Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 62 Sayı: 3, 99 - 108, 20.10.2023
https://doi.org/10.30797/madencilik.1356042

Öz

Kaynakça

  • Aydan, Ö., Ulusay, R., & Tokashiki, N. (2014). A new rock mass quality rating system: rock mass quality rating (RMQR) and its application to the estimation of geomechanical characteristics of rock masses. Rock mechanics and rock engineering, 47, 1255-1276.
  • Aygar, E. B. (2022). Zayıf zeminlerde açılan büyük çaplı çift tüp tünellerde tünellerin birbirine olan etkisinin 3 boyutlu sayısal analizler ile incelenmesine bir örnek, Bolu Tüneli destek sistemlerinin değerlendirilmesi.Scientific Mining Journal, 61(3), 157-168.
  • Barton, N., Lien, R., & Lunde, J. J. R. M. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6, 189-236.
  • Bieniawski, Z. T. (1973). Engineering classification of jointed rock masses. Civil Engineering= Siviele Ingenieurswese, (12), 335-343.
  • Birön, C., Arıoğlu E. (1985). Madenlerde Tahkimat İşleri ve Tasarımı, Birsen Kitabevi, İstanbul. Brown, E. T., Bray, J. W., Ladanyi, B., & Hoek, E. (1983). Ground response curves for rock tunnels. Journal of Geotechnical Engineering, 109(1), 15-39.
  • Carranza-Torres, C., & Fairhurst, C. (2000). Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion. Tunnelling and underground space technology, 15(2), 187-213.
  • Cui, L., Yang, W., Zheng, J., & Sheng, Q. (2023). Improved equations of ground pressure for shallow large-diameter shield tunnel considering multiple impact factors. Tunnelling and Underground Space Technology, 138, 105166.
  • Deere, D. U. (1964). Technical description of rock cores for engineering purpose. Rock Mechanics and Engineering Geology, 1(1), 17-22.
  • Deere, D. U., Peck, R. B., Parker, H. W., Monsees, J. E., & Schmidt, B. (1970). Design of tunnel support systems. Highway Research Record, (339).
  • Goel, R. K., Jethwa, J. L., & Dhar, B. B. (1996). Effect of tunnel size on support pressure. International Journal of Rock Mechanics and Mining & Geomechanics Abstracts, 33(7).
  • Goel, R. K., Jethwa, J. L., & Paithankar, A. G. (1995). Indian experiences with Q and RMR systems. Tunnelling and Underground Space Technology, 10(1), 97-109.
  • Hoek, E., & Brown, E. T. (1997). Practical estimates of rock mass strength. International journal of rock mechanics and mining sciences, 34(8), 1165-1186.
  • Hoek, E. (2000). Practical rock engineering (2023 ed.). Rocscience, Toronto, available online at: http://www.rocscience.com.
  • Huang, M., Li, Y., Shi, Z., & Lü, X. (2022). Face stability analysis of shallow shield tunneling in layered ground under seepage flow. Tunnelling and Underground Space Technology, 119, 104201.
  • Jalote, P.M., Kumar A., Kumar V. (1996). Geotechniques applied in the design of the machine hall cavern, Nathpa Jhakri Hydel Project, N.W. Himalaya, India. J. Engng Geol. (India) XXV(1-4), 181-192.
  • Kumar, B., & Sahoo, J. P. (2023). Lining pressure for circular tunnels in two layered clay with anisotropic undrained shear strength. Geomechanics and Geoengineering, 18(2), 91-104.
  • Lauffer, H. (1958). Gebirgsklassifizierung für den stollenbau. Geologie und Bauwesen, 24(1), 46-51. Moretto O., Sarra Pistone R.E. and Del Rio J.C. 1993. A case history in Argentina - Rock mechanics for underground works in the pumping storage development of Rio Grande No 1. In Comprehensive Rock Engineering. (Ed. Hudson, J.A.) 5, 159- 192. Oxford: Pergamon.
  • Niu, Y., Ren, T., Zhou, Q., Jiao, X., Shi, J., Xiang, K., ... & Satyanaga, A. (2023). Analysis of Excavation Parameters on Face Stability in Small Curvature Shield Tunnels. Sustainability, 15(8), 6797.
  • Palmstrom, A. (1995). Characterizing the strength of rock masses for use in design of underground structures. In International conference in design and construction of underground structures (Vol. 10).
  • Palmstrom, A. (2000). Recent developments in rock support estimates by the RMi. Journal of Rock Mechanics and Tunnelling Technology, 6(1), 1-19.
  • Panet, M., & Guellec, P. (1974). Contribution to the problem of the design of tunnel support behind the face. Progres en mecanique des roches-comptes rendus du 3eme congres de la societe internationale de mecanique des roches, Denver.
  • Panet, M., & Sulem, J. (2022). Convergence-confinement method for tunnel design, Switzerland: Springer. Panet, M., Givet, P. D. C. O., Guilloux, A., Duc, J. L. D. G. N. M., Piraud, J., & Wong, H. T. S. D. H. (2001). The convergence-confinement method. AFTES-recommendations des Groupes de Travait.
  • Protodyakonov, M. M. (1907). Rock pressure on mine support (theory of mine support). Tipografiya Gubernskogo Zemstva, Yekaterinoslav, 23-45.
  • Rocscience. (2020a). RS2, Version 11. Toronto, Ontario, Canada.
  • Rocscience. (2020b). RocSupport, Version 5. Toronto, Ontario, Canada. Rose, D. (1982). Revising Terzaghi’s tunnel rock load coefficients. In The 23rd US Symposium on Rock Mechanics (USRMS). OnePetro.
  • Seshagiri Rao, K. (2020). Characterization, modelling and engineering of rocks and rockmasses. Indian Geotechnical Journal, 50, 1-95.
  • Sharma, S., Muthreja, I. L., & Yerpude, R. R. (2020). Application and comparison of squeezing estimation methods for Himalayan tunnels. Bulletin of Engineering Geology and the Environment, 79, 205-223.
  • Singh, B., Goel, R. K., Jethwa, J. L., & Dube, A. K. (1997). Support pressure assessment in arched underground openings through poor rock masses. Engineering Geology, 48(1-2), 59-81.
  • Stille, H., Groth, T., & Fredriksson, A. (1982). FEM-analysis of rock mechanical problems with JOBFEM. Stiftelsen Bergteknisk Forskning–BeFo, Stockholm, 307(1), 82.
  • Taghizadeh, H., Zare, S., & Mazraehli, M. (2020). Analysis of rock load for tunnel lining design. Geotechnical and Geological Engineering, 38(3), 2989-3005.
  • Terzaghi, K., Proctor, R. V., & White, T. L. (1946). Rock tunneling with steel supports. Commercial Shearing and Stamping Co, 119-140.
  • Ünal, E., & Özkan, I. (1990). Determination of classification parameters for clay-bearing and stratified rock mass. In Proceedings of the 9th International Conference on Ground Control in Mining. Morgantown: West Virginia University (pp. 250-259).
  • Vlachopoulos, N., & Diederichs, M. S. (2009). Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels. Rock mechanics and rock engineering, 42, 131-146.
  • Wang, M., & Cai, M. (2022). Numerical modeling of stand-up time of tunnels considering time-dependent deformation of jointed rock masses. Rock Mechanics and Rock Engineering, 55(7), 4305-4328.
  • Wickham, G. E., Tiedemann, H. R., & Skinner, E. H. (1972). Support determinations based on geologic predictions. In N Am Rapid Excav & Tunnelling Conf Proc (Vol. 1).
  • Zhang, H., Zhang, G., Pan, Y., Hao, Z., Chen, S., & Cheng, F. (2022). Experimental study on the mechanical behavior and deformation characteristics of lining structure of super-large section tunnels with a small clearance. Engineering Failure Analysis, 136, 106186.

Estimating support pressure with finite element and convergence-confinement method for different rock masses

Yıl 2023, Cilt: 62 Sayı: 3, 99 - 108, 20.10.2023
https://doi.org/10.30797/madencilik.1356042

Öz

Support pressure is a key factor in the stability of the excavation area during mining and tunneling. The vital thing desired in an underground engineering structure is to ensure that the structure survives safely throughout its lifetime. For this reason, choosing the right support system at the planning stage is very important for the pressure that will affect the support system must be determined with a certain convergence. This article aims to discuss the support pressures by the finite element method and convergence-confinement method and compare the results. A series of two-dimensional finite element models are established to analyze support pressure with different rock masses selected from the literature. The results reveal that since the convergence-confinement method and the finite element method have high-order relationships regarding support pressures and displacements for weak rock masses, the support pressures and the displacement values for similar conditions can be estimated with the convergence-confinement method, which is more practical than the finite element method.

Kaynakça

  • Aydan, Ö., Ulusay, R., & Tokashiki, N. (2014). A new rock mass quality rating system: rock mass quality rating (RMQR) and its application to the estimation of geomechanical characteristics of rock masses. Rock mechanics and rock engineering, 47, 1255-1276.
  • Aygar, E. B. (2022). Zayıf zeminlerde açılan büyük çaplı çift tüp tünellerde tünellerin birbirine olan etkisinin 3 boyutlu sayısal analizler ile incelenmesine bir örnek, Bolu Tüneli destek sistemlerinin değerlendirilmesi.Scientific Mining Journal, 61(3), 157-168.
  • Barton, N., Lien, R., & Lunde, J. J. R. M. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6, 189-236.
  • Bieniawski, Z. T. (1973). Engineering classification of jointed rock masses. Civil Engineering= Siviele Ingenieurswese, (12), 335-343.
  • Birön, C., Arıoğlu E. (1985). Madenlerde Tahkimat İşleri ve Tasarımı, Birsen Kitabevi, İstanbul. Brown, E. T., Bray, J. W., Ladanyi, B., & Hoek, E. (1983). Ground response curves for rock tunnels. Journal of Geotechnical Engineering, 109(1), 15-39.
  • Carranza-Torres, C., & Fairhurst, C. (2000). Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion. Tunnelling and underground space technology, 15(2), 187-213.
  • Cui, L., Yang, W., Zheng, J., & Sheng, Q. (2023). Improved equations of ground pressure for shallow large-diameter shield tunnel considering multiple impact factors. Tunnelling and Underground Space Technology, 138, 105166.
  • Deere, D. U. (1964). Technical description of rock cores for engineering purpose. Rock Mechanics and Engineering Geology, 1(1), 17-22.
  • Deere, D. U., Peck, R. B., Parker, H. W., Monsees, J. E., & Schmidt, B. (1970). Design of tunnel support systems. Highway Research Record, (339).
  • Goel, R. K., Jethwa, J. L., & Dhar, B. B. (1996). Effect of tunnel size on support pressure. International Journal of Rock Mechanics and Mining & Geomechanics Abstracts, 33(7).
  • Goel, R. K., Jethwa, J. L., & Paithankar, A. G. (1995). Indian experiences with Q and RMR systems. Tunnelling and Underground Space Technology, 10(1), 97-109.
  • Hoek, E., & Brown, E. T. (1997). Practical estimates of rock mass strength. International journal of rock mechanics and mining sciences, 34(8), 1165-1186.
  • Hoek, E. (2000). Practical rock engineering (2023 ed.). Rocscience, Toronto, available online at: http://www.rocscience.com.
  • Huang, M., Li, Y., Shi, Z., & Lü, X. (2022). Face stability analysis of shallow shield tunneling in layered ground under seepage flow. Tunnelling and Underground Space Technology, 119, 104201.
  • Jalote, P.M., Kumar A., Kumar V. (1996). Geotechniques applied in the design of the machine hall cavern, Nathpa Jhakri Hydel Project, N.W. Himalaya, India. J. Engng Geol. (India) XXV(1-4), 181-192.
  • Kumar, B., & Sahoo, J. P. (2023). Lining pressure for circular tunnels in two layered clay with anisotropic undrained shear strength. Geomechanics and Geoengineering, 18(2), 91-104.
  • Lauffer, H. (1958). Gebirgsklassifizierung für den stollenbau. Geologie und Bauwesen, 24(1), 46-51. Moretto O., Sarra Pistone R.E. and Del Rio J.C. 1993. A case history in Argentina - Rock mechanics for underground works in the pumping storage development of Rio Grande No 1. In Comprehensive Rock Engineering. (Ed. Hudson, J.A.) 5, 159- 192. Oxford: Pergamon.
  • Niu, Y., Ren, T., Zhou, Q., Jiao, X., Shi, J., Xiang, K., ... & Satyanaga, A. (2023). Analysis of Excavation Parameters on Face Stability in Small Curvature Shield Tunnels. Sustainability, 15(8), 6797.
  • Palmstrom, A. (1995). Characterizing the strength of rock masses for use in design of underground structures. In International conference in design and construction of underground structures (Vol. 10).
  • Palmstrom, A. (2000). Recent developments in rock support estimates by the RMi. Journal of Rock Mechanics and Tunnelling Technology, 6(1), 1-19.
  • Panet, M., & Guellec, P. (1974). Contribution to the problem of the design of tunnel support behind the face. Progres en mecanique des roches-comptes rendus du 3eme congres de la societe internationale de mecanique des roches, Denver.
  • Panet, M., & Sulem, J. (2022). Convergence-confinement method for tunnel design, Switzerland: Springer. Panet, M., Givet, P. D. C. O., Guilloux, A., Duc, J. L. D. G. N. M., Piraud, J., & Wong, H. T. S. D. H. (2001). The convergence-confinement method. AFTES-recommendations des Groupes de Travait.
  • Protodyakonov, M. M. (1907). Rock pressure on mine support (theory of mine support). Tipografiya Gubernskogo Zemstva, Yekaterinoslav, 23-45.
  • Rocscience. (2020a). RS2, Version 11. Toronto, Ontario, Canada.
  • Rocscience. (2020b). RocSupport, Version 5. Toronto, Ontario, Canada. Rose, D. (1982). Revising Terzaghi’s tunnel rock load coefficients. In The 23rd US Symposium on Rock Mechanics (USRMS). OnePetro.
  • Seshagiri Rao, K. (2020). Characterization, modelling and engineering of rocks and rockmasses. Indian Geotechnical Journal, 50, 1-95.
  • Sharma, S., Muthreja, I. L., & Yerpude, R. R. (2020). Application and comparison of squeezing estimation methods for Himalayan tunnels. Bulletin of Engineering Geology and the Environment, 79, 205-223.
  • Singh, B., Goel, R. K., Jethwa, J. L., & Dube, A. K. (1997). Support pressure assessment in arched underground openings through poor rock masses. Engineering Geology, 48(1-2), 59-81.
  • Stille, H., Groth, T., & Fredriksson, A. (1982). FEM-analysis of rock mechanical problems with JOBFEM. Stiftelsen Bergteknisk Forskning–BeFo, Stockholm, 307(1), 82.
  • Taghizadeh, H., Zare, S., & Mazraehli, M. (2020). Analysis of rock load for tunnel lining design. Geotechnical and Geological Engineering, 38(3), 2989-3005.
  • Terzaghi, K., Proctor, R. V., & White, T. L. (1946). Rock tunneling with steel supports. Commercial Shearing and Stamping Co, 119-140.
  • Ünal, E., & Özkan, I. (1990). Determination of classification parameters for clay-bearing and stratified rock mass. In Proceedings of the 9th International Conference on Ground Control in Mining. Morgantown: West Virginia University (pp. 250-259).
  • Vlachopoulos, N., & Diederichs, M. S. (2009). Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels. Rock mechanics and rock engineering, 42, 131-146.
  • Wang, M., & Cai, M. (2022). Numerical modeling of stand-up time of tunnels considering time-dependent deformation of jointed rock masses. Rock Mechanics and Rock Engineering, 55(7), 4305-4328.
  • Wickham, G. E., Tiedemann, H. R., & Skinner, E. H. (1972). Support determinations based on geologic predictions. In N Am Rapid Excav & Tunnelling Conf Proc (Vol. 1).
  • Zhang, H., Zhang, G., Pan, Y., Hao, Z., Chen, S., & Cheng, F. (2022). Experimental study on the mechanical behavior and deformation characteristics of lining structure of super-large section tunnels with a small clearance. Engineering Failure Analysis, 136, 106186.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kaya Mekaniği ve Tahkimat
Bölüm Araştırma Makalesi
Yazarlar

Hüseyin Onur Dönmez 0000-0002-5567-0824

Hakan Tunçdemir 0000-0001-9244-6728

Yayımlanma Tarihi 20 Ekim 2023
Gönderilme Tarihi 6 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 62 Sayı: 3

Kaynak Göster

APA Dönmez, H. O., & Tunçdemir, H. (2023). Estimating support pressure with finite element and convergence-confinement method for different rock masses. Bilimsel Madencilik Dergisi, 62(3), 99-108. https://doi.org/10.30797/madencilik.1356042
AMA Dönmez HO, Tunçdemir H. Estimating support pressure with finite element and convergence-confinement method for different rock masses. Madencilik. Ekim 2023;62(3):99-108. doi:10.30797/madencilik.1356042
Chicago Dönmez, Hüseyin Onur, ve Hakan Tunçdemir. “Estimating Support Pressure With Finite Element and Convergence-Confinement Method for Different Rock Masses”. Bilimsel Madencilik Dergisi 62, sy. 3 (Ekim 2023): 99-108. https://doi.org/10.30797/madencilik.1356042.
EndNote Dönmez HO, Tunçdemir H (01 Ekim 2023) Estimating support pressure with finite element and convergence-confinement method for different rock masses. Bilimsel Madencilik Dergisi 62 3 99–108.
IEEE H. O. Dönmez ve H. Tunçdemir, “Estimating support pressure with finite element and convergence-confinement method for different rock masses”, Madencilik, c. 62, sy. 3, ss. 99–108, 2023, doi: 10.30797/madencilik.1356042.
ISNAD Dönmez, Hüseyin Onur - Tunçdemir, Hakan. “Estimating Support Pressure With Finite Element and Convergence-Confinement Method for Different Rock Masses”. Bilimsel Madencilik Dergisi 62/3 (Ekim 2023), 99-108. https://doi.org/10.30797/madencilik.1356042.
JAMA Dönmez HO, Tunçdemir H. Estimating support pressure with finite element and convergence-confinement method for different rock masses. Madencilik. 2023;62:99–108.
MLA Dönmez, Hüseyin Onur ve Hakan Tunçdemir. “Estimating Support Pressure With Finite Element and Convergence-Confinement Method for Different Rock Masses”. Bilimsel Madencilik Dergisi, c. 62, sy. 3, 2023, ss. 99-108, doi:10.30797/madencilik.1356042.
Vancouver Dönmez HO, Tunçdemir H. Estimating support pressure with finite element and convergence-confinement method for different rock masses. Madencilik. 2023;62(3):99-108.

22562 22561 22560 22590 22558