References
Amaral, S.S., Andrade de Carvalho Jr. J., Martins Costa, M. A., Pinheiro, C., 2015. An overview of particulate matter measurement instruments, Atmosphere 6, doi:10.3390/atmos6091327, 1327-1345.
Aneja, P. V., Isherwood, A., Morgan, P., 2012. Characterization of particulate matter (PM10) related to surface coal mining operations in Appalachia. Atmospheric Environment, 54, 496-501.
Axetell, K., Cowherd, C. 1984. Improved emission factors for fugitive dust from western surface coal mining sources. Industrial Environmental Reearch Laboratory, U.S. Environmental Protection Agency, 293p, Cincinnati.
Badu, A., 2014. Dust monitoring, characterization and prediction in an opencast coal mining project, Department of Mining Engineering National Institute Of Technology Rourkela. Erişim adresi: http://ethesis.nitrkl.ac.in/6191/1/110MN0629-11.pdf
Baumann, R., Krzyzanowski, M., Chicherin, S., 2006. Framework plan for the development of monitoring of particulate matter in EECCA, Who European Centre For Envıronment And Health, Bonn, pp, 40.
Beloconi, A., Chrysoulakisc, N., Lyapustind, A., Jürg Utzinger, J., Vounatsou, P. 2018. Bayesian geostatistical modelling of PM10 and PM2,5 surface level concentrations in Europe using high-resolution satellite-derived products. Environment International, 121, 57-70.
Bui, X-N., Lee, C.W., Nguyen, H., Bui, H-B., Long, N.Q., Le, Q-T., Nguyen, V-D., Ngoc-Bich Nguyen, N-B., Moayedi, H., 2019. Estimating PM10 concentration from drilling operations in open-pit mines using an assembly of SVR and PSO.
Applied Sciences, 9(14), 1-23. doi:10.3390/app9142806.
Castellani, B., Morini, E., Filipponi, M., Nicolini, A., Palombo, M., Cotana, F., Rossi, F., 2014. Comparative Analysis of Monitoring Devices for Particulate Content in Exhaust Gases, Sustainability, 6, doi:10.3390/su6074287, 4287-4307.
Chakraborty, M.K., Ahmad, M., Singh, R. S., Pal, D., Bandopadhyay, C. and Chaulya, S. K., 2002. Determination of the emission rate from various opencast mines operations. Environmental Modelling & Software. 17 (5), 467–480. doi: https://doi.org/10.1016/S1364-8152(02)00010-5.
Chaulya, S.K., 2006. Emission rate formulae for surface iron ore mining activities. Environmental Modeling Assessment, 11, 361–370. doi: https://doi.org/10.1007/s10666-005-9026-2.
Choudhary, M. P., Garg, V. 2013. Causes, Consequences and Control of Air Pollution, Conference: All India Seminar on Methodologies for Air Pollution Control at: Malaviya National Institute of Technology, Ağustos, 1-10, Jaipur.
Duran, Z., 2022. Particulate matter emission measurement and modeling of variation in some surface mines with meteorological conditions, material and heavy mining equipment properties, Sivas Cumhuriyet University, PhD thesis, 360p, Sivas.
EPA, 1999. Sampling of ambient air for PM10 concentration using the Rupprecht and Patashnick (R&P) low volume partisol® sampler, U.S. Environmental Protection Agency, 40p, Cincinnati.
Gautam, S., Patra, A. K., 2015. Dispersion of particulate matter generated at higher depths in opencast mines, Environmental Technology & Innovation 3 11–27, http://dx.doi.org/10.1016/j.eti.2014.11.002.
Gautam, S., Prusty, B. K., Patra, A. K., 2015. Dispersion of respirable particles from the workplace in opencast iron ore mines, Environmental Technology & Innovation 4 137–149, http://dx.doi.org/10.1016/j.eti.2015.06.002.
Giechaskiel, B., Maricq, M., Ntziachristos, L., Dardiotis, C., Wang, X., Axmann, H., Bergmann, A., Schindler, W., 2014. Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. Journal of Aerosol Science, 67, 48–86.
Grimm, H., Eatough, J.D., 2009. Aerosol Measurement: The Use of Optical Light Scattering for the Determination of Particulate Size Distribution, and Particulate Mass, Including the Semi-Volatile Fraction, Air & Waste Management Association, ISSN:1047-3289, 59, DOI:10.3155/1047-3289.59.1.101, 101–107.
Harrison D., Maggs, R., Booker, J., 2006. UK Equivalence Programme for Monitoring of Particulate Matter, Final Report for: Department for the Environment, Food and Rural Affairs; Welsh Assembly Government; Scottish Executive; Department of Environment for Northern Ireland, Ref: BV/AQ/AD202209/DH/2396, pp, 126.
Hendryx, M., Islam, M.S., Dong, G.H., Paul, G., 2020. Air pollution emissions 2008–2018 from Australian coal mining: Implications for public and occupational health. Int. J. Environ. Res. Public Health, 17, 1570. [Google Scholar] [CrossRef] [PubMed][Green Version].
Huertas, J, I., Huertas, M, E., Cervantes, G., Diaz, J., 2014. Assessment of the natural sources of particulate matter on the opencast mines air quality. Science of the Total Environment, 493, 1047-1055.
http://dx.doi.org/10.1016/j.scitotenv.2014.05.111.
Kahraman, M.M., Erkayaoğlu, M., 2021. A data-driven approach to control fugitive dust in mine operations. Min. Metall. Explor, 38, 549–558.
Kamyotra, J.S., 2012. Guidelines for the Measurement of Ambient Air Pollutants Volume-I, Central Pollution Control Board Ministry of Environment & Forests, Parivesh Bhawan, East Arjun Nagar, Delhi,
Kim, K., Ehsanul Kabir, E., Kabir, S. 2015. A review on the human health impact of airborne particulate matter. Environment International, 74, 136-143.
Kishore, K., 2015. Ambient air quality modelling using Aermod and particulate matter characterization in opencast mines. National Institute of Technology Department of Mining Engineering (MTech Thesis), 69p, Rourkela.
Lal, B. and Tripathy, S.S., 2012. Prediction of dust concentration in open cast coal mine using artificial neural network. Atmos. Pollut. Res. 3, 211–218. doi: https://doi.org/10.5094/APR.2012.023.
Lashgari, A. and Kecojevic, V., 2015. Comparative analysis of dust emission of digging and loading equipment in surface coal mining, International Journal of Mining, Reclamation and Environment, 30 (3). 181-196, doi: https://doi.org/10.1080/17480930.2015.1028516.
Li, Q-F., Wang-Li, L., Liu, Z., Heber, A.J., 2012. Field evaluation of particulate matter measurements using tapered element oscillating microbalance in a layer house, Journal of the Air & Waste Management Association, 62:3, DOI: 10.1080/10473289.2011.650316, 322-335.
Luo, H., Zhou, W., Jiskani, I. M., and Wang, Z., 2021. Analyzing characteristics of particulate matter pollution in open-pit coal mines: implications for green mining, Energies, 14, 2680. https://doi.org/10.3390/en14092680.
Mojala, S.K., Prasad, K.M., Sekhar, N.S.S., 2017. Air quality monitoring in iron ore mining site, International Journal for Research in Applied Science & Engineering Technology (IJRASET), ISSN: 2321-9653; Volume 5 Issue VIII, 2177-2182.
Nagesha, K.V., Sastry V.R. and Ram, C. K., 2016. Prediction of dust dispersion during drilling operation in open cast coal mines: A multi regression model, International Journal of Environmental Sciences, 6 (5), 681-696. doi: https://doi.org/10.6088/ijes.6064.
Ngo, N. D., Lee, J., Kim, M-W., Jang, J., 2019. Measurement of PM2.5 Mass Concentration Using an Electrostatic Particle Concentrator-Based Quartz Crystal Microbalance, IEEE Access 7, DOI: 10.1109/ACCESS.2019.2955377, 170640-170647.
Nosratabadi, A. R., Graff, P., Karlsson, H., Ljungman, A. G., Leanderson, P., 2019. Use of TEOM monitors for continuous long-term sampling of ambient particles for analysis of constituents and biological effects, Air Quality, Atmosphere & Health, 12, https://doi.org/10.1007/s11869-018-0638-5, 161–171.
NPI, 2001. Emission estimation technique manual for mining-Version 2.3, Australian Government, 69p, Canberra.
NPI, 2012. Emission estimation technique manual for mining-Version 3.1, Australian Government, 72p, Canberra.
NSAI, 2012. Workplace exposure - guide for the use of direct-reading instruments for aerosol monitoring - Part 3: evaluation of airborne particle concentrations using photometers. National Standards Authority of Ireland, 24p, Dublin.
Nussbaumer, T., Czasch, C., Klippel, N., Johansson, L., Tullin, C. 2008. Particulate emissions from biomass combustion in IEA countries. In Proceeding of the 16th European Biomass Conference and Exhibition, Zurich, Switzerland, 2–6 June; p. 40.
NZG, 2009. Good Practice Guide for Air Quality Monitoring and Data Management 2009, Ministry for the Environment, Manatū Mō Te Taiao PO Box 10362, Wellington 6143, New Zealand, ISBN: 978-0-478-33166-0 (print), 978-0-478-33167-7(electronic), Publication number: ME 933, pp, 105.
O’Connor, S., O’Connor, P. F., Feng, H.A., Ashley, K., 2014. Gravimetric analysis of particulate matter using air samplers housing internal filtration capsules, Gefahrstoffe Reinhaltung der Luft, 74(10): 403–410.
Oudwater, S.A., 2017. Modeling of dust emission in dimension stone quarry, Master’s Thesis, European Mining, Minerals and Environmental Programme, 77p.
Patra, A. K., Gautam, S. and Kumar, P., 2016. Emissions and human health impact of particulate matter from surface mining operation - A review, Environmental Technology & Innovation, 5, 233-249. doi: https://doi.org/10.1016/j.eti.2016.04.002
Pfeiffer, R.L., 2005. Sampling for PM10 and PM2.5 Particulates, U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska, pp, 20.
Pilling, M., ApSimon, H., Carruthers, D., Carslaw, D., Colvile, R., Derwent, D., Dorling, S., Fisher, B., Harrison, R., Heal, M., Laxen, D., Lindley, S., McCrae, I., Stedman, J., 2005. Particulate Matter in the United Kingdom, Department for the Environment, Food and Rural Affairs Nobel House 17 Smith Square, London, Product code PB10580 ISBN 0-85521-143-1, pp, 444.
Richardson, C., Rutherford, S., Agranovski E, I., 2018. Characterization of particulate emissions from Australian open-cut coal mines: Toward improved emission estimates. Journal of the Air & Waste Management Association. VOL. 68, NO. 6, 598–607, https://doi.org/10.1080/10962247.2017.1415236.
Richardson, C., Rutherford, S., Agranovski E, I., 2019. Open cut black coal mining: Empirical verification of PM2.5 air emission estimation techniques. Atmospheric Research, 216, 151-159. https://doi.org/10.1016/j.atmosres.2018.10.008.
Sastry, V.R., Chandar, K. R., Nagesha, K.V., Muralidhar, E., Mohiuddin, M.S., 2015. Prediction and Analysis of Dust Dispersion from Drilling Operation in Opencast Coal Mines, Procedia Earth and Planetary Science 11, 303-311, doi: 10.1016/j.proeps.2015.06.065.
Sahu, S. P., Yadav, M., Rani, N., Das, A. J., 2018. Assessment of occupational health exposure to particulate matter around opencast coal mines, India: a case study. Arabian Journal of, Geosciences, 11(373), 1-11. https://doi.org/10.1007/s12517-018-3631-2.
THHP, 2019. Hava kirliliği ve sağlik etkileri kara rapor. Temiz Hava Hakkı Platformu, 67s, İstanbul.
Tripathy, D. P., Dash, T, R., Badu, A. and Kanungo, R., 2015. Assessment and modelling of dust concentration in an opencast coal mine in India, Global Nest Journal, 17 (4), 825-834. doi: https://doi.org/10.30955/gnj.001611.
Tripathy, D. P. and Dash, T, R., 2019. Measurement of respirable dust concentration and assessment of health risk due to metals around an opencast coal mine of Talcher, Odisha, GEOFIZIKA, 36 (1), 77–106. doi: https://doi.org/10.15233/gfz.2019.36.2.
TSE EN 12341 2014. Ortam havası - askıdaki tanecikli maddenin PM10 veya PM2,5 kütle derişimlerinin tayini için standart gravimetrik ölçme yöntemi. Türk Standartları Enstitüsü, Ankara.
USEPA, 1991. Review of Surface Coal Mining Emissions Factors. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, 144 pp.
USEPA, 1995. (United States Environmental Protection Agency), AP-42 Compilation of Air Pollutant Emission Factors, Introduction, North Carolina.
USEPA, 1998. Revision of emission factors for AP-42 Section 11.9 Western surface coal mining. Revised final report, MRI Project No. 4604-02; Emission Factor and Inventory Group, Office of Air Quality Planning and Standards, US Environmental Protection Agency, pp, 350.
USEPA, 2006. Revision of Emission Factors for AP-42. Chapter 13: Miscellaneous Source. Section 13.2.4: Aggregate Handling and Storage Piles, 6 pp.
Vincent, J.H., 2007. Aerosol Sampling: Science, Standards, Instrumentation and Applications; JohnWiley & Sons: Hoboken, NJ, USA.
Wanjun, T., Qingxiang, C., 2018. Dust distribution in open-pit mines based on monitoring data and fluent simulation, Environ Monit Assess, 190: 632 https://doi.org/10.1007/s10661-018-7004-9.
Whalley, J., Zandi, S., 2016. Particulate Matter Sampling Techniques and Data Modelling Methods, Chapter 2, http://dx.doi.org/10.5772/65054, pp, 27.
Winkel, A., Demeyer, P., Feilberg, A., Jørgensen, M., Puterflam, J., Engel, P., 2014. Measurement of particulate matter: recommendations for the VERA test protocol on air cleaning Technologies, Livestock Research Report 797, pp, 38.
Url-1 <https://www.thermofisher.com/tr/en/home/industrial/environmental/environmental-learning-center/air-quality-analysis-information/teom-technology-particulate-matter-measurement.html> acessed on: 21.11.2023.
Url-2 <https://en.wikipedia.org/wiki/Tapered_element_oscillating_microbalance> acessed on: 21.11.2023.
Url-3 <https://metone.com/products/bam-1020/> acessed on: 23.11.2023.
Url-4 <https://en.wikipedia.org/wiki/Beta_attenuation_monitoring> acessed on: 23.11.2023.
Url-5 <https://infostore.saiglobal.com/preview/98705579385.pdf?sku=857774_SAIG_NSAI_NSAI_2040554> acessed on: 23.11.2023.
Particulate matter emissions from open pit mines; measurement methodologies, instruments, and research undertaken
Particulate matter is one of the primary pollutants in open pit mining operations. Measurements must be taken to control particulate matter created during open pit mining activities and to compare them to the regulatory limits. Numerous studies have been undertaken to estimate particulate matter emissions produced by open pit mining. It was discovered that the research were largely conducted on coal mines (69.4%), with little study done in other mining types. Research studies on particulate matter estimation took into consideration mostly machine characteristics (loader bucket volume, truck capacity, number of truck wheels etc.) and atmospheric conditions (air temperature, wind speed, relative humidity etc.). This study emphasizes on particulate matter measurement methods along with other measuring parameters and equipment for particulate matter estimation (TSP, PM10, PM4, PM2.5, and PM1).
References
Amaral, S.S., Andrade de Carvalho Jr. J., Martins Costa, M. A., Pinheiro, C., 2015. An overview of particulate matter measurement instruments, Atmosphere 6, doi:10.3390/atmos6091327, 1327-1345.
Aneja, P. V., Isherwood, A., Morgan, P., 2012. Characterization of particulate matter (PM10) related to surface coal mining operations in Appalachia. Atmospheric Environment, 54, 496-501.
Axetell, K., Cowherd, C. 1984. Improved emission factors for fugitive dust from western surface coal mining sources. Industrial Environmental Reearch Laboratory, U.S. Environmental Protection Agency, 293p, Cincinnati.
Badu, A., 2014. Dust monitoring, characterization and prediction in an opencast coal mining project, Department of Mining Engineering National Institute Of Technology Rourkela. Erişim adresi: http://ethesis.nitrkl.ac.in/6191/1/110MN0629-11.pdf
Baumann, R., Krzyzanowski, M., Chicherin, S., 2006. Framework plan for the development of monitoring of particulate matter in EECCA, Who European Centre For Envıronment And Health, Bonn, pp, 40.
Beloconi, A., Chrysoulakisc, N., Lyapustind, A., Jürg Utzinger, J., Vounatsou, P. 2018. Bayesian geostatistical modelling of PM10 and PM2,5 surface level concentrations in Europe using high-resolution satellite-derived products. Environment International, 121, 57-70.
Bui, X-N., Lee, C.W., Nguyen, H., Bui, H-B., Long, N.Q., Le, Q-T., Nguyen, V-D., Ngoc-Bich Nguyen, N-B., Moayedi, H., 2019. Estimating PM10 concentration from drilling operations in open-pit mines using an assembly of SVR and PSO.
Applied Sciences, 9(14), 1-23. doi:10.3390/app9142806.
Castellani, B., Morini, E., Filipponi, M., Nicolini, A., Palombo, M., Cotana, F., Rossi, F., 2014. Comparative Analysis of Monitoring Devices for Particulate Content in Exhaust Gases, Sustainability, 6, doi:10.3390/su6074287, 4287-4307.
Chakraborty, M.K., Ahmad, M., Singh, R. S., Pal, D., Bandopadhyay, C. and Chaulya, S. K., 2002. Determination of the emission rate from various opencast mines operations. Environmental Modelling & Software. 17 (5), 467–480. doi: https://doi.org/10.1016/S1364-8152(02)00010-5.
Chaulya, S.K., 2006. Emission rate formulae for surface iron ore mining activities. Environmental Modeling Assessment, 11, 361–370. doi: https://doi.org/10.1007/s10666-005-9026-2.
Choudhary, M. P., Garg, V. 2013. Causes, Consequences and Control of Air Pollution, Conference: All India Seminar on Methodologies for Air Pollution Control at: Malaviya National Institute of Technology, Ağustos, 1-10, Jaipur.
Duran, Z., 2022. Particulate matter emission measurement and modeling of variation in some surface mines with meteorological conditions, material and heavy mining equipment properties, Sivas Cumhuriyet University, PhD thesis, 360p, Sivas.
EPA, 1999. Sampling of ambient air for PM10 concentration using the Rupprecht and Patashnick (R&P) low volume partisol® sampler, U.S. Environmental Protection Agency, 40p, Cincinnati.
Gautam, S., Patra, A. K., 2015. Dispersion of particulate matter generated at higher depths in opencast mines, Environmental Technology & Innovation 3 11–27, http://dx.doi.org/10.1016/j.eti.2014.11.002.
Gautam, S., Prusty, B. K., Patra, A. K., 2015. Dispersion of respirable particles from the workplace in opencast iron ore mines, Environmental Technology & Innovation 4 137–149, http://dx.doi.org/10.1016/j.eti.2015.06.002.
Giechaskiel, B., Maricq, M., Ntziachristos, L., Dardiotis, C., Wang, X., Axmann, H., Bergmann, A., Schindler, W., 2014. Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. Journal of Aerosol Science, 67, 48–86.
Grimm, H., Eatough, J.D., 2009. Aerosol Measurement: The Use of Optical Light Scattering for the Determination of Particulate Size Distribution, and Particulate Mass, Including the Semi-Volatile Fraction, Air & Waste Management Association, ISSN:1047-3289, 59, DOI:10.3155/1047-3289.59.1.101, 101–107.
Harrison D., Maggs, R., Booker, J., 2006. UK Equivalence Programme for Monitoring of Particulate Matter, Final Report for: Department for the Environment, Food and Rural Affairs; Welsh Assembly Government; Scottish Executive; Department of Environment for Northern Ireland, Ref: BV/AQ/AD202209/DH/2396, pp, 126.
Hendryx, M., Islam, M.S., Dong, G.H., Paul, G., 2020. Air pollution emissions 2008–2018 from Australian coal mining: Implications for public and occupational health. Int. J. Environ. Res. Public Health, 17, 1570. [Google Scholar] [CrossRef] [PubMed][Green Version].
Huertas, J, I., Huertas, M, E., Cervantes, G., Diaz, J., 2014. Assessment of the natural sources of particulate matter on the opencast mines air quality. Science of the Total Environment, 493, 1047-1055.
http://dx.doi.org/10.1016/j.scitotenv.2014.05.111.
Kahraman, M.M., Erkayaoğlu, M., 2021. A data-driven approach to control fugitive dust in mine operations. Min. Metall. Explor, 38, 549–558.
Kamyotra, J.S., 2012. Guidelines for the Measurement of Ambient Air Pollutants Volume-I, Central Pollution Control Board Ministry of Environment & Forests, Parivesh Bhawan, East Arjun Nagar, Delhi,
Kim, K., Ehsanul Kabir, E., Kabir, S. 2015. A review on the human health impact of airborne particulate matter. Environment International, 74, 136-143.
Kishore, K., 2015. Ambient air quality modelling using Aermod and particulate matter characterization in opencast mines. National Institute of Technology Department of Mining Engineering (MTech Thesis), 69p, Rourkela.
Lal, B. and Tripathy, S.S., 2012. Prediction of dust concentration in open cast coal mine using artificial neural network. Atmos. Pollut. Res. 3, 211–218. doi: https://doi.org/10.5094/APR.2012.023.
Lashgari, A. and Kecojevic, V., 2015. Comparative analysis of dust emission of digging and loading equipment in surface coal mining, International Journal of Mining, Reclamation and Environment, 30 (3). 181-196, doi: https://doi.org/10.1080/17480930.2015.1028516.
Li, Q-F., Wang-Li, L., Liu, Z., Heber, A.J., 2012. Field evaluation of particulate matter measurements using tapered element oscillating microbalance in a layer house, Journal of the Air & Waste Management Association, 62:3, DOI: 10.1080/10473289.2011.650316, 322-335.
Luo, H., Zhou, W., Jiskani, I. M., and Wang, Z., 2021. Analyzing characteristics of particulate matter pollution in open-pit coal mines: implications for green mining, Energies, 14, 2680. https://doi.org/10.3390/en14092680.
Mojala, S.K., Prasad, K.M., Sekhar, N.S.S., 2017. Air quality monitoring in iron ore mining site, International Journal for Research in Applied Science & Engineering Technology (IJRASET), ISSN: 2321-9653; Volume 5 Issue VIII, 2177-2182.
Nagesha, K.V., Sastry V.R. and Ram, C. K., 2016. Prediction of dust dispersion during drilling operation in open cast coal mines: A multi regression model, International Journal of Environmental Sciences, 6 (5), 681-696. doi: https://doi.org/10.6088/ijes.6064.
Ngo, N. D., Lee, J., Kim, M-W., Jang, J., 2019. Measurement of PM2.5 Mass Concentration Using an Electrostatic Particle Concentrator-Based Quartz Crystal Microbalance, IEEE Access 7, DOI: 10.1109/ACCESS.2019.2955377, 170640-170647.
Nosratabadi, A. R., Graff, P., Karlsson, H., Ljungman, A. G., Leanderson, P., 2019. Use of TEOM monitors for continuous long-term sampling of ambient particles for analysis of constituents and biological effects, Air Quality, Atmosphere & Health, 12, https://doi.org/10.1007/s11869-018-0638-5, 161–171.
NPI, 2001. Emission estimation technique manual for mining-Version 2.3, Australian Government, 69p, Canberra.
NPI, 2012. Emission estimation technique manual for mining-Version 3.1, Australian Government, 72p, Canberra.
NSAI, 2012. Workplace exposure - guide for the use of direct-reading instruments for aerosol monitoring - Part 3: evaluation of airborne particle concentrations using photometers. National Standards Authority of Ireland, 24p, Dublin.
Nussbaumer, T., Czasch, C., Klippel, N., Johansson, L., Tullin, C. 2008. Particulate emissions from biomass combustion in IEA countries. In Proceeding of the 16th European Biomass Conference and Exhibition, Zurich, Switzerland, 2–6 June; p. 40.
NZG, 2009. Good Practice Guide for Air Quality Monitoring and Data Management 2009, Ministry for the Environment, Manatū Mō Te Taiao PO Box 10362, Wellington 6143, New Zealand, ISBN: 978-0-478-33166-0 (print), 978-0-478-33167-7(electronic), Publication number: ME 933, pp, 105.
O’Connor, S., O’Connor, P. F., Feng, H.A., Ashley, K., 2014. Gravimetric analysis of particulate matter using air samplers housing internal filtration capsules, Gefahrstoffe Reinhaltung der Luft, 74(10): 403–410.
Oudwater, S.A., 2017. Modeling of dust emission in dimension stone quarry, Master’s Thesis, European Mining, Minerals and Environmental Programme, 77p.
Patra, A. K., Gautam, S. and Kumar, P., 2016. Emissions and human health impact of particulate matter from surface mining operation - A review, Environmental Technology & Innovation, 5, 233-249. doi: https://doi.org/10.1016/j.eti.2016.04.002
Pfeiffer, R.L., 2005. Sampling for PM10 and PM2.5 Particulates, U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska, pp, 20.
Pilling, M., ApSimon, H., Carruthers, D., Carslaw, D., Colvile, R., Derwent, D., Dorling, S., Fisher, B., Harrison, R., Heal, M., Laxen, D., Lindley, S., McCrae, I., Stedman, J., 2005. Particulate Matter in the United Kingdom, Department for the Environment, Food and Rural Affairs Nobel House 17 Smith Square, London, Product code PB10580 ISBN 0-85521-143-1, pp, 444.
Richardson, C., Rutherford, S., Agranovski E, I., 2018. Characterization of particulate emissions from Australian open-cut coal mines: Toward improved emission estimates. Journal of the Air & Waste Management Association. VOL. 68, NO. 6, 598–607, https://doi.org/10.1080/10962247.2017.1415236.
Richardson, C., Rutherford, S., Agranovski E, I., 2019. Open cut black coal mining: Empirical verification of PM2.5 air emission estimation techniques. Atmospheric Research, 216, 151-159. https://doi.org/10.1016/j.atmosres.2018.10.008.
Sastry, V.R., Chandar, K. R., Nagesha, K.V., Muralidhar, E., Mohiuddin, M.S., 2015. Prediction and Analysis of Dust Dispersion from Drilling Operation in Opencast Coal Mines, Procedia Earth and Planetary Science 11, 303-311, doi: 10.1016/j.proeps.2015.06.065.
Sahu, S. P., Yadav, M., Rani, N., Das, A. J., 2018. Assessment of occupational health exposure to particulate matter around opencast coal mines, India: a case study. Arabian Journal of, Geosciences, 11(373), 1-11. https://doi.org/10.1007/s12517-018-3631-2.
THHP, 2019. Hava kirliliği ve sağlik etkileri kara rapor. Temiz Hava Hakkı Platformu, 67s, İstanbul.
Tripathy, D. P., Dash, T, R., Badu, A. and Kanungo, R., 2015. Assessment and modelling of dust concentration in an opencast coal mine in India, Global Nest Journal, 17 (4), 825-834. doi: https://doi.org/10.30955/gnj.001611.
Tripathy, D. P. and Dash, T, R., 2019. Measurement of respirable dust concentration and assessment of health risk due to metals around an opencast coal mine of Talcher, Odisha, GEOFIZIKA, 36 (1), 77–106. doi: https://doi.org/10.15233/gfz.2019.36.2.
TSE EN 12341 2014. Ortam havası - askıdaki tanecikli maddenin PM10 veya PM2,5 kütle derişimlerinin tayini için standart gravimetrik ölçme yöntemi. Türk Standartları Enstitüsü, Ankara.
USEPA, 1991. Review of Surface Coal Mining Emissions Factors. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, 144 pp.
USEPA, 1995. (United States Environmental Protection Agency), AP-42 Compilation of Air Pollutant Emission Factors, Introduction, North Carolina.
USEPA, 1998. Revision of emission factors for AP-42 Section 11.9 Western surface coal mining. Revised final report, MRI Project No. 4604-02; Emission Factor and Inventory Group, Office of Air Quality Planning and Standards, US Environmental Protection Agency, pp, 350.
USEPA, 2006. Revision of Emission Factors for AP-42. Chapter 13: Miscellaneous Source. Section 13.2.4: Aggregate Handling and Storage Piles, 6 pp.
Vincent, J.H., 2007. Aerosol Sampling: Science, Standards, Instrumentation and Applications; JohnWiley & Sons: Hoboken, NJ, USA.
Wanjun, T., Qingxiang, C., 2018. Dust distribution in open-pit mines based on monitoring data and fluent simulation, Environ Monit Assess, 190: 632 https://doi.org/10.1007/s10661-018-7004-9.
Whalley, J., Zandi, S., 2016. Particulate Matter Sampling Techniques and Data Modelling Methods, Chapter 2, http://dx.doi.org/10.5772/65054, pp, 27.
Winkel, A., Demeyer, P., Feilberg, A., Jørgensen, M., Puterflam, J., Engel, P., 2014. Measurement of particulate matter: recommendations for the VERA test protocol on air cleaning Technologies, Livestock Research Report 797, pp, 38.
Url-1 <https://www.thermofisher.com/tr/en/home/industrial/environmental/environmental-learning-center/air-quality-analysis-information/teom-technology-particulate-matter-measurement.html> acessed on: 21.11.2023.
Url-2 <https://en.wikipedia.org/wiki/Tapered_element_oscillating_microbalance> acessed on: 21.11.2023.
Url-3 <https://metone.com/products/bam-1020/> acessed on: 23.11.2023.
Url-4 <https://en.wikipedia.org/wiki/Beta_attenuation_monitoring> acessed on: 23.11.2023.
Url-5 <https://infostore.saiglobal.com/preview/98705579385.pdf?sku=857774_SAIG_NSAI_NSAI_2040554> acessed on: 23.11.2023.
Duran, Z., Doğan, T., & Erdem, B. (2024). Particulate matter emissions from open pit mines; measurement methodologies, instruments, and research undertaken. Bilimsel Madencilik Dergisi, 63(1), 19-30. https://doi.org/10.30797/madencilik.1396816
AMA
Duran Z, Doğan T, Erdem B. Particulate matter emissions from open pit mines; measurement methodologies, instruments, and research undertaken. Madencilik. Eylül 2024;63(1):19-30. doi:10.30797/madencilik.1396816
Chicago
Duran, Zekeriya, Tuğba Doğan, ve Bülent Erdem. “Particulate Matter Emissions from Open Pit Mines; Measurement Methodologies, Instruments, and Research Undertaken”. Bilimsel Madencilik Dergisi 63, sy. 1 (Eylül 2024): 19-30. https://doi.org/10.30797/madencilik.1396816.
EndNote
Duran Z, Doğan T, Erdem B (01 Eylül 2024) Particulate matter emissions from open pit mines; measurement methodologies, instruments, and research undertaken. Bilimsel Madencilik Dergisi 63 1 19–30.
IEEE
Z. Duran, T. Doğan, ve B. Erdem, “Particulate matter emissions from open pit mines; measurement methodologies, instruments, and research undertaken”, Madencilik, c. 63, sy. 1, ss. 19–30, 2024, doi: 10.30797/madencilik.1396816.
ISNAD
Duran, Zekeriya vd. “Particulate Matter Emissions from Open Pit Mines; Measurement Methodologies, Instruments, and Research Undertaken”. Bilimsel Madencilik Dergisi 63/1 (Eylül 2024), 19-30. https://doi.org/10.30797/madencilik.1396816.
JAMA
Duran Z, Doğan T, Erdem B. Particulate matter emissions from open pit mines; measurement methodologies, instruments, and research undertaken. Madencilik. 2024;63:19–30.
MLA
Duran, Zekeriya vd. “Particulate Matter Emissions from Open Pit Mines; Measurement Methodologies, Instruments, and Research Undertaken”. Bilimsel Madencilik Dergisi, c. 63, sy. 1, 2024, ss. 19-30, doi:10.30797/madencilik.1396816.
Vancouver
Duran Z, Doğan T, Erdem B. Particulate matter emissions from open pit mines; measurement methodologies, instruments, and research undertaken. Madencilik. 2024;63(1):19-30.