Araştırma Makalesi
BibTex RIS Kaynak Göster

Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone

Yıl 2022, Cilt: 61 Sayı: 3, 127 - 134, 30.09.2022
https://doi.org/10.30797/madencilik.971842

Öz

In this paper, an effective method for the classification process simulation in 75¬mm hydrocyclone is considered. The simulation results and computational time are compared using Reynolds stress model (RSM) and different large eddy simulation (LES) subgrid-scale models as turbulence models, and the volume of fluid model (VOF) as a multiphase model. The Lagrangian discrete phase model (DPM) is used to simulate the classification process of particles. As the experimental result for comparison of simulation results, Hsieh's experimental data are used. When the different LES subgrid-scale models are used, the solution converges stably by various solution convergence methods without increasing the grid numbers or reducing the size of time steps than RSM model. As a result, it is confirmed that when an appropriate simulation method is applied with the LES-WMLES S-Omega model, more accurate axial water flow velocity distribution and particle classification simulation results can be obtained at a computational cost similar to that of using the RSM model.

Kaynakça

  • Brennan, M.S., Narasimha, M., Holtham, P.N. 2007. Multiphase modelling of hydrocyclones - prediction of cut-size. Minerals Engineering 20, 395-406. doi:10.1016/j.mineng.2006.10.010.
  • Cui, B., Zhang, C., Wei, D., Lu, S., Feng, Y. 2017. Effects of feed size distribution on separation performance of hydrocyclones with different vortex finder diameters. Powder Technology 322, 114-123. doi:10.1016/j.powtec.2017.09.010.
  • Ghadirian, M., Hayes, R.E., Mmbaga, J., Afacan, A., Xu, Z. 2013. On the simulation of hydrocyclones using CFD. The Canadian Journal of Chemical Engineering 91(5), 950-958. doi:10.1002/cjce.21705.
  • Ghodrat, M., Qi, Z., Kuang, S.B., Ji, L., Yu, A.B. 2016. Computational investigation of the effect of particle density on the multiphase flows and performance of hydrocyclone. Minerals Engineering 90, 55-69. doi:10.1016/j.mineng.2016.03.017.
  • Hsieh, K.T. 1988. Phenomenological model of the hydrocyclone. Ph.D. thesis. Utah: The University of Utah.
  • Jiang, L., Liu, P., Zhang, Y., Yang, X., Wang, H., Gui, X. 2019. Design boundary layer structure for improving the particle separation performance of a hydrocyclone. Powder Technology 350, 1-14. doi:10.1016/j.powtec.2019.03.026.
  • Kuang, S.B., Chu, K.W., Yu, A.B., Vince, A. 2012. Numerical study of liquid¬gas-solid flow in classifying hydrocyclones: Effect of feed solids concentration. Minerals Engineering 31, 17-31. doi:10.1016/j.mineng.2012.01.003.
  • Li, Y., Liu, C., Zhang, T., Li, D., Zheng, L. 2018. Experimental and Numerical Study of a Hydrocyclone with the Modification of Geometrical Structure. The Canadian Journal of Chemical Engineering 96, 2638-2649. doi:10.1002/cjce.23206.
  • Mangadoddy, N., Vakamalla, T.R., Kumar, M., Mainza, A. 2019. Computational modelling of particle-fluid dynamics in comminution and classification: a review. Mineral Processing and Extractive Metallurgy 129(2), 145-156. doi:10.1080/25726641.2019.1708657.
  • Narasimha, M., Brennan, M., Holtham, P.N. 2012. CFD modeling of hydrocyclones: Prediction of particle size segregation. Minerals Engineering 39, 173-183.
  • Padhi, M., Mangadoddy, N., Sreenivas, T., Vakamalla, T.R., Mainza, A.N. 2019. Study on multi-component particle behaviour in a hydrocyclone classifier using experimental and computational fluid dynamics techniques. Separation and Purification Technology 229, 115698. doi:10.1016/j.seppur.2019.115698.
  • Padhi, M., Kumar, M., Mangadoddy, N. 2020. Understanding the bicomponent particle separation mechanism in a hydrocyclone using a computational fluid dynamics model. Industrial & Engineering Chemistry Research 59(25), 11621- 11644. doi:10.1021/acs.iecr.9b06747.
  • Perez, D., Cornejo, P., Rodriguez, C., Concha, F. 2018. Transition from spray to roping in hydrocyclones. Minerals Engineering 123, 71-84. doi:10.1016/j.mineng.2018.04.008.
  • Silva, D.O., Vieira, L.G.M., Barrozo, M.A.S. 2014. Optimization of design and performance of solid-liquid separators: A thickener hydrocyclone. Chemical Engineering & Technology 38(2), 319-326. doi:10.1002/ceat.201300464.
  • Vakamalla, T.R., Koruprolu, V.B., Arugonda, R., Mangadoddy, N. 2016. Development of novel hydrocyclone designs for improved fines classification Using multiphase CFD model. Separation and Purification Technology 175, 481-497. doi:10.1016/j.seppur.2016.10.026.
  • Vakamalla, T.R., Mangadoddy, N. 2019. The dynamic behaviour of a large-scale 250-mm hydrocyclone: A CFD study. Asia-Pacific Journal of Chemical Engineering 14(2), e2287. doi: 10.1002/apj.2287.
  • Wang, C., Ji, C., Zou, J. 2015. Simulation and experiment on transitional behaviours of multiphase flow in a hydrocyclone. The Canadian Journal of Chemical Engineering 93, 1802-1811. doi:10.1002/cjce.22274.
  • Ye, J., Xu, Y., Song, X., Yu, J. 2019. Novel conical section design for ultra-fine particles classification by a hydrocyclone. Chemical Engineering Research and Design 144, 135-149. doi:10.1016/j.cherd.2019.02.006.
  • Zhang, Y., Cai, P., Jiang, F., Dong, K., Jiang, Y., Wang, B. 2017. Understanding the separation of particles in a hydrocyclone by force analysis. Powder Technology. 322, 471-489. doi:10.1016/j.powtec.2017.09.031.

Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone

Yıl 2022, Cilt: 61 Sayı: 3, 127 - 134, 30.09.2022
https://doi.org/10.30797/madencilik.971842

Öz

In this paper, an effective method for the classification process simulation in 75¬mm hydrocyclone is considered. The simulation results and computational time are compared using Reynolds stress model (RSM) and different large eddy simulation (LES) subgrid-scale models as turbulence models, and the volume of fluid model (VOF) as a multiphase model. The Lagrangian discrete phase model (DPM) is used to simulate the classification process of particles. As the experimental result for comparison of simulation results, Hsieh's experimental data are used. When the different LES subgrid-scale models are used, the solution converges stably by various solution convergence methods without increasing the grid numbers or reducing the size of time steps than RSM model. As a result, it is confirmed that when an appropriate simulation method is applied with the LES-WMLES S-Omega model, more accurate axial water flow velocity distribution and particle classification simulation results can be obtained at a computational cost similar to that of using the RSM model.

Kaynakça

  • Brennan, M.S., Narasimha, M., Holtham, P.N. 2007. Multiphase modelling of hydrocyclones - prediction of cut-size. Minerals Engineering 20, 395-406. doi:10.1016/j.mineng.2006.10.010.
  • Cui, B., Zhang, C., Wei, D., Lu, S., Feng, Y. 2017. Effects of feed size distribution on separation performance of hydrocyclones with different vortex finder diameters. Powder Technology 322, 114-123. doi:10.1016/j.powtec.2017.09.010.
  • Ghadirian, M., Hayes, R.E., Mmbaga, J., Afacan, A., Xu, Z. 2013. On the simulation of hydrocyclones using CFD. The Canadian Journal of Chemical Engineering 91(5), 950-958. doi:10.1002/cjce.21705.
  • Ghodrat, M., Qi, Z., Kuang, S.B., Ji, L., Yu, A.B. 2016. Computational investigation of the effect of particle density on the multiphase flows and performance of hydrocyclone. Minerals Engineering 90, 55-69. doi:10.1016/j.mineng.2016.03.017.
  • Hsieh, K.T. 1988. Phenomenological model of the hydrocyclone. Ph.D. thesis. Utah: The University of Utah.
  • Jiang, L., Liu, P., Zhang, Y., Yang, X., Wang, H., Gui, X. 2019. Design boundary layer structure for improving the particle separation performance of a hydrocyclone. Powder Technology 350, 1-14. doi:10.1016/j.powtec.2019.03.026.
  • Kuang, S.B., Chu, K.W., Yu, A.B., Vince, A. 2012. Numerical study of liquid¬gas-solid flow in classifying hydrocyclones: Effect of feed solids concentration. Minerals Engineering 31, 17-31. doi:10.1016/j.mineng.2012.01.003.
  • Li, Y., Liu, C., Zhang, T., Li, D., Zheng, L. 2018. Experimental and Numerical Study of a Hydrocyclone with the Modification of Geometrical Structure. The Canadian Journal of Chemical Engineering 96, 2638-2649. doi:10.1002/cjce.23206.
  • Mangadoddy, N., Vakamalla, T.R., Kumar, M., Mainza, A. 2019. Computational modelling of particle-fluid dynamics in comminution and classification: a review. Mineral Processing and Extractive Metallurgy 129(2), 145-156. doi:10.1080/25726641.2019.1708657.
  • Narasimha, M., Brennan, M., Holtham, P.N. 2012. CFD modeling of hydrocyclones: Prediction of particle size segregation. Minerals Engineering 39, 173-183.
  • Padhi, M., Mangadoddy, N., Sreenivas, T., Vakamalla, T.R., Mainza, A.N. 2019. Study on multi-component particle behaviour in a hydrocyclone classifier using experimental and computational fluid dynamics techniques. Separation and Purification Technology 229, 115698. doi:10.1016/j.seppur.2019.115698.
  • Padhi, M., Kumar, M., Mangadoddy, N. 2020. Understanding the bicomponent particle separation mechanism in a hydrocyclone using a computational fluid dynamics model. Industrial & Engineering Chemistry Research 59(25), 11621- 11644. doi:10.1021/acs.iecr.9b06747.
  • Perez, D., Cornejo, P., Rodriguez, C., Concha, F. 2018. Transition from spray to roping in hydrocyclones. Minerals Engineering 123, 71-84. doi:10.1016/j.mineng.2018.04.008.
  • Silva, D.O., Vieira, L.G.M., Barrozo, M.A.S. 2014. Optimization of design and performance of solid-liquid separators: A thickener hydrocyclone. Chemical Engineering & Technology 38(2), 319-326. doi:10.1002/ceat.201300464.
  • Vakamalla, T.R., Koruprolu, V.B., Arugonda, R., Mangadoddy, N. 2016. Development of novel hydrocyclone designs for improved fines classification Using multiphase CFD model. Separation and Purification Technology 175, 481-497. doi:10.1016/j.seppur.2016.10.026.
  • Vakamalla, T.R., Mangadoddy, N. 2019. The dynamic behaviour of a large-scale 250-mm hydrocyclone: A CFD study. Asia-Pacific Journal of Chemical Engineering 14(2), e2287. doi: 10.1002/apj.2287.
  • Wang, C., Ji, C., Zou, J. 2015. Simulation and experiment on transitional behaviours of multiphase flow in a hydrocyclone. The Canadian Journal of Chemical Engineering 93, 1802-1811. doi:10.1002/cjce.22274.
  • Ye, J., Xu, Y., Song, X., Yu, J. 2019. Novel conical section design for ultra-fine particles classification by a hydrocyclone. Chemical Engineering Research and Design 144, 135-149. doi:10.1016/j.cherd.2019.02.006.
  • Zhang, Y., Cai, P., Jiang, F., Dong, K., Jiang, Y., Wang, B. 2017. Understanding the separation of particles in a hydrocyclone by force analysis. Powder Technology. 322, 471-489. doi:10.1016/j.powtec.2017.09.031.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Song Gun Kang 0000-0003-1237-3712

Kwang Chol Kim Bu kişi benim 0000-0002-6270-0702

Sok Chol Ryom Bu kişi benim 0000-0003-1838-4148

Jin Hyok Ri Bu kişi benim 0000-0002-4725-8856

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 15 Temmuz 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 61 Sayı: 3

Kaynak Göster

APA Kang, S. G., Kim, K. C., Ryom, S. C., Ri, J. H. (2022). Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone. Bilimsel Madencilik Dergisi, 61(3), 127-134. https://doi.org/10.30797/madencilik.971842
AMA Kang SG, Kim KC, Ryom SC, Ri JH. Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone. Madencilik. Eylül 2022;61(3):127-134. doi:10.30797/madencilik.971842
Chicago Kang, Song Gun, Kwang Chol Kim, Sok Chol Ryom, ve Jin Hyok Ri. “Turbulence Models and Simulation Method in the CFD Simulation of 75-Mm Hydrocyclone”. Bilimsel Madencilik Dergisi 61, sy. 3 (Eylül 2022): 127-34. https://doi.org/10.30797/madencilik.971842.
EndNote Kang SG, Kim KC, Ryom SC, Ri JH (01 Eylül 2022) Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone. Bilimsel Madencilik Dergisi 61 3 127–134.
IEEE S. G. Kang, K. C. Kim, S. C. Ryom, ve J. H. Ri, “Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone”, Madencilik, c. 61, sy. 3, ss. 127–134, 2022, doi: 10.30797/madencilik.971842.
ISNAD Kang, Song Gun vd. “Turbulence Models and Simulation Method in the CFD Simulation of 75-Mm Hydrocyclone”. Bilimsel Madencilik Dergisi 61/3 (Eylül 2022), 127-134. https://doi.org/10.30797/madencilik.971842.
JAMA Kang SG, Kim KC, Ryom SC, Ri JH. Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone. Madencilik. 2022;61:127–134.
MLA Kang, Song Gun vd. “Turbulence Models and Simulation Method in the CFD Simulation of 75-Mm Hydrocyclone”. Bilimsel Madencilik Dergisi, c. 61, sy. 3, 2022, ss. 127-34, doi:10.30797/madencilik.971842.
Vancouver Kang SG, Kim KC, Ryom SC, Ri JH. Turbulence models and simulation method in the CFD simulation of 75-mm hydrocyclone. Madencilik. 2022;61(3):127-34.

22562 22561 22560 22590 22558