Araştırma Makalesi
BibTex RIS Kaynak Göster

Use of marble dust containing filler mixture in composite slab production: Relationship between roasting conditions and physical properties of the slab

Yıl 2022, Cilt: 61 Sayı: 3, 135 - 141, 30.09.2022
https://doi.org/10.30797/madencilik.1016702

Öz

Marble dust generated during slab cutting as reject causes significant environmental problems due to increased reactive surface area. It has closer size distribution with micronized quartz filler used in composite slab. Owing to its high hardness, micronized quartz production is an energy intensive process. This study was conducted to investigate the applicability of marble dust in composite slab production together with micronized quartz as filler. The filler mixture was roasted to mitigate drawback arising from low hardness of marble dust. XRD characterization revealed that phases in roasted filler were wollastonite, larnite, calcio olivine, quicklime and free quartz depending on the roasting temperature and time. Physical tests were applied to clarify the effect of sinter phases on slab properties. Physical properties were determined to retrogress as the roasting temperature increased to 1100°C possibly due to rate of free lime in roasted filler, and then improved again reaching peak point at 1200°C. They ameliorated by increasing roasting time at 1200°C. Larnite and quartz were determined to be effective on improved physical properties than wollastonite and calcio olivine.

Destekleyen Kurum

YOK

Teşekkür

The authors would like to express their sincere thanks and appreciation to Coante Quartz Surfaces and Yatağan Marble Plant of Ermaş Mining Company for kindly providing marble dust sample and characterization tests.

Kaynakça

  • Abenojar, J., Velasco, F., Bautista, A., Campos, M, Bas, J.A., Torralba, J.M. 2003. Atmosphere influence in sintering process of stainless steels matrix composites reinforced with hard particles. Composite Science and Technology. 63(1), 69-79. DOI: 10.1016/S0266-3538(02)00179-3
  • Akaogi, M., Yano, M., Tejima, Y., Uijima, M., Kojitani, H. 2004. High-pressure transitions of diopside and wollastonite: Phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5–CaTiSiO5 system. Physics of the Earth and Planetary Interiors. 143-144, 145-156. DOI: 10.1016/j.pepi.2003.08.008
  • Albalak, R. 2012. Engineered Stone and Methods of Manufacturing Same. U.S. Patent No. 2012/0196087 A1.
  • Arıcı, E., Ölmez, D., Özkan, M., Topçu, N., Çapraz, F., Deniz, G., Altınyay, A. 2019. The improvement of mechanical strength and surface properties on quartz surfaces. Afyon Kocatepe University Journal of Science and Engineering. 19, 326-332.
  • de Bakker, J. 2014. Energy use of fine grinding in mineral processing. Metallurgical and Materials Transactions E. 1, 8–19. DOI: 10.1007/s40553-013-0001-6
  • Booncharoen, W., Jaroenworaluck, A., Stevens, R. 2011. A synthesis route to nanoparticle dicalcium silicate for biomaterials research. Journal of Biomedical Materials Research Part B. 99B, 230–238.
  • Borsellino, C., Calabrese, L., Bella, G.D. 2009. Effects of powder concentration and type of resin on the performance of marble composite structures. Construction and Building Materials. 23(5), 1915-1921. DOI: 10.1016/j.conbuildmat.2008.09.005
  • Callister, W.D., Rethwisch, D.G. 2018. Materials Science and Engineering: An Introduction. Wiley. ISBN: 978-1-119-40549-8
  • Cardenas, A., Pineda, Y., Santos, A.S., Vera, E. 2016. Effect of glow discharge sintering in the properties of a composite material fabricated by powder metallurgy. Journal of Physics: Conference Series. 687, 1-4. DOI:10.1088/1742-6596/687/1/012025
  • Erdem, R.T., Öztürk, A.U. 2012. Effect of marble powder additive on freezing-thawing properties of cement mortar. BEU Journal of Science. 1(2), 85-91.
  • Gazi, A., Skevis, G., Founti, M.A. 2012. Energy efficiency and environmental assessment of a typical marble quarry and processing plant. Journal of Cleaner Production. 32, 10-21. DOI: 10.1016/j.jclepro.2012.03.007
  • Gobechiya, E.R., Yamnova, N.A., Zadov, A.E., Gazeev, V.M. 2008. Calcio-olivine γ-Ca2SiO4: I. Rietveld refinement of the crystal structure. Crystallography Report. 53(3), 404-408. DOI: 10.1134/S1063774508030073
  • Göktaş, M., Erdemoğlu, M. 2012. Mechanical activation of synthetic wollastonite (CaSiO3) production. Proceedings of XIII International Mineral Processing Symposium. pp.1-7.
  • Güler, T., Polat, E. 2018. Characterization of marble sludge and potential usage areas (in Turkish). Güler, T., Polat, E. (Eds.). Environmental Approaches in Marble Mining, Muğla Metropolitan Municipality Publications. 205-218. ISBN: 978-605-4839-14-8
  • Joesten R. 1977. Evolution of mineral assemblage zoning in diffusion metasomatism. Geochimica et Cosmochimica Acta. 41(5), 649-670. DOI: 10.1016/0016-7037(77)90303-9
  • Kartal, A., Akpınar, S. 2004. Synthesis of wollastonite by using various raw materials. Key Engineering Materials. 264-268, 2469-2472. DOI: 10.4028/www.scientific.net/KEM.264-268.2469
  • Kılıç, Ö., Anıl, M. 2005. Investigating effects of different calcination kilns on lime production. Scientific Mining Journal. 44(4), 19-28.
  • Klosek-Wawrzyn, E., Malolepszy, J., Murzyn, P. 2013. Sintering behavior of kaolin with calcite. Procedia Engineering. 57, 572-582. DOI: 10.1016/j.proeng.2013.04.073
  • Kocabağ, D. 2018. Evaluation of marble industry and marble wastes in the context of sustainable mining (in Turkish). Güler, T., Polat, E. (Eds.). Environmental Approaches in Marble Mining, Muğla Metropolitan Municipality Publications. 51-92. ISBN: 978-605-4839-14-8
  • Kostova, B., Petkova, V., Kostov-Kytin, V.I., Tzvetanova, Y., Avdeev, G. 2021. TG/DTG/-DSC and high temperature in-situ XRD analysis of natural thaumasite. Thermochimica Acta. 697, 178863. DOI: 10.1016/j.tca.2021.178863
  • Lakshmi, R., Velmurugan, V., Sasikumar, S. 2013. Preparation and phase evolution of wollastonite by sol-gel combustion method using sucrose as the fuel. Combustion Science and Technology. 185(12), 1777–1785. DOI: 10.1080/00102202.2013.835308
  • Lam dos Santos, J.P., Rosa, L.G. and Amaral, P.M. 2011. Temperature effects on mechanical behaviour of engineered stones. Construction and Building Material. 25(1), 171–174. DOI: 10.1016/j.conbuildmat.2010.06.042
  • Liguori, V., Rizzo, G., Traverso, M. 2008. Marble quarrying: An energy and waste intensive activity in the production of building materials. WIT Transactions on Ecology and the Environment. 208, 197-207. DOI: 10.2495/EEIA080201
  • Liu, J., Duan, C.G., Mei, W.N., Smith, R.W., Hardy, J.R. 2002. Polymorphous transformations in alkaline-earth silicates. The Journal of Chemical Physics. 116(9), 3864-3869. DOI: 10.1063/1.1446043
  • Mäkelä, M., Paananen, T., Kokkonen, T., Makkonen, H., Heino, J., Dahl, O. 2011. Preliminary evaluation of fly ash and lime for use as supplementary cementing materials in cold-agglomerated blast furnace briquetting. ISIJ International. 51(5), 776–781. DOI: 10.2355/isijinternational.51.776
  • Manzano, H., Pellenq, R.J.M., Ulm, F.J., Buehler, M.J., van Duin, A.C.T. 2012. Hydration of calcium oxide surface predicted by reactive force field molecular dynamics. Langmuir. 28, 4187-4197. DOI: 10.1021/la204338m
  • Miyake, K., Hirata, Y., Shimonosono, T., Sameshima, S. 2018. The effect of particle shape on sintering behavior and compressive strength of porous alumina. Materials. 11, 1137. DOI: 10.3390/ma11071137
  • Moropoulou, A., Bakolas, A., Aggelakopoulou, E. 2001. The Effects of limestone characteristics and calcination temperature to the reactivity of the quicklime. Cement and Concrete Research. 31, 633-639. DOI: 10.1016/S0008-8846(00)00490-7
  • Nettleship, I., Shull Jr., J.L., Kriven, W.M. 1993. Chemical preparation and phase stability of Ca2SiO4 and Sr2SiO4 powders. Journal of the European Ceramic Society. 11(4), 291-298. DOI: 10.1016/0955-2219(93)90028-P
  • Peng, L., Qin, S. 2018. Mechanical behaviour and microstructure of an artificial stone slab prepared using a SiO2 waste crucible and quartz sand. Construction and Building Materials. 171, 273–280. DOI: 10.1016/j.conbuildmat.2018.03.141
  • Rana, A., Kalla, P., Verma, H.K., Mohnot, J.K. 2016. Recycling of dimensional stone waste in concrete: A review. Journal of Cleaner Production. 135, 312-331. DOI: 10.1016/j.jclepro.2016.06.126
  • Rashid, R.A., Shamsudin, R., Hamid, M.A.A., Jalar, A. 2014. Low temperature production of wollastonite from limestone and silica sand through solid-state reaction. Journal of Asian Ceramic Societies. 2, 77-81. DOI: 10.1016/j.jascer.2014.01.010
  • Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A.B. 2009. Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. American Mineralogist. 94, 578-593. DOI: 10.2138/am.2009.3021
  • Rohmawati, L., Sholicha, S.P., Holisa, S., Setyarsih, W. 2019. Identification of phase CaCO3/MgO in Bangkalan dolomite sand as an antibacterial substance. Journal of Physics: Conference Series. 1417, 012001. DOI: 10.1088/1742-6596/1417/1/012001
  • Santos, G.G., Crovace, M.C., Zanotto, E.D. 2019. New engineered stones: Development and characterization of mineral-glass composites. Composite Part B. 167, 556-565. DOI: 10.1016/j.compositesb.2019.03.010
  • Sarıışık, G., Özkan, E., Kundak, E., Akdaş, H. 2016. Classification of parameters affecting impact resistance of natural stones. Journal of Testing and Evaluation. 44(4): 1650-1660. DOI: 10.1520/JTE20140276
  • Tunç, S. 2021. The investigation of the use of marble plant wastes in composite slab production. M.Sc. Thesis. Muğla Sıtkı Koçman University.
  • Tuttle, O.F., Harker, R.I. 1957. Synthesis of spurrite and the reaction wollastonite+calcite ⇄ spurrite+carbon dioxide. American Journal of Science. 255(3), 226–234. DOI: 10.2475/ajs.255.3.226
  • Velázquez, A.L.C., Menéndez-Aguado, J.M., Brown, R.L. 2008. Grindability of lateritic nickel ores in Cuba. Powder Technology, 182(1), 113-115. DOI: 10.1016/j.powtec.2007.05.027
  • Witoon, T. 2011. Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent. Ceramics International. 37(8), 3291-3298. DOI: 10.1016/j.ceramint.2011.05.125
  • Zadov, A.E., Gazeev, V.M., Pertsev, N.N., Gurbanov, A.G., Yamnova, N.A., Gobechiya, E.R., Chukanov, N.V. 2008. Discovery and investigation of a natural analog of calcio-olivine (γ-Ca2SiO4). Doklady Earth Science. 423A(9), 1431-1434. DOI: 10.1134/S1028334X08090237

Mermer tozunun kompozit plaka üretiminde kullanımı: Mermer tozu içeren dolgu karışımının kavurma koşulları ile plaka fiziksel özellikleri arasındaki ilişki

Yıl 2022, Cilt: 61 Sayı: 3, 135 - 141, 30.09.2022
https://doi.org/10.30797/madencilik.1016702

Öz

Plaka kesim sürecinde artık olarak açığa çıkan mermer tozu, artan reaktif yüzey alanından dolayı önemli çevresel sorunlara neden olmaktadır. Mermer tozu, kompozit plakada dolgu olarak kullanılan mikronize kuvars ile yakın boyut dağılımına sahiptir. Yüksek sertliği nedeniyle mikronize kuvars üretimi enerji yoğun bir işlemdir. Bu çalışma, mermer tozunun kompozit plaka üretiminde mikronize kuvars ile birlikte dolgu malzemesi olarak uygulanabilirliğini araştırmak amacıyla yapılmıştır. Mermer tozunun düşük sertliğinden kaynaklanan dezavantajı azaltmak için dolgu karışımlarına kavurma işlemi uygulanmıştır. XRD ile yapılan karakterizasyon; kavurma sıcaklığına ve süresine bağlı olarak kavrulmuş dolgudaki fazların, serbest kuvars, volastonit, larnit, kalsiyo olivin ve sönmemiş kireç olduğunu ortaya koymuştur. Sinter fazlarının plaka özelliklerine etkisini aydınlatmak için fiziksel testler uygulanmıştır. Kavurma sıcaklığı 1100°C'ye çıkarıldığında, muhtemelen kavrulmuş dolguda bulunan serbest kireç oranına bağlı olarak fiziksel özellikler kötüleşmiş, 1200°C'ye çıkarıldığında ise tekrar iyileşerek en yüksek değere ulaşmıştır. 1200°C'de kavurma süresi artırılınca fiziksel özellikler iyileşmiştir. Larnit ve kuvarsın, iyileştirilmiş fiziksel özellikler üzerinde, volastonit ve kalsiyo olivine göre daha etkili olduğu belirlenmiştir.

Kaynakça

  • Abenojar, J., Velasco, F., Bautista, A., Campos, M, Bas, J.A., Torralba, J.M. 2003. Atmosphere influence in sintering process of stainless steels matrix composites reinforced with hard particles. Composite Science and Technology. 63(1), 69-79. DOI: 10.1016/S0266-3538(02)00179-3
  • Akaogi, M., Yano, M., Tejima, Y., Uijima, M., Kojitani, H. 2004. High-pressure transitions of diopside and wollastonite: Phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5–CaTiSiO5 system. Physics of the Earth and Planetary Interiors. 143-144, 145-156. DOI: 10.1016/j.pepi.2003.08.008
  • Albalak, R. 2012. Engineered Stone and Methods of Manufacturing Same. U.S. Patent No. 2012/0196087 A1.
  • Arıcı, E., Ölmez, D., Özkan, M., Topçu, N., Çapraz, F., Deniz, G., Altınyay, A. 2019. The improvement of mechanical strength and surface properties on quartz surfaces. Afyon Kocatepe University Journal of Science and Engineering. 19, 326-332.
  • de Bakker, J. 2014. Energy use of fine grinding in mineral processing. Metallurgical and Materials Transactions E. 1, 8–19. DOI: 10.1007/s40553-013-0001-6
  • Booncharoen, W., Jaroenworaluck, A., Stevens, R. 2011. A synthesis route to nanoparticle dicalcium silicate for biomaterials research. Journal of Biomedical Materials Research Part B. 99B, 230–238.
  • Borsellino, C., Calabrese, L., Bella, G.D. 2009. Effects of powder concentration and type of resin on the performance of marble composite structures. Construction and Building Materials. 23(5), 1915-1921. DOI: 10.1016/j.conbuildmat.2008.09.005
  • Callister, W.D., Rethwisch, D.G. 2018. Materials Science and Engineering: An Introduction. Wiley. ISBN: 978-1-119-40549-8
  • Cardenas, A., Pineda, Y., Santos, A.S., Vera, E. 2016. Effect of glow discharge sintering in the properties of a composite material fabricated by powder metallurgy. Journal of Physics: Conference Series. 687, 1-4. DOI:10.1088/1742-6596/687/1/012025
  • Erdem, R.T., Öztürk, A.U. 2012. Effect of marble powder additive on freezing-thawing properties of cement mortar. BEU Journal of Science. 1(2), 85-91.
  • Gazi, A., Skevis, G., Founti, M.A. 2012. Energy efficiency and environmental assessment of a typical marble quarry and processing plant. Journal of Cleaner Production. 32, 10-21. DOI: 10.1016/j.jclepro.2012.03.007
  • Gobechiya, E.R., Yamnova, N.A., Zadov, A.E., Gazeev, V.M. 2008. Calcio-olivine γ-Ca2SiO4: I. Rietveld refinement of the crystal structure. Crystallography Report. 53(3), 404-408. DOI: 10.1134/S1063774508030073
  • Göktaş, M., Erdemoğlu, M. 2012. Mechanical activation of synthetic wollastonite (CaSiO3) production. Proceedings of XIII International Mineral Processing Symposium. pp.1-7.
  • Güler, T., Polat, E. 2018. Characterization of marble sludge and potential usage areas (in Turkish). Güler, T., Polat, E. (Eds.). Environmental Approaches in Marble Mining, Muğla Metropolitan Municipality Publications. 205-218. ISBN: 978-605-4839-14-8
  • Joesten R. 1977. Evolution of mineral assemblage zoning in diffusion metasomatism. Geochimica et Cosmochimica Acta. 41(5), 649-670. DOI: 10.1016/0016-7037(77)90303-9
  • Kartal, A., Akpınar, S. 2004. Synthesis of wollastonite by using various raw materials. Key Engineering Materials. 264-268, 2469-2472. DOI: 10.4028/www.scientific.net/KEM.264-268.2469
  • Kılıç, Ö., Anıl, M. 2005. Investigating effects of different calcination kilns on lime production. Scientific Mining Journal. 44(4), 19-28.
  • Klosek-Wawrzyn, E., Malolepszy, J., Murzyn, P. 2013. Sintering behavior of kaolin with calcite. Procedia Engineering. 57, 572-582. DOI: 10.1016/j.proeng.2013.04.073
  • Kocabağ, D. 2018. Evaluation of marble industry and marble wastes in the context of sustainable mining (in Turkish). Güler, T., Polat, E. (Eds.). Environmental Approaches in Marble Mining, Muğla Metropolitan Municipality Publications. 51-92. ISBN: 978-605-4839-14-8
  • Kostova, B., Petkova, V., Kostov-Kytin, V.I., Tzvetanova, Y., Avdeev, G. 2021. TG/DTG/-DSC and high temperature in-situ XRD analysis of natural thaumasite. Thermochimica Acta. 697, 178863. DOI: 10.1016/j.tca.2021.178863
  • Lakshmi, R., Velmurugan, V., Sasikumar, S. 2013. Preparation and phase evolution of wollastonite by sol-gel combustion method using sucrose as the fuel. Combustion Science and Technology. 185(12), 1777–1785. DOI: 10.1080/00102202.2013.835308
  • Lam dos Santos, J.P., Rosa, L.G. and Amaral, P.M. 2011. Temperature effects on mechanical behaviour of engineered stones. Construction and Building Material. 25(1), 171–174. DOI: 10.1016/j.conbuildmat.2010.06.042
  • Liguori, V., Rizzo, G., Traverso, M. 2008. Marble quarrying: An energy and waste intensive activity in the production of building materials. WIT Transactions on Ecology and the Environment. 208, 197-207. DOI: 10.2495/EEIA080201
  • Liu, J., Duan, C.G., Mei, W.N., Smith, R.W., Hardy, J.R. 2002. Polymorphous transformations in alkaline-earth silicates. The Journal of Chemical Physics. 116(9), 3864-3869. DOI: 10.1063/1.1446043
  • Mäkelä, M., Paananen, T., Kokkonen, T., Makkonen, H., Heino, J., Dahl, O. 2011. Preliminary evaluation of fly ash and lime for use as supplementary cementing materials in cold-agglomerated blast furnace briquetting. ISIJ International. 51(5), 776–781. DOI: 10.2355/isijinternational.51.776
  • Manzano, H., Pellenq, R.J.M., Ulm, F.J., Buehler, M.J., van Duin, A.C.T. 2012. Hydration of calcium oxide surface predicted by reactive force field molecular dynamics. Langmuir. 28, 4187-4197. DOI: 10.1021/la204338m
  • Miyake, K., Hirata, Y., Shimonosono, T., Sameshima, S. 2018. The effect of particle shape on sintering behavior and compressive strength of porous alumina. Materials. 11, 1137. DOI: 10.3390/ma11071137
  • Moropoulou, A., Bakolas, A., Aggelakopoulou, E. 2001. The Effects of limestone characteristics and calcination temperature to the reactivity of the quicklime. Cement and Concrete Research. 31, 633-639. DOI: 10.1016/S0008-8846(00)00490-7
  • Nettleship, I., Shull Jr., J.L., Kriven, W.M. 1993. Chemical preparation and phase stability of Ca2SiO4 and Sr2SiO4 powders. Journal of the European Ceramic Society. 11(4), 291-298. DOI: 10.1016/0955-2219(93)90028-P
  • Peng, L., Qin, S. 2018. Mechanical behaviour and microstructure of an artificial stone slab prepared using a SiO2 waste crucible and quartz sand. Construction and Building Materials. 171, 273–280. DOI: 10.1016/j.conbuildmat.2018.03.141
  • Rana, A., Kalla, P., Verma, H.K., Mohnot, J.K. 2016. Recycling of dimensional stone waste in concrete: A review. Journal of Cleaner Production. 135, 312-331. DOI: 10.1016/j.jclepro.2016.06.126
  • Rashid, R.A., Shamsudin, R., Hamid, M.A.A., Jalar, A. 2014. Low temperature production of wollastonite from limestone and silica sand through solid-state reaction. Journal of Asian Ceramic Societies. 2, 77-81. DOI: 10.1016/j.jascer.2014.01.010
  • Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A.B. 2009. Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. American Mineralogist. 94, 578-593. DOI: 10.2138/am.2009.3021
  • Rohmawati, L., Sholicha, S.P., Holisa, S., Setyarsih, W. 2019. Identification of phase CaCO3/MgO in Bangkalan dolomite sand as an antibacterial substance. Journal of Physics: Conference Series. 1417, 012001. DOI: 10.1088/1742-6596/1417/1/012001
  • Santos, G.G., Crovace, M.C., Zanotto, E.D. 2019. New engineered stones: Development and characterization of mineral-glass composites. Composite Part B. 167, 556-565. DOI: 10.1016/j.compositesb.2019.03.010
  • Sarıışık, G., Özkan, E., Kundak, E., Akdaş, H. 2016. Classification of parameters affecting impact resistance of natural stones. Journal of Testing and Evaluation. 44(4): 1650-1660. DOI: 10.1520/JTE20140276
  • Tunç, S. 2021. The investigation of the use of marble plant wastes in composite slab production. M.Sc. Thesis. Muğla Sıtkı Koçman University.
  • Tuttle, O.F., Harker, R.I. 1957. Synthesis of spurrite and the reaction wollastonite+calcite ⇄ spurrite+carbon dioxide. American Journal of Science. 255(3), 226–234. DOI: 10.2475/ajs.255.3.226
  • Velázquez, A.L.C., Menéndez-Aguado, J.M., Brown, R.L. 2008. Grindability of lateritic nickel ores in Cuba. Powder Technology, 182(1), 113-115. DOI: 10.1016/j.powtec.2007.05.027
  • Witoon, T. 2011. Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent. Ceramics International. 37(8), 3291-3298. DOI: 10.1016/j.ceramint.2011.05.125
  • Zadov, A.E., Gazeev, V.M., Pertsev, N.N., Gurbanov, A.G., Yamnova, N.A., Gobechiya, E.R., Chukanov, N.V. 2008. Discovery and investigation of a natural analog of calcio-olivine (γ-Ca2SiO4). Doklady Earth Science. 423A(9), 1431-1434. DOI: 10.1134/S1028334X08090237
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Sedanur Baş Bu kişi benim 0000-0003-2791-1798

Taki Güler 0000-0001-9688-6894

Selçuk Aktürk 0000-0001-9146-5142

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 1 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 61 Sayı: 3

Kaynak Göster

APA Baş, S., Güler, T., & Aktürk, S. (2022). Use of marble dust containing filler mixture in composite slab production: Relationship between roasting conditions and physical properties of the slab. Scientific Mining Journal, 61(3), 135-141. https://doi.org/10.30797/madencilik.1016702
AMA Baş S, Güler T, Aktürk S. Use of marble dust containing filler mixture in composite slab production: Relationship between roasting conditions and physical properties of the slab. Mining. Eylül 2022;61(3):135-141. doi:10.30797/madencilik.1016702
Chicago Baş, Sedanur, Taki Güler, ve Selçuk Aktürk. “Use of Marble Dust Containing Filler Mixture in Composite Slab Production: Relationship Between Roasting Conditions and Physical Properties of the Slab”. Scientific Mining Journal 61, sy. 3 (Eylül 2022): 135-41. https://doi.org/10.30797/madencilik.1016702.
EndNote Baş S, Güler T, Aktürk S (01 Eylül 2022) Use of marble dust containing filler mixture in composite slab production: Relationship between roasting conditions and physical properties of the slab. Scientific Mining Journal 61 3 135–141.
IEEE S. Baş, T. Güler, ve S. Aktürk, “Use of marble dust containing filler mixture in composite slab production: Relationship between roasting conditions and physical properties of the slab”, Mining, c. 61, sy. 3, ss. 135–141, 2022, doi: 10.30797/madencilik.1016702.
ISNAD Baş, Sedanur vd. “Use of Marble Dust Containing Filler Mixture in Composite Slab Production: Relationship Between Roasting Conditions and Physical Properties of the Slab”. Scientific Mining Journal 61/3 (Eylül 2022), 135-141. https://doi.org/10.30797/madencilik.1016702.
JAMA Baş S, Güler T, Aktürk S. Use of marble dust containing filler mixture in composite slab production: Relationship between roasting conditions and physical properties of the slab. Mining. 2022;61:135–141.
MLA Baş, Sedanur vd. “Use of Marble Dust Containing Filler Mixture in Composite Slab Production: Relationship Between Roasting Conditions and Physical Properties of the Slab”. Scientific Mining Journal, c. 61, sy. 3, 2022, ss. 135-41, doi:10.30797/madencilik.1016702.
Vancouver Baş S, Güler T, Aktürk S. Use of marble dust containing filler mixture in composite slab production: Relationship between roasting conditions and physical properties of the slab. Mining. 2022;61(3):135-41.