Araştırma Makalesi
BibTex RIS Kaynak Göster

Yaş öğütülmüş kireçtaşlarının gözenekli seramik bünye özelliklerine etkisinin araştırılması

Yıl 2025, Cilt: 63 Sayı: 2, 95 - 100, 01.10.2025
https://doi.org/10.30797/madencilik.1600367

Öz

Seramik duvar karosu kompozisyonlarının üretiminde kireçtaşı ve kil mineralleri kullanılmaktadır. Duvar karoları EN 14411 standardına bağlı olarak %10-20 su emme özelliğine sahip olmalıdır. Su emme kriterini sağlayabilmek için duvar karosu bünye kompozisyonunda karbonatlı yapıda olan kalsit ve dolomit mineralleri kullanılmaktadır. Üreticiler bu mineralleri işletmelere yakın, doğada bol miktarda bulunan kireçtaşı kaynaklarından temin etmektedirler. Seramik bünye üretimi için hammadde boyutlarının ince boyutlara (-45 µm) düşürülmesi gerekmektedir. Bu nedenle kireçtaşının sulu ortamda çok ince boyuta (-45 µm) öğütülmesinde boyut kontrolü kaliteli duvar karosu bünye kompozisyonu üretmek için oldukça önemlidir. Bu bağlamda, bu çalışmada Çanakkale ilinin Derenti, Nevruz ve Terzialan bölgelerinden elde edilen kireçtaşı örneklerinin öğütülmesinin seramik duvar karoları üzerindeki etkilerinin laboratuvar ve sanayi ölçekli deney/analizlere dayalı olarak araştırılması amaçlanmıştır. Kireçtaşı numuneleri ilk olarak diskontinü değirmende öğütülmüş ve öğütme performansları zamana bağlı tane boyutu, enerji tüketimi ve kapasite açısından karşılaştırılmıştır. İkinci olarak, duvar karosu gövdeleri oluşturularak endüstriyel fırında pişirilmiş, son olarak sinterleme özellikleri ve TS EN 14411 standartları açısından analiz edilmiştir. Laboratuvar çalışmalarından elde edilen sonuçlar, Derenti, Nevruz ve Terzialan kireçtaşı örneklerinin Bond İş İndekslerinin sırasıyla 12,8, 11,7 ve 13,0 kWh/t olarak belirlendiğini göstermiştir. Endüstriyel bazlı diskontinü öğütme çalışmaları sonucunda, kireçtaşı numunelerinin kuvars içeriğinin %0,8'den %2,1'e yükselmesiyle 45 µm üzeri %0,2 elek üstü bakiyesine ulaşıncaya kadar öğütme için enerji tüketimi 67,4'ten 73,4 kW/t'ye yükselmiş ve kapasite 1,34 t/h'den 1,23 t/h'ye düşmüştür. Endüstriyel bazlı öğütme deneylerinde öğütülmüş numunelerin tane boyut dağılımını ifade eden d90, d50 ve d10 değerlerinin sırasıyla 16,97 µm, 1,85 µm ve 0,37 µm olduğunu göstermiştir. Duvar karosu bünye kompozisyonu geliştirme kapsamında yapılan çalışmalar sonucunda CaO içeriğinin %53,9'dan %54,6'ya yükselmesi ile küçülme değeri %0,43'ten %0,31'e düşmüş ve %13 kireçtaşı kullanılarak TS EN 14411 su emme standardına sahip duvar karosu elde edilmiştir. Sonuç olarak kireçtaşı yapısındaki mineral içeriği, ince öğütme işleminde tane boyutu dağılımı, enerji tüketimi ve kapasite üzerinde olduğu gibi duvar karosu bünye kompozisyonunun sinterleme özellikleri üzerinde de önemli etkiler göstermiştir.

Proje Numarası

FBA-2024-4812

Kaynakça

  • Altun, O., Benzer, H., & Enderle, U. 2014. The effects of chamber diameter and stirrer design on dry horizontal stirred mill performance. Minerals Engineering, 69, 24-28. https://doi.org/10.1016/j.mineng.2014.07.008.
  • Bazin, C., & Lavoie, G. 2000. Ball mill rotation speed and rate of particle breakage: application to a full scale unit. Trans Inst Min Metall Sect-C, 109,161-164.
  • Çayırlı, S., Gökçen, H.S., Yüce, N., Elchi, O. 2023. Utilization of wastes/by-products as a grinding additive. Scientific Mining Journal, 62(3), 123-130. https://doi.org/10.30797/madencilik.1342929.
  • Dana, K., & Das, S. 2002. Some Studies on Ceramic Body Compositions for Wall and Floor Tiles. Transactions of the Indian Ceramic Society, 61, 83 - 86. https://doi.org/10.1080/0371750X.2002.10800032.
  • Deniz, V. 2021. The effects on the grinding parameters of chemical, morphological and mineralogical properties of three different calcites in a Hardgrove mill. Minerals Engineering, 176, 107348. https://doi.org/10.1016/j.mineng.2021.107348.
  • Dvoáková, P., Kloužková, A., Kohoutková, M., & Kolářová, M. 2021. IOP Conf. Ser.: Mater. Sci. Eng. 1050 012004.
  • El-Sherbiny, S., El-Sheikh, S. & Barhoum, A. 2015. Preparation and modification of nano calcium carbonate filler from waste marble dust and commercial limestone for papermaking wet end application. Powder Technology, 279, 290–300. https://doi.org/10.1016/j.powtec.2015.04.006
  • Framinan, J.M., Leisten, R., & García, R.R. 2014. A case study: Ceramic tile production. In Springer eBooks (pp. 371-395). https://doi.org/10.1007/978-1-4471-6272-8_15.
  • Haner, S. (2021). Fine dry grinding with cylpebs of quartz sand in the Şile district of İstanbul Turkey. Archives of Mining Sciences, 66(4), 625-634. ttps://doi.org/10.24425/ams.2021.137457.
  • Johnson, S.E., Song, W.J., Cook, A.C., Vel, S.S., & Gerbi, C.C. 2020. The quartz α↔β phase transition: Does it drive damage and reaction in continental crust? Earth and Planetary Science Letters, 553, 116622. https://doi.org/10.1016/j.epsl.2020.116622.
  • Kagonbé, B.P., Tsozué, D., Nzeukou, A.N., & Ngos, S., III. 2021. Mineralogical, geochemical and physico-chemical characterization of clay raw materials from three clay deposits in northern Cameroon. Journal of Geoscience and Environment Protection, 09(06), 86–99. https://doi.org/10.4236/gep.2021.96005.
  • Karakaş, F. (2006). Energy optimization for grinding of cement raw materials [master's thesis]. [Istanbul]: Istanbul Technical University.
  • Ma, S., Li, H., Shuai, Z., Yang, J., Xu, W., & Deng, X. 2022. Research on grinding characteristics and comparison of particle-size-composition prediction of rich and poor ores. Minerals, 12(11), 1354. https://doi.org/10.3390/min12111354.
  • Niall, S. & Evitt, T.S. 2000. Compositions for ceramic tiles (Patent No. 6,127,298). United States Patent. https://patentimages.storage.googleapis.com/56/8b/a4/62bc90ddf24fbf/US6127298.pdf
  • Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A. B., Ortega-Huertas, M. 2009. Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. American Mineralogist, 94(4), 578-593. https://doi.org/10.2138/am.2009.3021.
  • Sacmi 2002. Applied Ceramic Technology, Volume 1-2, Editrice La Mondragora S.R.L., Imola, Italy.
  • Şan, O. & Koç, M. 2011. Fabrication of microporous silica ceramics with varied polymorphic forms and investigation of their thermal shock behavior. DOAJ (DOAJ: Directory of Open Access Journals). https://doaj.org/article/f846712fe28b48d1847ebefb669428ab.
  • Tarhan, B & Tarhan, M. 2018. Effect of usage of perlite on technical properties of ceramic wall tile. International Journal of Research and Development, 10(1). https://doi.org/10.29137/umagd.364552.
  • TS EN 14411 2016. Ceramic tiles - Definition, classification, characteristics, assessment and verification of constancy of performance and marking, Turkish Standards Institution.
  • TS 7700 1989. Determination Method of Grinding Work Index, Turkish Standards Institution.
  • Zhang, ZX., Ouchterlony, F. 2022. Energy requirement for rock breakage in laboratory experiments and engineering operations: A Review. Rock Mech Rock Eng., 55, 629-667. https://doi.org/10.1007/s00603-021-02687-6.

Investigation of wet ground limestones on porous ceramic body properties

Yıl 2025, Cilt: 63 Sayı: 2, 95 - 100, 01.10.2025
https://doi.org/10.30797/madencilik.1600367

Öz

Limestone and clay group minerals are used in the production of ceramic wall tile compositions. Wall tiles must have a 10-20% water absorption depending on the EN 14411 standard. In order to meet this water absorption criterion, calcite and dolomite minerals which are in carbonated structure are used in wall tile body composition. Manufacturers supply these minerals from limestone sources close to the enterprises, which are abundant in nature. The size of raw materials must be reduced to finer sizes (-45 µm) for the production of ceramic bodies. For this reason, it is very important to control the size of the limestone during the grinding process limestone to a very fine size (-45 µm) in aqueous media in order to produce qualified wall tile body composition. In this context, this study aimed to investigate the effects of grinding of limestone samples obtained from the Derenti, Nevruz, and Terzialan regions of Çanakkale province, on ceramic wall tiles based on laboratory and industry-scale experiments/analyses. The limestone samples were firstly ground in a discontinuous mill, and the grinding performances were compared in terms of time-dependent particle size, energy consumption, and capacity. Second, the wall tile bodies were shaped and then fired in an industrial kiln, and finally analyzed in terms of sintering properties and TS EN 14411 standards. The results from this study showed that Bond Work Indexes of Derenti, Nevruz, and Terzialan limestone samples were determined as 12.8, 11.7, and 13.0 kWh/t, respectively. As a result of industrial-based discontinuous grinding studies, the energy consumption for grinding to 0.2% sieve residue for +45 µm increased from 67.4 to 73.4 kW/t and the capacity decreased from 1.34 t/h to 1.23 t/h with the increase of quartz content of limestone samples from 0.8% to 2.1%. The particle size analysis of the samples indicated the d90, d50, and d10 values of the ground samples in industrial-based grinding experiments were 16.97 µm, 1.85 µm, and 0.37 µm, respectively, As a result of the studies carried out within the scope of wall tile body composition development, the shrinkage value decreased from 0.43% to 0.31% with the increase in CaO content from 53.9% to 54.6% and wall tile with TS EN 14411 water absorption standard was obtained by using 13% limestone. In conclusion, the mineral content in limestone showed significant effects on particle size distribution, energy consumption, and capacity in the fine grinding process as well as on sintering properties of wall tile body composition.

Destekleyen Kurum

Çanakkale Onsekiz Mart University The Scientific Research Coordination Unit

Proje Numarası

FBA-2024-4812

Teşekkür

This work was supported by Çanakkale Onsekiz Mart University The Scientific Research Coordination Unit, Project number: FBA-2024-4812. Besides, thanks to the Kaleseramik R&D Center for experimental support.

Kaynakça

  • Altun, O., Benzer, H., & Enderle, U. 2014. The effects of chamber diameter and stirrer design on dry horizontal stirred mill performance. Minerals Engineering, 69, 24-28. https://doi.org/10.1016/j.mineng.2014.07.008.
  • Bazin, C., & Lavoie, G. 2000. Ball mill rotation speed and rate of particle breakage: application to a full scale unit. Trans Inst Min Metall Sect-C, 109,161-164.
  • Çayırlı, S., Gökçen, H.S., Yüce, N., Elchi, O. 2023. Utilization of wastes/by-products as a grinding additive. Scientific Mining Journal, 62(3), 123-130. https://doi.org/10.30797/madencilik.1342929.
  • Dana, K., & Das, S. 2002. Some Studies on Ceramic Body Compositions for Wall and Floor Tiles. Transactions of the Indian Ceramic Society, 61, 83 - 86. https://doi.org/10.1080/0371750X.2002.10800032.
  • Deniz, V. 2021. The effects on the grinding parameters of chemical, morphological and mineralogical properties of three different calcites in a Hardgrove mill. Minerals Engineering, 176, 107348. https://doi.org/10.1016/j.mineng.2021.107348.
  • Dvoáková, P., Kloužková, A., Kohoutková, M., & Kolářová, M. 2021. IOP Conf. Ser.: Mater. Sci. Eng. 1050 012004.
  • El-Sherbiny, S., El-Sheikh, S. & Barhoum, A. 2015. Preparation and modification of nano calcium carbonate filler from waste marble dust and commercial limestone for papermaking wet end application. Powder Technology, 279, 290–300. https://doi.org/10.1016/j.powtec.2015.04.006
  • Framinan, J.M., Leisten, R., & García, R.R. 2014. A case study: Ceramic tile production. In Springer eBooks (pp. 371-395). https://doi.org/10.1007/978-1-4471-6272-8_15.
  • Haner, S. (2021). Fine dry grinding with cylpebs of quartz sand in the Şile district of İstanbul Turkey. Archives of Mining Sciences, 66(4), 625-634. ttps://doi.org/10.24425/ams.2021.137457.
  • Johnson, S.E., Song, W.J., Cook, A.C., Vel, S.S., & Gerbi, C.C. 2020. The quartz α↔β phase transition: Does it drive damage and reaction in continental crust? Earth and Planetary Science Letters, 553, 116622. https://doi.org/10.1016/j.epsl.2020.116622.
  • Kagonbé, B.P., Tsozué, D., Nzeukou, A.N., & Ngos, S., III. 2021. Mineralogical, geochemical and physico-chemical characterization of clay raw materials from three clay deposits in northern Cameroon. Journal of Geoscience and Environment Protection, 09(06), 86–99. https://doi.org/10.4236/gep.2021.96005.
  • Karakaş, F. (2006). Energy optimization for grinding of cement raw materials [master's thesis]. [Istanbul]: Istanbul Technical University.
  • Ma, S., Li, H., Shuai, Z., Yang, J., Xu, W., & Deng, X. 2022. Research on grinding characteristics and comparison of particle-size-composition prediction of rich and poor ores. Minerals, 12(11), 1354. https://doi.org/10.3390/min12111354.
  • Niall, S. & Evitt, T.S. 2000. Compositions for ceramic tiles (Patent No. 6,127,298). United States Patent. https://patentimages.storage.googleapis.com/56/8b/a4/62bc90ddf24fbf/US6127298.pdf
  • Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A. B., Ortega-Huertas, M. 2009. Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. American Mineralogist, 94(4), 578-593. https://doi.org/10.2138/am.2009.3021.
  • Sacmi 2002. Applied Ceramic Technology, Volume 1-2, Editrice La Mondragora S.R.L., Imola, Italy.
  • Şan, O. & Koç, M. 2011. Fabrication of microporous silica ceramics with varied polymorphic forms and investigation of their thermal shock behavior. DOAJ (DOAJ: Directory of Open Access Journals). https://doaj.org/article/f846712fe28b48d1847ebefb669428ab.
  • Tarhan, B & Tarhan, M. 2018. Effect of usage of perlite on technical properties of ceramic wall tile. International Journal of Research and Development, 10(1). https://doi.org/10.29137/umagd.364552.
  • TS EN 14411 2016. Ceramic tiles - Definition, classification, characteristics, assessment and verification of constancy of performance and marking, Turkish Standards Institution.
  • TS 7700 1989. Determination Method of Grinding Work Index, Turkish Standards Institution.
  • Zhang, ZX., Ouchterlony, F. 2022. Energy requirement for rock breakage in laboratory experiments and engineering operations: A Review. Rock Mech Rock Eng., 55, 629-667. https://doi.org/10.1007/s00603-021-02687-6.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endüstriyel Hammaddeler
Bölüm Orijinal Araştırma
Yazarlar

Emrah Durgut 0000-0002-4637-7087

Proje Numarası FBA-2024-4812
Yayımlanma Tarihi 1 Ekim 2025
Gönderilme Tarihi 12 Aralık 2024
Kabul Tarihi 27 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 63 Sayı: 2

Kaynak Göster

APA Durgut, E. (2025). Investigation of wet ground limestones on porous ceramic body properties. Bilimsel Madencilik Dergisi, 63(2), 95-100. https://doi.org/10.30797/madencilik.1600367
AMA Durgut E. Investigation of wet ground limestones on porous ceramic body properties. Madencilik. Ekim 2025;63(2):95-100. doi:10.30797/madencilik.1600367
Chicago Durgut, Emrah. “Investigation of wet ground limestones on porous ceramic body properties”. Bilimsel Madencilik Dergisi 63, sy. 2 (Ekim 2025): 95-100. https://doi.org/10.30797/madencilik.1600367.
EndNote Durgut E (01 Ekim 2025) Investigation of wet ground limestones on porous ceramic body properties. Bilimsel Madencilik Dergisi 63 2 95–100.
IEEE E. Durgut, “Investigation of wet ground limestones on porous ceramic body properties”, Madencilik, c. 63, sy. 2, ss. 95–100, 2025, doi: 10.30797/madencilik.1600367.
ISNAD Durgut, Emrah. “Investigation of wet ground limestones on porous ceramic body properties”. Bilimsel Madencilik Dergisi 63/2 (Ekim2025), 95-100. https://doi.org/10.30797/madencilik.1600367.
JAMA Durgut E. Investigation of wet ground limestones on porous ceramic body properties. Madencilik. 2025;63:95–100.
MLA Durgut, Emrah. “Investigation of wet ground limestones on porous ceramic body properties”. Bilimsel Madencilik Dergisi, c. 63, sy. 2, 2025, ss. 95-100, doi:10.30797/madencilik.1600367.
Vancouver Durgut E. Investigation of wet ground limestones on porous ceramic body properties. Madencilik. 2025;63(2):95-100.

22562 22561 22560 22590 22558