Research and Application of Sealed coring Technology in In-situ Coal Seam of Directional Long borehole in Coal mine
Yıl 2024,
Cilt: 63 Sayı: 1, 41 - 46, 10.09.2024
Dayong Tang
,
Wenbing Wu
Yi Tang
Zhengyong Duan
Xiaolong He
Shubo Zhou
Linlong Ni
Öz
In order to accurately obtain the gas content of in-situ coal seams in coal mines, a sealed coring technology for in-situ coal seams in coal mines has been proposed. By utilizing the pressure difference generated by high-pressure water at both ends of the piston, the piston is driven to cut off the positioning pin, which in turn drives the ball valve in the coring device to rotate, achieving the goal of cutting off and sealing the in-situ coal core. Performance tests were conducted on the sealing pressure of the coring device by opening the amount of water holes on the piston and using suspension pins of different materials, verifying the working parameters of the piston opening amount and suspension pins of different materials, providing basic data for subsequent industrial underground tests. Finally, during the industrial test underground, it was found that the gas content in the coal seam measured by closed sampling was 1.9-2.5 times higher than that of the coal seam sampled by the hole, which verified the successful design of the closed sampling device.
Teşekkür
The authors gratefully acknowledge the support of the general project of Natural Science Foundation of Chongqing (Grant No.CSTB2023TFII-OFX0011), the Banan District Natural Science Foundation Project (Grant No. 7), the Yongchuan District Natural Science Foundation Project (Grant No. Ycstc, 2019nb0801).
Kaynakça
-
References
-
Akdaş, S. B., Fişne, A. 2023. A data-driven approach for the prediction of coal seam gas content using machine learning techniques. Applied Energy, 347, 121499. Doi: 10.1016/j.apenergy.2023.121499
-
Chen, S., Tang, D., Tao, S., Xu, H., Li, S., Zhao, J., Fu, H. 2017. In-situ stress measurements and stress distribution characteristics of coal reservoirs in major coalfields in China: Implication for coalbed methane (CBM) development. International Journal of Coal Geology, 182, 66-84. DOI: 10.1016/j.coal.2017.09.009
-
Ding, Z.R. Engineering Fluid Mechanics [M].Beijing: Higher Education Press, 2022.
-
Guo, D., Chen, L., Zhou, Z., Wang, D., Zhang, Y., Yang, X., Xie, H. 2023b. Development of a pressure coring system for the investigation of deep underground exploration. International Journal of Mining Science and Technology, 33(11), 1351 -1364.DOI:10.1016/j.ijmst.2023.10.001
-
Guo, D., Xie, H. P., Chen, L., Zhou, Z. Y., Lu, H. P., Dai, L., Gao, M. Z. 2023a. In-situ pressure-preserved coring for deep exploration: Insight into the rotation behavior of the valve cover of a pressure controller. Petroleum Science, 20(4), 2386-2398.DOI: 10.1016/ j.petsci.2023.02.020
-
Guo, D., Xie, H., Gao, M., Li, J., He, Z., Chen, L., Dai, L. 2024. In-situ pressure-preserved coring for deep oil and gas exploration: Design scheme for a coring tool and research on the in-situ pressure-preserving mechanism. Energy, 286, 129519. DOI: 10.1016/j.energy.2023.129519
-
Hua, C., Wang, Z., Su, E., Dong, J., Yue, J., Cui, Y., & Zhang, K. 2022. In situ volume recovery method for non-seal gas pressure measurement technology: a comparative study. ACS Omega, 7(45), 41341-41352. DOI:10.1021/acsomega.2c05120
-
Huang, W., Li, J., Liu, Z., Yang, M., You, Z., & Xie, H. 2023.Study of a low-disturbance pressure-preserving corer and its coring performance in deep coal mining conditions. International Journal of Mining Science and Technology, 33(11), 1397-1410. DOI: 10.1016/j.ijmst.2023.07.003
-
Karacan, C. Ö., Martín-Fernández, J. A., Ruppert, L. F., & Olea, R. A. 2021. Insights on the characteristics and sources of gas from an underground coal mine using compositional data analysis. International Journal of Coal Geology, 241, 103767.DOI:10.1016/j.coal.2021.103767
-
Long, W.C., Sun, S.Q., Chen, J. 2022.Study on long-distance fixed-point sealed coring technology in broken-soft coal seam. Coal Geology & Exploration, 50(8), 93-98. DOI:10.12363/issn.1001-1986.21.12.0882
-
Sang, S., Li, R., Liu, S., Zhou, X., Wei, B., Han, S., Zhou, Z. 2024. Research progress and breakthrough directions of the key technical fields for large scale and efficient exploration and development of coalbed methane in Xinjiang.
-
Journal of China Coal Society, 49(1), 563-585. Doi: 10.13225/j.cnki.jccs.YH23.1313
-
Szlązak, N., Korzec, M., & Piergies, K. 2021. The determination of the methane content of coal seams based on drill cutting and core samples from coal mine roadway. Energies, 15(1), 178.DOI:10.3390/en15010178
-
Szlązak, N., Obracaj, D., &Korzec, M. 2021. Estimation of gas loss in methodology for determining methane content of coal seams. Energies, 14(4), 982.Doi: 10.3390/en14040982
-
Tao, S., Pan, Z., Tang, S., & Chen, S. 2019. Current status and geological conditions for the applicability of CBM drilling technologies in China: A review. International Journal of Coal Geology, 202, 95-108. Doi: 10.1016/j.coal.2018.11.020
-
Van Dyke, M., Klemetti, T., & Wickline, J. 2020. Geologic data collection and assessment techniques in coal mining for ground control. International Journal of Mining Science and Technology, 30(1), 131-139.Doi: 10.1016/j.ijmst.2019.12.003
-
Wang, J., Yu, M., Qian, D., Wan, B., Sun, Y., Chen, C., Tang, Y. 2022a. Optimisation of drainage performance of the thin-walled core barrel sealing technology for pressure preservation sampling. Ocean Engineering, 250, 110996.DOI: 10.1016/j.oceaneng.2022.110996
-
Wang, Q., Wang, Z., Yue, J., An, F., Dong, J., & Ke, W. 2022b. Temperature of the Core Tube Wall during Coring in Coal Seam: Experiment and Modeling. ACS Omega, 7(9), 7901-7911. DOI:10.1021/acsomega.1c06746
-
Wu, N. H., Gao, M. Z., Zhu, L. Y., Li, J. N., Fan, D., You, B., Zhu, G. D. 2023. Pressure control method and device innovative design for deep oil in-situ exploration and coring. Petroleum Science, 20(2), 1169-1182. DOI:10.1016/j.petsci.2022. 10.011
-
Xie, H. P., Liu, T., Gao, M. Z., Chen, L., Zhou, H. W., Ju, Y., Zhao, Z. Y. 2021. Research on in-situ condition preserved coring and testing systems. Petroleum Science, 18(6), 1840-1859. DOI:10.1016/j.petsci.2021.11.003
-
Yang, D., Zhao, Z., Wu, Y., Zhu, L., Lu, J., Liu, T., & Xie, H. 2023. A graphene-enhanced high-barrier and fast-curing film for deep in situ condition preserved coring in coal seams. International Journal of Mining Science and Technology, 33(11), 1365-1376. DOI:10.1016/j.ijmst.2023.08.005
Yu, B., Xie, H., Chen, L., Zhao, W., & He, Z. 2020.Exploration of digital twin design mechanism of the deep in situ rock insulation coring device. Geofluids, 2020, 8835085. DOI: 10.1155/2020/8835085
Zhao, F.J., Deng, Q.G., Hao, F.C., Zuo, W.Q. 2023. A new method of coring in coal mine: pressure-holding and continuous coring technology. Bulletin of Engineering Geology and the Environment, 82(1), 17. DOI: 10.1007/s10064-022-03038-7
Yıl 2024,
Cilt: 63 Sayı: 1, 41 - 46, 10.09.2024
Dayong Tang
,
Wenbing Wu
Yi Tang
Zhengyong Duan
Xiaolong He
Shubo Zhou
Linlong Ni
Kaynakça
-
References
-
Akdaş, S. B., Fişne, A. 2023. A data-driven approach for the prediction of coal seam gas content using machine learning techniques. Applied Energy, 347, 121499. Doi: 10.1016/j.apenergy.2023.121499
-
Chen, S., Tang, D., Tao, S., Xu, H., Li, S., Zhao, J., Fu, H. 2017. In-situ stress measurements and stress distribution characteristics of coal reservoirs in major coalfields in China: Implication for coalbed methane (CBM) development. International Journal of Coal Geology, 182, 66-84. DOI: 10.1016/j.coal.2017.09.009
-
Ding, Z.R. Engineering Fluid Mechanics [M].Beijing: Higher Education Press, 2022.
-
Guo, D., Chen, L., Zhou, Z., Wang, D., Zhang, Y., Yang, X., Xie, H. 2023b. Development of a pressure coring system for the investigation of deep underground exploration. International Journal of Mining Science and Technology, 33(11), 1351 -1364.DOI:10.1016/j.ijmst.2023.10.001
-
Guo, D., Xie, H. P., Chen, L., Zhou, Z. Y., Lu, H. P., Dai, L., Gao, M. Z. 2023a. In-situ pressure-preserved coring for deep exploration: Insight into the rotation behavior of the valve cover of a pressure controller. Petroleum Science, 20(4), 2386-2398.DOI: 10.1016/ j.petsci.2023.02.020
-
Guo, D., Xie, H., Gao, M., Li, J., He, Z., Chen, L., Dai, L. 2024. In-situ pressure-preserved coring for deep oil and gas exploration: Design scheme for a coring tool and research on the in-situ pressure-preserving mechanism. Energy, 286, 129519. DOI: 10.1016/j.energy.2023.129519
-
Hua, C., Wang, Z., Su, E., Dong, J., Yue, J., Cui, Y., & Zhang, K. 2022. In situ volume recovery method for non-seal gas pressure measurement technology: a comparative study. ACS Omega, 7(45), 41341-41352. DOI:10.1021/acsomega.2c05120
-
Huang, W., Li, J., Liu, Z., Yang, M., You, Z., & Xie, H. 2023.Study of a low-disturbance pressure-preserving corer and its coring performance in deep coal mining conditions. International Journal of Mining Science and Technology, 33(11), 1397-1410. DOI: 10.1016/j.ijmst.2023.07.003
-
Karacan, C. Ö., Martín-Fernández, J. A., Ruppert, L. F., & Olea, R. A. 2021. Insights on the characteristics and sources of gas from an underground coal mine using compositional data analysis. International Journal of Coal Geology, 241, 103767.DOI:10.1016/j.coal.2021.103767
-
Long, W.C., Sun, S.Q., Chen, J. 2022.Study on long-distance fixed-point sealed coring technology in broken-soft coal seam. Coal Geology & Exploration, 50(8), 93-98. DOI:10.12363/issn.1001-1986.21.12.0882
-
Sang, S., Li, R., Liu, S., Zhou, X., Wei, B., Han, S., Zhou, Z. 2024. Research progress and breakthrough directions of the key technical fields for large scale and efficient exploration and development of coalbed methane in Xinjiang.
-
Journal of China Coal Society, 49(1), 563-585. Doi: 10.13225/j.cnki.jccs.YH23.1313
-
Szlązak, N., Korzec, M., & Piergies, K. 2021. The determination of the methane content of coal seams based on drill cutting and core samples from coal mine roadway. Energies, 15(1), 178.DOI:10.3390/en15010178
-
Szlązak, N., Obracaj, D., &Korzec, M. 2021. Estimation of gas loss in methodology for determining methane content of coal seams. Energies, 14(4), 982.Doi: 10.3390/en14040982
-
Tao, S., Pan, Z., Tang, S., & Chen, S. 2019. Current status and geological conditions for the applicability of CBM drilling technologies in China: A review. International Journal of Coal Geology, 202, 95-108. Doi: 10.1016/j.coal.2018.11.020
-
Van Dyke, M., Klemetti, T., & Wickline, J. 2020. Geologic data collection and assessment techniques in coal mining for ground control. International Journal of Mining Science and Technology, 30(1), 131-139.Doi: 10.1016/j.ijmst.2019.12.003
-
Wang, J., Yu, M., Qian, D., Wan, B., Sun, Y., Chen, C., Tang, Y. 2022a. Optimisation of drainage performance of the thin-walled core barrel sealing technology for pressure preservation sampling. Ocean Engineering, 250, 110996.DOI: 10.1016/j.oceaneng.2022.110996
-
Wang, Q., Wang, Z., Yue, J., An, F., Dong, J., & Ke, W. 2022b. Temperature of the Core Tube Wall during Coring in Coal Seam: Experiment and Modeling. ACS Omega, 7(9), 7901-7911. DOI:10.1021/acsomega.1c06746
-
Wu, N. H., Gao, M. Z., Zhu, L. Y., Li, J. N., Fan, D., You, B., Zhu, G. D. 2023. Pressure control method and device innovative design for deep oil in-situ exploration and coring. Petroleum Science, 20(2), 1169-1182. DOI:10.1016/j.petsci.2022. 10.011
-
Xie, H. P., Liu, T., Gao, M. Z., Chen, L., Zhou, H. W., Ju, Y., Zhao, Z. Y. 2021. Research on in-situ condition preserved coring and testing systems. Petroleum Science, 18(6), 1840-1859. DOI:10.1016/j.petsci.2021.11.003
-
Yang, D., Zhao, Z., Wu, Y., Zhu, L., Lu, J., Liu, T., & Xie, H. 2023. A graphene-enhanced high-barrier and fast-curing film for deep in situ condition preserved coring in coal seams. International Journal of Mining Science and Technology, 33(11), 1365-1376. DOI:10.1016/j.ijmst.2023.08.005
Yu, B., Xie, H., Chen, L., Zhao, W., & He, Z. 2020.Exploration of digital twin design mechanism of the deep in situ rock insulation coring device. Geofluids, 2020, 8835085. DOI: 10.1155/2020/8835085
Zhao, F.J., Deng, Q.G., Hao, F.C., Zuo, W.Q. 2023. A new method of coring in coal mine: pressure-holding and continuous coring technology. Bulletin of Engineering Geology and the Environment, 82(1), 17. DOI: 10.1007/s10064-022-03038-7