In this work, the dissolution properties of a dolomite containing zinc carbonate (smithsonite) ore
sample having 24.22% ZnO were determined in sodium hydroxide solutions using X-ray diffraction
(XRD), Fourier-transform infrared spectroscopy (FT-IR), thermal (TG/DTA) and chemical analyses
methods. It was observed that the dissolution efficiency value of zinc continuously increased with
the increase of sodium hydroxide concentration from 1 to 4 M and the highest zinc dissolution
efficiency of 70.7% was reached after dissolution in 4 M NaOH solution at temperature of 298 K.
The XRD, FT-IR, TG/DTA and chemical analyses of undissolved solids obtained after dissolution
of ore sample in 4 M NaOH solution at 298 K revealed that the smithsonite phase in the sample
completely dissolved whereas the main gangue mineral dolomite remained practically unaffected,
showing the selectivity of sodium hydroxide solution considering zinc dissolution. Although the
smithsonite phase in the sample totally dissolved, hundred percent zinc dissolution efficiency
could not be reached, which may indicate the presence of zinc in the gangue components, i.e.
dolomite, clay minerals etc., of the studied ore sample.
Abkhoshk, E., Jorjani, E., Al-Harahsheh, M. S., Rashchi,
F., Naazeri, M., 2014. Review of the Hydrometallurgical
Processing of Non-sulfide Zinc Ores. Hydrometallurgy,
149, 153-167.
Adler, H. H., Kerr, P. F., 1963. Infrared Absorption
Frequency Trends for Anhydrous Normal Carbonates.
Am. Mineral., 48, 124-137.
Arfè, G., Mondillo, N., Balassone, G., Boni, M.,
Cappelletti, P., Di Palma, T., 2017. Identification of Znbearing
Micas and Clays from the Cristal and Mina
Grande Zinc Deposits (Bongará province, Amazonas
region, northern Peru). Mineral-Basel, 7, 214.
Balassone, G., Nieto, F., Arfè, G., Boni, M., Mondillo, N.,
2017. Zn-Clay Minerals in the Skorpion Zn Nonsulfide
Deposit (Namibia): Identification and Genetic Clues
Revealed by HRTEM and AEM Study. Appl. Clay Sci.,
150, 309-322.
Boni, M., Schmidt, P. R., De Wet, J. R., Singleton, J.
D., Balassone, G., Mondillo, N., 2009a. Mineralogical
Signature of Nonsulfide Zinc Ores at Accha (Peru): A
Key for Recovery. Int. J. Miner. Process., 93, 267-277.
Boni, M., Balassone, G., Arseneau, V., Schmidt, P.,
2009b. The Nonsulfide Zinc Deposit at Accha (southern
Peru): Geological and Mineralogical Characterization.
Econ. Geol., 104, 267-289.
Boni, M., Mondillo, N., Balassone, G., Joachimski,
M., Coella, A., 2013. Zincian Dolomite Related to
Supergene Alteration in the Iglesias Mining District
(SW Sardinia). Int. J. Earth. Sci., 102, 61-71.
Borg, G., Kärner, K., Buxton, M., Armstrong, R., Van
Der Merwe, S. W., 2003. Geology of the Skorpion
Supergene Zinc Deposit, Southern Namibia. Econ.
Geol., 98, 749-771.
Choulet, F., Buatier, M., Barbanson, L., Guègan, R.,
Ennaciri, A., 2016. Zinc-Rich Clays in Supergene Non-
Sulfide Zinc Deposits. Miner. Deposita, 51, 467-490.
Coppola, V., Boni, M., Gilg, H. A., Strzelska-
Smakowska, B., 2009. Nonsulfide Zinc Deposits in
the Silesia-Cracow District, Southern Poland. Miner.
Deposita, 44, 559-580.
Cuthbert, F. L., Rowland, R. A., 1947. Differential
Thermal Analysis of Some Carbonate Minerals. Am.
Mineral., 32, 111-116.
Debiemme-Chouvy, C., Vedel, J., 1991. Supersaturated
Zincate Solutions: A study of the Decomposition
Kinetics. J. Electrochem. Soc., 138, 2538-2542.
Dhawan, N., Safarzadeh, M. S., Birinci, M., 2011.
Kinetics of Hydrochloric Acid Leaching of Smithsonite.
Russ. J. Non-Ferr. Met., 52, 209-216.
DPT, 2001. State Planning Organization, Eighth
Five-year Development Plan, Mining Specialization
Commission Report, Subcommittee of Metal Mines,
Lead-Zinc-Cadmium Study Group Report. DPT:2628,
OİK:639, Ankara, 85-167 (in Turkish).
Ehsani, I., Ucyildiz, A., Obut, A., 2019. Leaching
Behaviour of Zinc from a Smithsonite Ore in Sodium Hydroxide
Solutions. Physicochem. Probl. Mi., 55, 407-416.
Ejtemaei, M., Gharabaghi, M., Irannajad, M., 2014.
A Review of Zinc Oxide Mineral Beneficiation Using
Flotation Method. Adv. Colloid Interfac., 206, 68-78.
Feng, L., Yang, X., Shen, Q., Xu, M., Jin, B., 2007.
Pelletizing and Alkaline Leaching of Powdery Low-
Grade Zinc Oxide ores. Hydrometallurgy, 89, 305-310.
Frenay, J., 1985. Leaching of Oxidized Zinc Ores in
Various Media. Hydrometallurgy, 15, 243-253.
Frost, R. L., Ding, Z., Ruan, H. D., 2003. Thermal
Analysis of Goethite Relevance to Australian
İndigenous art. J. Therm. Anal. Calorim., 73, 783.
Ghasemi, S. M. S., Azizi, A., 2017. Investigation of
Leaching Kinetics of Zinc from a Low-grade Ore in
Organic and Inorganic Acids. J. Min. Environ., 8, 579-
591.
Ghasemi, S. M. S., Azizi, A., 2018. Alkaline Leaching
of Lead and Zinc by Sodium Hydroxide: Kinetics
Modeling. J. Mater. Res. Technol., 7, 118-125.
Gillott, J. E., 1964. Mechanism and Kinetics of
Expansion in the Alkali-carbonate Rock Reaction. Can.
J. Earth Sci., 1, 121-145.
Grim, R. E., Rowland, R. A., 1942. Differential Thermal
Analysis of Clay Minerals and Other Hydrous Materials.
Part 1. Am. Mineral., 27, 746-761.
Hitzman, M. W., Reynolds, N. A., Sangster, D. F., Allen,
C. R., Carman, C. E., 2003. Classification, Genesis,
and Exploration Guides for Nonsulfide Zinc Deposits.
Econ. Geol., 98, 685-714.
Hosseini, S. H., Forssberg, E., 2009. Smithsonite
Flotation Using Mixed Anionic/Cationic Collector. T. I.
Min. Metall. C, 118, 186-190.
Huang, C. K., Kerr, P. F., 1960. Infrared Study of the
Carbonate Minerals. Am. Mineral., 45, 311-324.
Hurlbut, C. S. Jr., 1957. Zincian and Plumbian Dolomite
from Tsumeb, South-West Africa. Am. Mineral., 42,
798-803.
Moezzi, A., Cortie, M., McDonagh, A., 2011.
Aqueous Pathways for the Formation of Zinc Oxide
Nanoparticles. Dalton T., 40, 4871-4878.
Mondillo, N., Boni, M., Balassone, G., Grist, B., 2011.
In Search of the Lost Zinc: A Lesson from the Jabali
(Yemen) Nonsulfide Zinc Deposit. J. Geochem. Explor.,
108, 209-219.
Mondillo, N., Boni, M., Balassone, G., Joachimski, M.,
Mormone, A., 2014. The Jabali Nonsulfide Zn-Pb-Ag
Deposit, Western Yemen. Ore Geol. Rev., 61, 248-267.
Mondillo, N., Nieto, F., Balassone, G., 2015. Microand
Nano-characterization of Zn-clays in Nonsulfide
Supergene Ores of Southern Peru. Am. Mineral., 100,
2484-2496.
Mujahed, S. B., 1966. Electrowinning in Alkaline
Medium-Electrolytic Production of Lead and Zinc from
an Oxidized Ore from Develi (Kayseri) via Caustic
Leaching. MSc Thesis, Middle East Technical Univ.
Paradis, S., Keevil, H., Simandl, G. J., Raudsepp,
M., 2015. Carbonate-hosted Nonsulphide Zn-Pb
Mineralization of Southern British Columbia, Canada.
Miner. Deposita, 50, 923-951.
Rosenberg, P. E., Champness, P. E., 1989. Zincian
Dolomites and Associated Carbonates from the
Waryński Mine, Poland: An AEM investigation. Am.
Mineral., 74, 461-465.
Santoro, L., Boni, M., Rollinson, G. K., Mondillo, N.,
Balassone, G., Clegg, A. M., 2014. Mineralogical
Characterization of the Hakkari nonsulfide Zn(Pb)
Deposit (Turkey): The Benefits of QEMSCAN®. Miner.
Eng., 69, 29-39.
Uekawa, N., Yamashita, R., Wu, Y. J., Kakegawa, K.,
2004. Effect of Alkali Metal Hydroxide on Formation
Processes of Zinc Oxide Crystallites from Aqueous
Solutions Containing Zn(OH)4
2– ions. Phys. Chem.
Chem. Phys., 6, 442-446.
Wang, Y. M., Wainwright, G., 1986. Formation and
Decomposition Kinetic Studies of Calcium Zincate in
20 w/o KOH. J. Electrochem. Soc., 133, 1869-1872.
Weir, C. E., Lippincott, E. R., 1961. Infrared Studies
of Aragonite, Calcite, and Vaterite Type Structures in
the Borates, Carbonates, and Nitrates. J. Res. N.B.S.
A Phys. Ch., 65, 173-183.
Whittaker, E. J. W., Żabiński, W., 1981. X-ray Diffraction
by Zincian Dolomite. Mineralog. Pol., 12, 15-24.
Zhang, Y., Deng, J., Chen, J., Yu, R., Xing, X., 2013.
Leaching of Zinc from Calcined Smithsonite Using
Sodium Hydroxide. Hydrometallurgy, 131&132, 89-92.
Zhao, Y., Stanforth, R., 2000. Production of Zn Powder
by Alkaline Treatment of Smithsonite Zn-Pb Ores.
Hydrometallurgy, 56, 237-249.
DOLOMİT İÇEREN BİR ÇİNKO CEVHERİNİN SODYUM HİDROKSİT ÇÖZELTİLERİNDEKİ ÇÖZÜNME ÖZELLİKLERİ
Bu çalışmada, dolomit içeren bir çinko karbonat (simitsonit) cevher numunesinin (%24,22 ZnO)
sodyum hidroksit çözeltilerindeki çözünme özellikleri X-ışını kırınımı (XRD), Fourier dönüşümlü
kızılötesi spektroskopisi (FT-IR), ısıl (TG/DTA) ve kimyasal analiz yöntemleri kullanılarak
belirlenmiştir. Sodyum hidroksit derişiminin 1’den 4 M’ye artırılmasıyla çinko çözünme verimi
değerinin sürekli olarak arttığı gözlenmiş ve %70,7’lik en yüksek çinko çözünme verimine 298
K sıcaklıktaki 4 M NaOH çözeltisinde yapılan çözme işlemi sonrasında ulaşılmıştır. Cevher
numunesinin 298 K’deki 4 M NaOH çözeltisinde çözündürülmesi sonrasında elde edilen
çözünmemiş katıların XRD, FT-IR, TG/DTA ve kimyasal analizleri, numune içindeki simitsonit
fazının tamamen çözündüğü halde ana gang minerali dolomitin büyük ölçüde çözünmeden kaldığını
ortaya çıkarmakta, bu durum da çinko çözünmesi dikkate alındığında sodyum hidroksit çözeltisinin
seçiciliğini göstermektedir. Numunedeki simitsonit fazının tümünün çözünmesine rağmen yüzde
yüz çinko çözünme verimine ulaşılamaması, çalışılan cevher numunesi içinde bulunan dolomit, kil
mineralleri vb. gibi gang bileşenlerindeki muhtemel çinko varlığını işaret etmektedir.
Abkhoshk, E., Jorjani, E., Al-Harahsheh, M. S., Rashchi,
F., Naazeri, M., 2014. Review of the Hydrometallurgical
Processing of Non-sulfide Zinc Ores. Hydrometallurgy,
149, 153-167.
Adler, H. H., Kerr, P. F., 1963. Infrared Absorption
Frequency Trends for Anhydrous Normal Carbonates.
Am. Mineral., 48, 124-137.
Arfè, G., Mondillo, N., Balassone, G., Boni, M.,
Cappelletti, P., Di Palma, T., 2017. Identification of Znbearing
Micas and Clays from the Cristal and Mina
Grande Zinc Deposits (Bongará province, Amazonas
region, northern Peru). Mineral-Basel, 7, 214.
Balassone, G., Nieto, F., Arfè, G., Boni, M., Mondillo, N.,
2017. Zn-Clay Minerals in the Skorpion Zn Nonsulfide
Deposit (Namibia): Identification and Genetic Clues
Revealed by HRTEM and AEM Study. Appl. Clay Sci.,
150, 309-322.
Boni, M., Schmidt, P. R., De Wet, J. R., Singleton, J.
D., Balassone, G., Mondillo, N., 2009a. Mineralogical
Signature of Nonsulfide Zinc Ores at Accha (Peru): A
Key for Recovery. Int. J. Miner. Process., 93, 267-277.
Boni, M., Balassone, G., Arseneau, V., Schmidt, P.,
2009b. The Nonsulfide Zinc Deposit at Accha (southern
Peru): Geological and Mineralogical Characterization.
Econ. Geol., 104, 267-289.
Boni, M., Mondillo, N., Balassone, G., Joachimski,
M., Coella, A., 2013. Zincian Dolomite Related to
Supergene Alteration in the Iglesias Mining District
(SW Sardinia). Int. J. Earth. Sci., 102, 61-71.
Borg, G., Kärner, K., Buxton, M., Armstrong, R., Van
Der Merwe, S. W., 2003. Geology of the Skorpion
Supergene Zinc Deposit, Southern Namibia. Econ.
Geol., 98, 749-771.
Choulet, F., Buatier, M., Barbanson, L., Guègan, R.,
Ennaciri, A., 2016. Zinc-Rich Clays in Supergene Non-
Sulfide Zinc Deposits. Miner. Deposita, 51, 467-490.
Coppola, V., Boni, M., Gilg, H. A., Strzelska-
Smakowska, B., 2009. Nonsulfide Zinc Deposits in
the Silesia-Cracow District, Southern Poland. Miner.
Deposita, 44, 559-580.
Cuthbert, F. L., Rowland, R. A., 1947. Differential
Thermal Analysis of Some Carbonate Minerals. Am.
Mineral., 32, 111-116.
Debiemme-Chouvy, C., Vedel, J., 1991. Supersaturated
Zincate Solutions: A study of the Decomposition
Kinetics. J. Electrochem. Soc., 138, 2538-2542.
Dhawan, N., Safarzadeh, M. S., Birinci, M., 2011.
Kinetics of Hydrochloric Acid Leaching of Smithsonite.
Russ. J. Non-Ferr. Met., 52, 209-216.
DPT, 2001. State Planning Organization, Eighth
Five-year Development Plan, Mining Specialization
Commission Report, Subcommittee of Metal Mines,
Lead-Zinc-Cadmium Study Group Report. DPT:2628,
OİK:639, Ankara, 85-167 (in Turkish).
Ehsani, I., Ucyildiz, A., Obut, A., 2019. Leaching
Behaviour of Zinc from a Smithsonite Ore in Sodium Hydroxide
Solutions. Physicochem. Probl. Mi., 55, 407-416.
Ejtemaei, M., Gharabaghi, M., Irannajad, M., 2014.
A Review of Zinc Oxide Mineral Beneficiation Using
Flotation Method. Adv. Colloid Interfac., 206, 68-78.
Feng, L., Yang, X., Shen, Q., Xu, M., Jin, B., 2007.
Pelletizing and Alkaline Leaching of Powdery Low-
Grade Zinc Oxide ores. Hydrometallurgy, 89, 305-310.
Frenay, J., 1985. Leaching of Oxidized Zinc Ores in
Various Media. Hydrometallurgy, 15, 243-253.
Frost, R. L., Ding, Z., Ruan, H. D., 2003. Thermal
Analysis of Goethite Relevance to Australian
İndigenous art. J. Therm. Anal. Calorim., 73, 783.
Ghasemi, S. M. S., Azizi, A., 2017. Investigation of
Leaching Kinetics of Zinc from a Low-grade Ore in
Organic and Inorganic Acids. J. Min. Environ., 8, 579-
591.
Ghasemi, S. M. S., Azizi, A., 2018. Alkaline Leaching
of Lead and Zinc by Sodium Hydroxide: Kinetics
Modeling. J. Mater. Res. Technol., 7, 118-125.
Gillott, J. E., 1964. Mechanism and Kinetics of
Expansion in the Alkali-carbonate Rock Reaction. Can.
J. Earth Sci., 1, 121-145.
Grim, R. E., Rowland, R. A., 1942. Differential Thermal
Analysis of Clay Minerals and Other Hydrous Materials.
Part 1. Am. Mineral., 27, 746-761.
Hitzman, M. W., Reynolds, N. A., Sangster, D. F., Allen,
C. R., Carman, C. E., 2003. Classification, Genesis,
and Exploration Guides for Nonsulfide Zinc Deposits.
Econ. Geol., 98, 685-714.
Hosseini, S. H., Forssberg, E., 2009. Smithsonite
Flotation Using Mixed Anionic/Cationic Collector. T. I.
Min. Metall. C, 118, 186-190.
Huang, C. K., Kerr, P. F., 1960. Infrared Study of the
Carbonate Minerals. Am. Mineral., 45, 311-324.
Hurlbut, C. S. Jr., 1957. Zincian and Plumbian Dolomite
from Tsumeb, South-West Africa. Am. Mineral., 42,
798-803.
Moezzi, A., Cortie, M., McDonagh, A., 2011.
Aqueous Pathways for the Formation of Zinc Oxide
Nanoparticles. Dalton T., 40, 4871-4878.
Mondillo, N., Boni, M., Balassone, G., Grist, B., 2011.
In Search of the Lost Zinc: A Lesson from the Jabali
(Yemen) Nonsulfide Zinc Deposit. J. Geochem. Explor.,
108, 209-219.
Mondillo, N., Boni, M., Balassone, G., Joachimski, M.,
Mormone, A., 2014. The Jabali Nonsulfide Zn-Pb-Ag
Deposit, Western Yemen. Ore Geol. Rev., 61, 248-267.
Mondillo, N., Nieto, F., Balassone, G., 2015. Microand
Nano-characterization of Zn-clays in Nonsulfide
Supergene Ores of Southern Peru. Am. Mineral., 100,
2484-2496.
Mujahed, S. B., 1966. Electrowinning in Alkaline
Medium-Electrolytic Production of Lead and Zinc from
an Oxidized Ore from Develi (Kayseri) via Caustic
Leaching. MSc Thesis, Middle East Technical Univ.
Paradis, S., Keevil, H., Simandl, G. J., Raudsepp,
M., 2015. Carbonate-hosted Nonsulphide Zn-Pb
Mineralization of Southern British Columbia, Canada.
Miner. Deposita, 50, 923-951.
Rosenberg, P. E., Champness, P. E., 1989. Zincian
Dolomites and Associated Carbonates from the
Waryński Mine, Poland: An AEM investigation. Am.
Mineral., 74, 461-465.
Santoro, L., Boni, M., Rollinson, G. K., Mondillo, N.,
Balassone, G., Clegg, A. M., 2014. Mineralogical
Characterization of the Hakkari nonsulfide Zn(Pb)
Deposit (Turkey): The Benefits of QEMSCAN®. Miner.
Eng., 69, 29-39.
Uekawa, N., Yamashita, R., Wu, Y. J., Kakegawa, K.,
2004. Effect of Alkali Metal Hydroxide on Formation
Processes of Zinc Oxide Crystallites from Aqueous
Solutions Containing Zn(OH)4
2– ions. Phys. Chem.
Chem. Phys., 6, 442-446.
Wang, Y. M., Wainwright, G., 1986. Formation and
Decomposition Kinetic Studies of Calcium Zincate in
20 w/o KOH. J. Electrochem. Soc., 133, 1869-1872.
Weir, C. E., Lippincott, E. R., 1961. Infrared Studies
of Aragonite, Calcite, and Vaterite Type Structures in
the Borates, Carbonates, and Nitrates. J. Res. N.B.S.
A Phys. Ch., 65, 173-183.
Whittaker, E. J. W., Żabiński, W., 1981. X-ray Diffraction
by Zincian Dolomite. Mineralog. Pol., 12, 15-24.
Zhang, Y., Deng, J., Chen, J., Yu, R., Xing, X., 2013.
Leaching of Zinc from Calcined Smithsonite Using
Sodium Hydroxide. Hydrometallurgy, 131&132, 89-92.
Zhao, Y., Stanforth, R., 2000. Production of Zn Powder
by Alkaline Treatment of Smithsonite Zn-Pb Ores.
Hydrometallurgy, 56, 237-249.
Kumaş, C., Ehsani, İ., & Obut, A. (2020). DISSOLUTION PROPERTIES OF A DOLOMITE CONTAINING ZINC ORE IN SODIUM HYDROXIDE SOLUTIONS. Bilimsel Madencilik Dergisi, 59(2), 93-100. https://doi.org/10.30797/madencilik.757995
AMA
Kumaş C, Ehsani İ, Obut A. DISSOLUTION PROPERTIES OF A DOLOMITE CONTAINING ZINC ORE IN SODIUM HYDROXIDE SOLUTIONS. Madencilik. Haziran 2020;59(2):93-100. doi:10.30797/madencilik.757995
Chicago
Kumaş, Cavit, İlhan Ehsani, ve Abdullah Obut. “DISSOLUTION PROPERTIES OF A DOLOMITE CONTAINING ZINC ORE IN SODIUM HYDROXIDE SOLUTIONS”. Bilimsel Madencilik Dergisi 59, sy. 2 (Haziran 2020): 93-100. https://doi.org/10.30797/madencilik.757995.
EndNote
Kumaş C, Ehsani İ, Obut A (01 Haziran 2020) DISSOLUTION PROPERTIES OF A DOLOMITE CONTAINING ZINC ORE IN SODIUM HYDROXIDE SOLUTIONS. Bilimsel Madencilik Dergisi 59 2 93–100.
IEEE
C. Kumaş, İ. Ehsani, ve A. Obut, “DISSOLUTION PROPERTIES OF A DOLOMITE CONTAINING ZINC ORE IN SODIUM HYDROXIDE SOLUTIONS”, Madencilik, c. 59, sy. 2, ss. 93–100, 2020, doi: 10.30797/madencilik.757995.
ISNAD
Kumaş, Cavit vd. “DISSOLUTION PROPERTIES OF A DOLOMITE CONTAINING ZINC ORE IN SODIUM HYDROXIDE SOLUTIONS”. Bilimsel Madencilik Dergisi 59/2 (Haziran 2020), 93-100. https://doi.org/10.30797/madencilik.757995.
JAMA
Kumaş C, Ehsani İ, Obut A. DISSOLUTION PROPERTIES OF A DOLOMITE CONTAINING ZINC ORE IN SODIUM HYDROXIDE SOLUTIONS. Madencilik. 2020;59:93–100.
MLA
Kumaş, Cavit vd. “DISSOLUTION PROPERTIES OF A DOLOMITE CONTAINING ZINC ORE IN SODIUM HYDROXIDE SOLUTIONS”. Bilimsel Madencilik Dergisi, c. 59, sy. 2, 2020, ss. 93-100, doi:10.30797/madencilik.757995.
Vancouver
Kumaş C, Ehsani İ, Obut A. DISSOLUTION PROPERTIES OF A DOLOMITE CONTAINING ZINC ORE IN SODIUM HYDROXIDE SOLUTIONS. Madencilik. 2020;59(2):93-100.