Derleme
BibTex RIS Kaynak Göster

Erkek infertilitesinde spermatozoon DNA hasarının rolü ve önemi

Yıl 2018, Cilt: 3 Sayı: 2, 135 - 140, 30.12.2018
https://doi.org/10.24880/maeuvfd.463669

Öz

Erkeğe bağlı infertilite, genetik ve epigenetik nedenlerden kaynaklanan karmaşık etiyoloji, döl veriminin normal sınırlar altında bulunmasına sebep olan bir hastalıktır. İnfertilite ile spermatozoonun genetik yapısı arasında kuvvetli bir birliktelik bulunmaktadır. Çeşitli iç ve dış kaynaklı sebeplerden dolayı spermatozoonun Deoksiribo nükleik asit (DNA) yapısında farklı düzeylerde hasarlar meydana gelmektedir. İnfertil erkeklerde spermatozoon DNA hasarı yüksek olarak saptanmaktadır. Çeşitli DNA hasar tamir mekanizmaları DNA’da meydana gelen hasarın tipine uygun olarak devreye girmekte ve hasar tamirinin gerçekleştirilmesi sonucu genomik kararlılık korunmakta ve hücre yaşamını sürdürebilmektedir. Hasar nedenlerinin çoğalması, onarım mekanizmalarındaki aksaklıklar gibi nedenlerle hücre ölümü, fertilizasyon kapasitesinde azalma, spermatozoon genom bütünlüğünde bozulma, infertilite ve mutasyonlar
meydana gelebilmektedir. Spermatozoon DNA’sında şekillenen bu hasarların tespiti amacıyla tek hücre jel elektroforezi, tunel, spermatozoon kromatin yapısı analizi gibi birçok metot kullanılmaktadır. Mevcut veriler ışığında, daha iyi kalitede spermatozoonlara sahip olan hayvanların seçiminde, reprodüktif biyoteknolojiler ve yardımcı üreme tekniklerinde spermatozoon seçimi önemli olsa da, erkek infertilitesi tanı ve tedavisinde spermatozoon DNA hasarı olup olmadığının değerlendirilmesi ayrı bir önem arz etmektedir

Kaynakça

  • 1. Bennetts LE, de Iuliis GN, Nixon B, Kime M, Zelski K, McVicar CM, Lewis SE, Aitken RJ. Impact of estrogenic compounds on DNA integrity in human spermatozoa: Evidence for cross-linking and redox cycling activities. Mutation Research 2008; 641: 1–11.2. Braun RE. Packaging paternal chromosomes with protamine. Nature Genetics 2001; 28: 102.3. Brugmans L, Kanaar R, Essers J. Analysis of DNA double-strand break repair pathways in mice. Mutation Research 2007; 614: 95–108.4. Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. Molecular Human Reproduction 2010; 16: 37–47.5. Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. Journal of Andrology 2001; 22: 604–610.6. De Ambrogi M, Spinaci M, Galeati G, Tamanini C. Viability and DNA fragmentation in differently sorted boar spermatozoa. Theriogenology 2006; 66: 1994–2000.7. Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reproductive Biomedicine Online 2007; 14(6): 734-45.8. González-Marín C, Roy R, López-Fernández C, Diez B, Carabaño MJ, Fernández JL, Kjelland ME, Moreno JF, Gosálvez J. Bacteria in bovine semen can increase sperm DNA fragmentation rates: A kinetic experimental approach. Animal Reproduction Science 201; 123: 139–148.9. Gosálvez J, Vázquez JM, Enciso M, Fernández JL, Gosálbez A, Bridle JR, López-Fernández, C. Sperm DNA fragmentation in rams vaccinated with miloxan. Open Veterinary Science Journal 2008; 2: 7-10.10. Güneş S, Sevgili E, Aşcı R. Sperm DNA Hasarı Mekanizmaları ve Değerlendirme Yöntemleri. Türkiye Klinikleri J Urology 2013; 4(3): 107-114.11. Hassa H. İnfertil Olgulara Klinik Yaklaşım ve IVF Laboratuar Uygulamaları. 1. Baskı. Eskişehir Osmangazi Üniversitesi Yayınları. Eskişehir 2003; s: 127-165.12. Jackson RE, Bormann CL, Hassun PA, Rocha AM, Motta EL, Serafini PC, Smith GD. Effects of semen storage and separation techniques on sperm DNA fragmentation. Fertility and Sterility 2010; 94: 2626–2630.13. Jarow J, Sigman M, Kolettis PN, Lipsthultz LR, Nangia AK, Pins GS, et al. Genetic screening. The Optimal Evaluation of the Infertile Male: AUA Best Practice Statement. American Urological Association 2010; 20-3.14. Jayaraman V, Upadhya D, Narayan PK, Adiga SK. Sperm processing by swim-up and density gradient is effective in elimination of sperm with DNA damage. Journal of Assisted Reproduction Genetics 2012; 29: 557–563.15. Jiménez-Rabadán P, Ramón M, García-Álvarez O, Maroto-Morales A, del Olmo E, Pérez-Guzmán MD, Bisbal A, Fernández-Santos MR, Garde JJ, Soler AJ. Effect of semen collection method (artificial vagina vs. electroejaculation), extender and centrifugation on post-thaw sperm quality of Blanca-Celtibérica buck ejaculates. Animal Reproductive Science 2012; 132: 88–95.16. Jurisicova A, Latham KE, Casper RF, Casper RF, Varmuza SL. Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Molecular Reproduction and Development 1998; 51: 243–253.17. Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature, 2005;434: 583–589.18. Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian Journal of Experimental Biology 2010; 48(5): 425-35.19. Krausz C. Male infertility: pathogenesis and clinical diagnosis. Best Practice Research Clinical Endocrinology Metabolism 2011; 25(2): 271-85.20. Leduc F, Maquennehan V, Nkoma GB, Boissonneault G. DNA damage response during chromatin remodeling in elongating spermatids of mice. Biology Reproduction 2008; 78: 324–332.21. Lewis SE, Agbaje IM. Using the alkaline comet assay in prognostic tests for male infertility and assisted reproductive technology outcomes. Mutagenesis 2008; 23(3): 163-70.22. Lo CC, Thompson JA, Lowry VK, Varner DD. Effect of storage time and temperature on stallion sperm DNA and fertility. Theriogenology 2002; 57: 1135–1142.23. Lone SA, Shah N, Yadav P, Aurif Wagay M, Singh A, Sinha R. Sperm DNA Damage Causes, Assessment and Relationship with Fertility. Theriogenology 2017; 7(1): 13-20.24. Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human Spermiogenesis: New Insights in Stage Specificity and Link to Chromatin Remodeling. Biology of Reproduction 2004; 70-4,910-918.25. Menezo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos. Zygote 2010; 18: 357–365.26. Mengual L, Ballescá JL, Ascaso C, Oliva R. Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls. Journal of Andrology 2003; 24: 438–447.27. Oehninger SC, Kruger TF. Erkek İnfertilitesi Teşhis ve Tedavi. Çeviri Editörü: Doç. Dr. Mete Kilciler, Habitat Matbaası, İstanbul 2009; s: 1-240.28. Sakkas D, Seli E, Manicardi GC, Nijs M, Ombelet W, Bizzaro D. The presence of abnormal spermatozoa in the ejaculate: Did apoptosis fail? Human Fertility 2004; 7: 99–103.29. Simon L, Castillo J, Oliva R, Lewis SE. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reproductive Biomedicine 2011; 23: 724–734.30. Tomar DME, Chamberlin J, Allen L, Olson S, Donlon T, Barton S, Sheehy R, Waggonner D. Preferential paternal origin of de novo structural chromosome rearrangements. American Journal of Human Genetics 1984; 36: 115.31. Türk G, Aksu EH, Bozkurt T. Spermatozoon DNA’sı hasarı. Fırat Üniversitesi Sağlık Bilimleri Dergisi 2006; 20(1): 85-95.32. Ward WS. Chromosome organization in mammalian sperm nuclei. Genetics of Human Male Infertility 1997; 205-221.33. Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biology of Reproduction 1991; 44: 569–574.34. Wykes SM, Krawetz SA. The structural organization of sperm chromatin. Journal of Biology Chemistry 2003; 278: 29471-7.

The role and importance of spermatozoon dna damage in male infertility

Yıl 2018, Cilt: 3 Sayı: 2, 135 - 140, 30.12.2018
https://doi.org/10.24880/maeuvfd.463669

Öz

Infertility is a disease with complex etiology resulting from genetic and epigenetic causes, which causes the fertility to be under normal limits in males. There is a strong association between the infertility and the genetic structure of the spermatozoon. Due to various internal and external causes, different levels of damage can be occur in to the spermatozoon (Deoksiribo nucleic acid) DNA structure. Infertile men have high spermatozoon DNA damage.. Various DNA damage repair mechanisms are join in accordance with the type of damage that occurs in DNA and the completion of damage repair preserves the resulting genomic stability and can lead to cell survival. The causes of cell death, reduction in fertilization capacity, deterioration in the integrity of the spermatozoon genome, infertility and mutations can occur due to the proliferation of damage causes and deficiencies in repair mechanisms. Many methods such as the single cell gel electrophoresis, tunel, spermatozoon chromatin structure assay are used to measure spermatozoon DNA damage. In the light of existing data, although selecting quality of spermatozoa are important in reproductive biotechnology and assisted reproductive techniques, evaluating spermatozoon DNA damage is special importance in diagnosis and treatment of male infertility

Kaynakça

  • 1. Bennetts LE, de Iuliis GN, Nixon B, Kime M, Zelski K, McVicar CM, Lewis SE, Aitken RJ. Impact of estrogenic compounds on DNA integrity in human spermatozoa: Evidence for cross-linking and redox cycling activities. Mutation Research 2008; 641: 1–11.2. Braun RE. Packaging paternal chromosomes with protamine. Nature Genetics 2001; 28: 102.3. Brugmans L, Kanaar R, Essers J. Analysis of DNA double-strand break repair pathways in mice. Mutation Research 2007; 614: 95–108.4. Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. Molecular Human Reproduction 2010; 16: 37–47.5. Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. Journal of Andrology 2001; 22: 604–610.6. De Ambrogi M, Spinaci M, Galeati G, Tamanini C. Viability and DNA fragmentation in differently sorted boar spermatozoa. Theriogenology 2006; 66: 1994–2000.7. Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reproductive Biomedicine Online 2007; 14(6): 734-45.8. González-Marín C, Roy R, López-Fernández C, Diez B, Carabaño MJ, Fernández JL, Kjelland ME, Moreno JF, Gosálvez J. Bacteria in bovine semen can increase sperm DNA fragmentation rates: A kinetic experimental approach. Animal Reproduction Science 201; 123: 139–148.9. Gosálvez J, Vázquez JM, Enciso M, Fernández JL, Gosálbez A, Bridle JR, López-Fernández, C. Sperm DNA fragmentation in rams vaccinated with miloxan. Open Veterinary Science Journal 2008; 2: 7-10.10. Güneş S, Sevgili E, Aşcı R. Sperm DNA Hasarı Mekanizmaları ve Değerlendirme Yöntemleri. Türkiye Klinikleri J Urology 2013; 4(3): 107-114.11. Hassa H. İnfertil Olgulara Klinik Yaklaşım ve IVF Laboratuar Uygulamaları. 1. Baskı. Eskişehir Osmangazi Üniversitesi Yayınları. Eskişehir 2003; s: 127-165.12. Jackson RE, Bormann CL, Hassun PA, Rocha AM, Motta EL, Serafini PC, Smith GD. Effects of semen storage and separation techniques on sperm DNA fragmentation. Fertility and Sterility 2010; 94: 2626–2630.13. Jarow J, Sigman M, Kolettis PN, Lipsthultz LR, Nangia AK, Pins GS, et al. Genetic screening. The Optimal Evaluation of the Infertile Male: AUA Best Practice Statement. American Urological Association 2010; 20-3.14. Jayaraman V, Upadhya D, Narayan PK, Adiga SK. Sperm processing by swim-up and density gradient is effective in elimination of sperm with DNA damage. Journal of Assisted Reproduction Genetics 2012; 29: 557–563.15. Jiménez-Rabadán P, Ramón M, García-Álvarez O, Maroto-Morales A, del Olmo E, Pérez-Guzmán MD, Bisbal A, Fernández-Santos MR, Garde JJ, Soler AJ. Effect of semen collection method (artificial vagina vs. electroejaculation), extender and centrifugation on post-thaw sperm quality of Blanca-Celtibérica buck ejaculates. Animal Reproductive Science 2012; 132: 88–95.16. Jurisicova A, Latham KE, Casper RF, Casper RF, Varmuza SL. Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Molecular Reproduction and Development 1998; 51: 243–253.17. Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature, 2005;434: 583–589.18. Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian Journal of Experimental Biology 2010; 48(5): 425-35.19. Krausz C. Male infertility: pathogenesis and clinical diagnosis. Best Practice Research Clinical Endocrinology Metabolism 2011; 25(2): 271-85.20. Leduc F, Maquennehan V, Nkoma GB, Boissonneault G. DNA damage response during chromatin remodeling in elongating spermatids of mice. Biology Reproduction 2008; 78: 324–332.21. Lewis SE, Agbaje IM. Using the alkaline comet assay in prognostic tests for male infertility and assisted reproductive technology outcomes. Mutagenesis 2008; 23(3): 163-70.22. Lo CC, Thompson JA, Lowry VK, Varner DD. Effect of storage time and temperature on stallion sperm DNA and fertility. Theriogenology 2002; 57: 1135–1142.23. Lone SA, Shah N, Yadav P, Aurif Wagay M, Singh A, Sinha R. Sperm DNA Damage Causes, Assessment and Relationship with Fertility. Theriogenology 2017; 7(1): 13-20.24. Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human Spermiogenesis: New Insights in Stage Specificity and Link to Chromatin Remodeling. Biology of Reproduction 2004; 70-4,910-918.25. Menezo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos. Zygote 2010; 18: 357–365.26. Mengual L, Ballescá JL, Ascaso C, Oliva R. Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls. Journal of Andrology 2003; 24: 438–447.27. Oehninger SC, Kruger TF. Erkek İnfertilitesi Teşhis ve Tedavi. Çeviri Editörü: Doç. Dr. Mete Kilciler, Habitat Matbaası, İstanbul 2009; s: 1-240.28. Sakkas D, Seli E, Manicardi GC, Nijs M, Ombelet W, Bizzaro D. The presence of abnormal spermatozoa in the ejaculate: Did apoptosis fail? Human Fertility 2004; 7: 99–103.29. Simon L, Castillo J, Oliva R, Lewis SE. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reproductive Biomedicine 2011; 23: 724–734.30. Tomar DME, Chamberlin J, Allen L, Olson S, Donlon T, Barton S, Sheehy R, Waggonner D. Preferential paternal origin of de novo structural chromosome rearrangements. American Journal of Human Genetics 1984; 36: 115.31. Türk G, Aksu EH, Bozkurt T. Spermatozoon DNA’sı hasarı. Fırat Üniversitesi Sağlık Bilimleri Dergisi 2006; 20(1): 85-95.32. Ward WS. Chromosome organization in mammalian sperm nuclei. Genetics of Human Male Infertility 1997; 205-221.33. Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biology of Reproduction 1991; 44: 569–574.34. Wykes SM, Krawetz SA. The structural organization of sperm chromatin. Journal of Biology Chemistry 2003; 278: 29471-7.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derlemeler
Yazarlar

Mesut Çevik 0000-0002-0754-6116

Yayımlanma Tarihi 30 Aralık 2018
Gönderilme Tarihi 25 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 3 Sayı: 2

Kaynak Göster

APA Çevik, M. (2018). Erkek infertilitesinde spermatozoon DNA hasarının rolü ve önemi. Veterinary Journal of Mehmet Akif Ersoy University, 3(2), 135-140. https://doi.org/10.24880/maeuvfd.463669