from Ancient Slag. Waste Management and Research 24, 118-124.
  • Canbazoğlu, M., Uzun, M., Çelik, Ö., Köse, M., 1985. Küre Piritli Bakır Cevherlerinden Kobalt Bakır, Altın ve Gümüşün Hidrometalurjik Süreçlerle Kazanılma Olanakları. 9. Türkiye Madencilik Bilimsel ve Teknik Kongresi, 6-10 Mayıs, Ankara, 59-74.
  • Canterford, J. H., 1983. Pressure Leaching of Thackaringa Cobalt-Bearing Pyrite. Proc. Australas. Insl. Min. Metal, 287, 35-37. Cheng, C., Urbani, M. D., 2005. The Recovery of Nickel and Cobalt from Leach Solutions by Solvent Extraction: Process Overview, Recent Research and Development. Proceedings of ISEC, 503-526.
  • Çiftçi H., Atik, S., 2014. Lateritik Cevherlerden Nikel Kazanımında Biyoliç Yöntemi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30 (4), 275-284.
  • Çiftçi, H., Atik S., Gürbüz, F., 2015. Lateritik Nikel Cevherinin Asidofilik Bakteriler ile Biyoliçi. Pamukkale Üniversitesi Mühendislik Fakültesi Bilimleri Dergisi, 22 (6), 546-552.
  • Çokgör, O., Topkaya, Y. A., 1988. Extraction of Cobalt and Copper from Küre Pyrite Concentrate. Minerals Engineering, 1 (3), 213-223.
  • Çolak, S., Demir, Ü., Saraç, H., Ceyhun, İ., 1993. Pirit Kalsinelerinin Amonyak Altında Basınç Liçingi. Çevre Dergisi, 8, 39-44.
  • Crundwell, F. K., Moats, M. S., Ramachandran, V., Robinson, T., Davenport, W. G., 2011. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, 622.
  • Dannenberg, R. O., Gardner, P. C., Crane, S. R., 1987. Recovery of Cobalt and Copper From Complex Sulfide Concentrates. Bureau of Mines Report of Investigations 9138, s. 20.
  • Dinçer, H., Gock, E., Önal, G., Lips, R., 2002. The Possibilities of Copper, Cobalt and Gold Production from Old Copper Flotation Stailings in Lefke (Cyprus). IX. International Mineral Processing Symposium (IMPS), Kapadokya, Türkiye, 166-167.
  • Donaldson, J. D., 1986. Cobalt and Cobalt Compounds. ln: Gerhartz, W., Yamamoto, Y.S., Campbell, EL, pfefferkom, R. & Rounsavile, J.F., eds, Ullman’s Encyclopedia of Industrial Chemistry, beşinci baskı, Weinheim, VCH-Verlag, 281-313.
  • Donaldson, J. D., Gaedcke, H., 1998. Cobalt. In: F. Habashi (Ed.), Handbook of Extractive Metallurgy. Wiley-VCH, New York, 923-951.
  • Donald, A. B., Walden, P. P., 1973. United States Mineral. Cobalt. John, S.V., Donald, A. Allen, V. 143- 156.
  • DPT, 2006. Dokuzuncu Kalkınma Planı (2007-2013). Metal Madenler Alt Komisyon Raporu, Nikel-Kobalt. Dry, M., 2015. Technical&Cost Comparison of Laterite Treatment Processes – Part 3. Nickel-Cobalt-Copper Proceedings, 23-30 Mayıs, ALTA, 23-47.
  • EC, 2014. Report on Critical Raw Materials for the EU. Report of the Ad hoc Working Group on Defining Critical Raw Materials, European Commission (EC), Mayıs, s. 41.
  • EC, 2017. Study on the Review of The List of Critical Raw Materials - Criticality Assessments, European Commmision (EC), s. 92.
  • Erust, C., Akcil, A., 2016. Copper and Cobalt Recovery from Pyrite Ashes of a Sulphuric Acid Plant. Waste Management and Research. The Journal of The International Solid Wastes and Public Cleansing Association, ISWA, 34 (6), 527-533.
  • Evangelou, V. P., 1995. Pyrite Oxidation and Its Control. CRC Press, New York. Fisher, K.G., 2011. Cobalt Processing Developments. 6th Southern African Base Metals Conference, South Africa, 237-257.
  • Girgin, İ., Obut, A., Üçyıldız, A., 2010. Dissolution Behaviour of a Turkish Lateritic Nickel Ore. Min. Eng., 24 (7), 603-609.
  • Habashi, F., 1999. Textbook of Hydrometallurgy. Metallurgie Extractive Quebec, s. 739.
  • Hawkins, M. J., 1998. Recovering Cobalt from Primary and Secondary Sources. Journal of Minerals, Metals and Materials Society, 50 (10), 46-50.
  • Hubli, R. C., Mittra, J., Suri, A. K., 1997. Reduction- Dissolution of Cobalt Oxide in Acid Media: A Kinetic Study. Hydrometallurgy, 44, 125-134.
  • Kadıoğlu, Y. Y., Karaca, S., Bayrakçeken, S., 1995. Kinetics of Pyrite Oxidation in Aqueous Suspension by Nitric Acid. Fuel Processing Technology, 41(3), 273- 287.
  • Kapusta, J. P. T., 2006. Cobalt Production and Markets: A brief Overview. JOM, 58 (10), 33-36.
  • Kaya, Ş., 2011. Türk Lateritlerinin Yüksek Basınç Altında Asit Liçi, Yüksek Lisans tezi, Orta Doğu Teknik Üniversitesi, Ankara.
  • Kursunoglu, S., Kaya, M., 2019. Hydrometallurgical Processing of Nickel Laterites - A Brief Overview on the Use of Solvent Extraction and Nickel/Cobalt Project for the Separation and Purification of Nickel and Cobalt, Bilimsel Madencilik Dergisi, 58 (2), 131-144.
  • MMO, 2012. Nikel Raporu, Maden Mühendisleri Odası, Kasım, s. 52.
  • Morin, D., Spolaore, P., d’Hugues, P., Tezcan, A., Mafa, Ö., 2010. Pyrite Bioleaching and Slag Neutralisationtwo Treatments in a Single Process for Recovering Valuable Metals from Both Materials, XXV International Mineral Processing Congress (IMPC), 469-477.
  • Motteram, G., Ryan, M., Berezowsky, R., Raudsepp, R., 1996. Murrin Murrin Nickel and Cobalt Project: Project Development Overview. ALTA Nickel/Cobalt Pressure Leaching and Hydrometallurgy Forum. ALTA Metalurji Servisi, Perth, Western Australia,
  • Özdemir, V., 2006. Hydrometallurgical Extraction of Nickel and Cobalt from Çaldağ Laterite Ore. Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Maden Mühendisliği Bölümü, s. 80.
  • Panda, S., Akcil, A., Mishra, S., Erust, C., 2017. Synergistic Effect of Biogenic Fe3+ Coupled to S° Oxidation on Simultaneous Bioleaching of Cu, Co, Zn and As from Hazardous Pyrite Ash Waste. Journal of Hazardous Materials, 325, 59-70.
  • Planinsek, E., Newkirk, J. B., 1979. Cobalt and Cobalt Alloys. ln: Mark, H.E, Othmer, D.E, Overberger, C.G., Seaborg, G:r. ve Grayson, M., eds, Kirk-Othmer Encylopedia of Chemical technology. New York, John Wiley & Sons, 6 (3), 481-494.
  • RIS, 1989. The Economies of Cobalt. 6th ed., London, Roskil Information Services Ltd., 1-12.
  • Roberts, S., Gunn, G., 2014. Critical Metals Handbook, Birinci Baskı, John Wiley & Sons Ltd. Shedd, K. B., 1988. Cobalt. ln: Minerals Yearbook 1988, Washington De, Bureau of Mines, US Department of the Interior, 1-10.
  • Sole, K. C., Parker, J., Cole, P. M., Mooiman, M. B., 2019. Flowsheet Options for Cobalt Recovery in African Copper–cobalt Hydrometallurgy Circuits. Mineral Processing and Extractive Metallurgy Review, 40 (3), 194-206.
  • Stanley, R. W., Monette, S., Harris, B., 1984. Process for the Selective Dissolution of Cobalt from Cobaltite- Pyrite Concentrates. Google Patents.
  • Studentsov, V. V., Davydov, G. I., Abishev, D. N., Balakirev, V.F., 1996. Investigation of the Process of Cobalt and Nickel Sulphation from Pyrite Concentrate and Nickel Matte. Australasian Institute of Mining and Metallurgy, Kalgoorlie, Australia, 305-310.
  • Sukla, L. B., Panda, S. C., Jena, P. K., 1986. Recovery of Cobalt, Nickel and Copper from Converter Slag Through Roasting with Ammonium Sulphate and Sulphuric Acid, Hydrometallurgy, 16 (2), 153-165.
  • Tugrul, N., Derun, E. M., Piskin, M., Piskin, S., 2003. Evaluation of Pyrite Ash Wastes Acid Production Industry. 8th International Conference on Environmental Science and Technology, Greece, 918-925.
  • Tufan, E. A., 2014. Ni-Lateritlerin Oluşumu ve Özellikleri. BAÜ Fen Bil. Enst. Dergisi, 16 (2), 68-78. URL-1, 2019. http://www.lme.com/metals/minormetals/ cobalt/, Erişim tarihi: 18.05.2019
  • URL-2, 2019. Murrin Murrin Nickel Cobalt Operation, http://www.minara.com.au/about/operations-overview/ technology, Erişim tarihi: 18.05.2019
  • URL-3, 2019. http://www.minara.com. au/files/docs/ 411_Murrin_Murrin_Process_and_Tech_Flow_Chart_ FINAL_-_8_August_2011.pdf, Erişim tarihi: 18.05.2019 URL-4, 2019. http://www.metanikel.com.tr/teknoloji, Erişim tarihi: 18.05.2019
  • USGS, 2007. Mineral Commodity Summaries – Cobalt, U.S. Geological Survey (USGS), 48-49.
  • USGS, 2017. Mineral Commodity Summaries – Cobalt, U.S. Geological Survey (USGS), 52-54.
  • USGS, 2018. Mineral Commodity Summaries – Cobalt, U.S. Geologica Survey (USGS), 50-51.
  • USGS, 2019. Mineral Commodity Summaries – Cobalt, U.S. Geological Survey (USGS), 50-51
  • Yaylalı, B., Yazici, E., Celep, O., Deveci, H., 2016. Extraction of Cobalt from a Flotation Tailings in Different Mineral Acids Under Oxidative Conditions. 15th International Mineral Processing Symposium (IMPS), 726-736.
  • Yaylalı, B., 2017. Piritik Atıklardan Kobalt Kazanımı. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
  • Yesil, M. M., Iplikcioglu, A. S., Topkaya, Y., 2015. Gördes Nickel Cobalt HPAL Project in Turkey. Perth, Australia, 450-464.
  • Yiğit, Y., Kuzu, M., Yazici, E. Y., Celep, O., Deveci, H., 2017. Leaching of Metals from Flotation Tailings of a Copper Smelter Slag in Acidic Solutions. 25th International Mining Congress (IMCET), 614-622.
  • Yücel, O., Addemir, O., Tekin, A., Nizamoglu, S., 1992. Recovery of Cobalt from Copper Slags. Mineral Processing and Extractive Metallurgy Review, 10, 99- 107.
  • Yüksel, U., 2011. Kastamonu-Küre’den Temin Edilen Bakır Cüruflarının Değerlendirilmesi. Doktora Tezi, Dicle Üniversitesi, Fen Bilimleri Enstitüsü, Diyarbakır.
  • Ziyadanogullari, B., 2000. Recovery of Copper and Cobalt from Concentrate and Converter Slag. Separation Science and Technology, 35 (12), 1963- 1971.
  • Wang, S., 2006. Cobalt—Its Recovery, Recycling and Application. JOM, 58, 47-50.
  • Wedderburn, B., 2009. A Nickel Laterite Processing a Shift Towards Heap Leaching. ALTA Nickel-Cobalt, 25- 27 Mayıs, Perth, Avustralya.
  • Welham, N. J., Johnston, G. M., Sutcliffe, M. L., 2015. AmmLeach – A New Paradigm in Copper-Cobalt Processing. Copper Cobalt Africa, The 8th Southern African Base Metals Conference. Livingstone, Zambia, 207-216.
Birincil Dil tr
Konular Mühendislik, Ortak Disiplinler
Bölüm Araştırma Makalesi
Yazarlar

Orcid: 0000-0001-7386-5003
Yazar: Birgül Benli BENLİ (Sorumlu Yazar)
Kurum: İSTANBUL TEKNİK ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0002-8870-5333
Yazar: Atacan ADEM
Kurum: İSTANBUL TEKNİK ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 1 Mart 2020

Bibtex @araştırma makalesi { madencilik705491, journal = {Bilimsel Madencilik Dergisi}, issn = {2564-7024}, address = {Selanik Cad. No: 19/4 06650 Kızılay-Çankaya / ANKARA - TURKEY}, publisher = {TMMOB Maden Mühendisleri Odası}, year = {2020}, volume = {59}, pages = {25 - 34}, doi = {10.30797/madencilik.705491}, title = {BOX-BEHNKEN DENEY TASARIMI İLE MİKRODALGA ENERJİLİ ISITMANIN YÜKSEK SÜLFÜRLÜ ALTIN FLOTASYON KONSANTRESİNE ETKİLERİ: OPTİMİZASYON VE MODELLEME}, key = {cite}, author = {BENLİ, Birgül Benli and ADEM, Atacan} }
APA BENLİ, B , ADEM, A . (2020). BOX-BEHNKEN DENEY TASARIMI İLE MİKRODALGA ENERJİLİ ISITMANIN YÜKSEK SÜLFÜRLÜ ALTIN FLOTASYON KONSANTRESİNE ETKİLERİ: OPTİMİZASYON VE MODELLEME. Bilimsel Madencilik Dergisi , 59 (1) , 25-34 . DOI: 10.30797/madencilik.705491
MLA BENLİ, B , ADEM, A . "BOX-BEHNKEN DENEY TASARIMI İLE MİKRODALGA ENERJİLİ ISITMANIN YÜKSEK SÜLFÜRLÜ ALTIN FLOTASYON KONSANTRESİNE ETKİLERİ: OPTİMİZASYON VE MODELLEME". Bilimsel Madencilik Dergisi 59 (2020 ): 25-34 <https://dergipark.org.tr/tr/pub/madencilik/issue/53216/705491>
Chicago BENLİ, B , ADEM, A . "BOX-BEHNKEN DENEY TASARIMI İLE MİKRODALGA ENERJİLİ ISITMANIN YÜKSEK SÜLFÜRLÜ ALTIN FLOTASYON KONSANTRESİNE ETKİLERİ: OPTİMİZASYON VE MODELLEME". Bilimsel Madencilik Dergisi 59 (2020 ): 25-34
RIS TY - JOUR T1 - BOX-BEHNKEN DENEY TASARIMI İLE MİKRODALGA ENERJİLİ ISITMANIN YÜKSEK SÜLFÜRLÜ ALTIN FLOTASYON KONSANTRESİNE ETKİLERİ: OPTİMİZASYON VE MODELLEME AU - Birgül Benli BENLİ , Atacan ADEM Y1 - 2020 PY - 2020 N1 - doi: 10.30797/madencilik.705491 DO - 10.30797/madencilik.705491 T2 - Bilimsel Madencilik Dergisi JF - Journal JO - JOR SP - 25 EP - 34 VL - 59 IS - 1 SN - 2564-7024- M3 - doi: 10.30797/madencilik.705491 UR - https://doi.org/10.30797/madencilik.705491 Y2 - 2020 ER -
EndNote %0 Bilimsel Madencilik Dergisi BOX-BEHNKEN DENEY TASARIMI İLE MİKRODALGA ENERJİLİ ISITMANIN YÜKSEK SÜLFÜRLÜ ALTIN FLOTASYON KONSANTRESİNE ETKİLERİ: OPTİMİZASYON VE MODELLEME %A Birgül Benli BENLİ , Atacan ADEM %T BOX-BEHNKEN DENEY TASARIMI İLE MİKRODALGA ENERJİLİ ISITMANIN YÜKSEK SÜLFÜRLÜ ALTIN FLOTASYON KONSANTRESİNE ETKİLERİ: OPTİMİZASYON VE MODELLEME %D 2020 %J Bilimsel Madencilik Dergisi %P 2564-7024- %V 59 %N 1 %R doi: 10.30797/madencilik.705491 %U 10.30797/madencilik.705491
ISNAD BENLİ, Birgül Benli , ADEM, Atacan . "BOX-BEHNKEN DENEY TASARIMI İLE MİKRODALGA ENERJİLİ ISITMANIN YÜKSEK SÜLFÜRLÜ ALTIN FLOTASYON KONSANTRESİNE ETKİLERİ: OPTİMİZASYON VE MODELLEME". Bilimsel Madencilik Dergisi 59 / 1 (Mart 2020): 25-34 . https://doi.org/10.30797/madencilik.705491
AMA BENLİ B , ADEM A . BOX-BEHNKEN DENEY TASARIMI İLE MİKRODALGA ENERJİLİ ISITMANIN YÜKSEK SÜLFÜRLÜ ALTIN FLOTASYON KONSANTRESİNE ETKİLERİ: OPTİMİZASYON VE MODELLEME. Madencilik. 2020; 59(1): 25-34.
Vancouver BENLİ B , ADEM A . BOX-BEHNKEN DENEY TASARIMI İLE MİKRODALGA ENERJİLİ ISITMANIN YÜKSEK SÜLFÜRLÜ ALTIN FLOTASYON KONSANTRESİNE ETKİLERİ: OPTİMİZASYON VE MODELLEME. Bilimsel Madencilik Dergisi. 2020; 59(1): 34-25.