Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 7 Sayı: 1, 26 - 33, 30.04.2022
https://doi.org/10.24880/maeuvfd.981913

Öz

Kaynakça

  • 1. Arslan S, Şanlıer N. Fructose and health. Mersin Üniversitesi Sağlık Bilimleri Dergisi. 2016; 9(3):150–158
  • 2. Tappy L, Le KA, Tran C, Paquot N. Fructose and metabolic diseases: New findings, new questions. Nutrition. 2010;26(11-12):1044–1049.
  • 3. Vos MB, Kimmons JE, Gillespie C, Welsh J, Michels Blanck H. Dietary fructose consumption among US children and adults; The Third National Health and Nutrition Examination Survey. Medscape J. Med. 2008;10(7):160.
  • 4. Korkmaz A. Fruktoz; Kronik Hastalıklar İçin Gizli Bir Tehdit [Fructose; A Hidden Threat for Chronic Diseases]. TAF Preventive Medicine Bullletin. 2008;7:343–346.
  • 5. Libuda L, Mathilde K. Soft drinks and body weight development in childhood is there a relationship? Curr. Opin. Clin. Nutr. Metab. Care. 2009;12(6):596–600.
  • 6. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 2009;119(5):1322–1334.
  • 7. Hu FB, Malik VS. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiol. Behav. 2010;100(1):47–54.
  • 8. Yılmaz H, Öngün YH. Fructose Consumption and Health Effects. Cumhuriyet Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi. 2019;4(2):57–50.
  • 9. Bratoeva KZ, Radanova MA, Merdzhanova AV, Donev IS. Protective role of sadenosylmethionine against fructose-induced oxidative damage in obesity. J Mind Med Sci. 2017; 4:163–171.
  • 10. Bekyarova G, Bratoeva K, Bekyarov N. Uric acid and vascular disorders in metabolic syndrome. Medical Review- Cardiovascular Diseases. 2013;44:40–44.
  • 11. Johnson RJ, Perez-Pozo SE, Sautin YY, Manitius J, Sanchez-Lozada LG, Feig DI, et al. Hypothesis: Could Excessive Fructose Intake and Uric Acid Cause Type 2 Diabetes? Endocrine Reviews. 2009;30(1):96–116.
  • 12. Sanchez-Lozada LG, Tapia E, Jimenez A, Bautista P, Cristóbal M, Nepomuceno T, et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol. 2007;292:423– 429.
  • 13. Nandhini AT, Thirunavukkarasu V, Ravichandran MK, Anuradha CV. Effect of taurine on biomarkers of oxidative stress in tissues of fructose-fed insulin-resistant rats. Singapore Med J. 2005;46(2):82.
  • 14. Chou CL, Lin H, Chen JS, Fang TC. Renin inhibition improves metabolic syndrome, and reduces angiotensin II levels and oxidative stress in visceral fat tissues in fructose-fed rats. PLoS One. 2017;12(7):1–17.
  • 15. Johnson RJ, Sanchez-Lozada LG, Nakagawa T. The Effect of Fructose on Renal Biology and Disease. J Am Soc Nephrol. 2010;21:2036–2039.
  • 16. Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang D-H, et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr. 2007;86:899–906.
  • 17. Kizhner T, Werman MJ. Long-term fructose intake: biochemical consequences and altered renal histology in the male rat. Metabolism. 2002;51:1538–1547.
  • 18. Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, et al. Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am J Physiol Renal Physiol. 2007;293:1256–1261.
  • 19. Roberts LS, Marrow JD. Analgesic-Antipyretic and antiinflammatory agents and drugs employed in the treatment of gout. In: Limbird LE, Hardman JG, editors. Goodman and Gilman’s. The pharmacological basis of therapeutics. 10th ed. USA: The Mcgraw-Hill Companies; 2001. p. 687–703.
  • 20. Shi X, Ding M, Dong Z, Chen F, Ye J, Wang S, et al. Antioxidant properties of aspirin: characterization of the ability of aspirin to inhibit silica-induced lipid peroxidation, DNA damage, NF-kappaB activation, and TNF-alpha production. Mol Cell Biochem. 1999;199(1-2):93–102.
  • 21. Frei B, Stocker R, England L, Ames BN. Ascorbate: the most effective antioxidant in human blood plasma. Av Exp Med Biol. 1990;264:155–163.
  • 22. Draper HH, Hadley M. Malondialdehyde determination as index of lipid Peroxidation. Methods in Enzymol. 1990;186:421–431.
  • 23. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem. 1976;72:248–54.
  • 24. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126.
  • 25. Refaiy A, Muhammad E, ElGanainy E. Semiquantitative smoothelin expression in detection of muscle invasion in transurethral resection and cystectomy specimens in cases of urinary bladder carcinoma. African J Urol. 2011;17(1):6–10.
  • 26. Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004;79(4):537–543.
  • 27. Smith SM. High fructose corn syrup replaces sugar in processed food. Environ Nutr. 1998;11: 7–8.
  • 28. Asci H, Saygin M, Yesilot S, Topsakal S, Cankara FN, Ozmen O, et al. Protective effects of aspirin and vitamin C against corn syrup consumption-induced cardiac damage through sirtuin-1 and HIF-1α pathway. Anatol J Cardiol. 2016;16:648–54.
  • 29. Topsakal S, Ozmen O, Ozgocmen M. Effects of alpha-lipoic acid on high fructose induced hepatic pathology. Biotech Histochem. 2019;94(4):271–276.
  • 30. Saygin M, Asci H, Cankara FN, Bayram D, Yesilot S, Candan IA, et al. The impact of high fructose on cardiovascular system: Role of α-lipoic acid. Hum Exp Toxicol. 2016;35(2): 194–204.
  • 31. Tappy L. Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders. J Exp. Biol. 2018;221:1–9.
  • 32. Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med. 2004;140:167–174.
  • 33. Shapiro A, Mu W, Roncal C, Cheng K, Johnson RJ, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feding. Am J Physiol Regul Integr Comp Physiol. 2008;295:1370–1375.
  • 34. Del RD, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2015;15(4):316 –328.
  • 35. Djordjević VB. Free Radicals in Cell Biology. Int Rev Cytol. 2004;237:57–59.
  • 36. Pasko P, Barton H, Zagrodzki P, Izewska A, Krosniak M, Gawlik M, et al. Effect of Diet Supplemented with Quinoa Seeds on Oxidative Status in Plasma and Selected Tissues of High Fructose-Fed Rats. Plant Foods Hum Nutr. 2010;65:146–151.
  • 37. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant Mechanisms in Renal Injury and Disease. Antioxid Redox Signal. 2016;25(3):119–146.
  • 38. Yesilot S, Özer MK, Bayram D, Oncu M, Karabacak HI, Cicek E. Effects of Aspirin and Nimesulide on tissue damage in diabetic rats. Cytokine. 2010;52(3):163–167.
  • 39. Savran M, Cicek E, Kumbul Doguc D, Asci H, Yesilot S, Dagdeviren B, et al. Vitamin C attenuates methotrexate-induced oxidative stress in kidney and liver of rats. Physiology international. 2017;104(2):139–149.
  • 40. Adrian OH. BUN and Creatinine. In: Walker HK, Hall WD, Hurst JW editors. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd ed. Boston: Butterworths; 1990. p. 874–878.
  • 41. Fan CY, Wang MX, Ge CX, Wang X, Li JM, Kong LD. Betaine supplementation protects against high-fructose-induced renal injury in rats. J Nutr Biochem. 2014;25(3):353–362.
  • 42. Manitius J, Baines AD, Roszkiewicz A. The effect of high fructose intake on renal morphology and renal function in rats. J Physiol Pharmacol. 1995;46(2):179–183.
  • 43. Nakayama T, Kosugi T, Gersch M, Connor T, Sanchez-Lozada LG, Lanaspa MA, et al. Dietary fructose causes tubulointerstitial injury in the normal rat kidney. Am J Physiol Renal Physiol. 2010;298:712–720.
  • 44. Lirk P, Hoffmann G, Rieder J. Inducible nitric oxide synthase--time for reappraisal. Curr Drug Targets Inflamm Allergy. 2002;1(1):89–108.
  • 45. Ramseyer VD, Garvin JL. Tumor necrosis factor-α: regulation of renal function and blood pressure. Am J Physiol Renal Physiol. 2013;304(10):1231–1242.
  • 46. Cosenzi A, Bernobich E, Bonavita M, Gris F, Odoni G, Bellini G. Role of nitric oxide in the early renal changes induced by high fructose diet in rats. Kidney Blood Press Res. 2002;25(6):363–9.

The ameliorative effect of Acetylsalicylic acid plus Ascorbic acid against renal injury in Corn Syrup-fed rats

Yıl 2022, Cilt: 7 Sayı: 1, 26 - 33, 30.04.2022
https://doi.org/10.24880/maeuvfd.981913

Öz

Dietary consumption of commercially prepared (often through processing) corn syrup can activate reactive oxygen species and the inflammatory pathways observed in kidney damage in humans and experimental animals. This study was designed to assess the effects of antioxidant properties of acetylsalicylic (ASA) and ascorbic acid (AA) on corn syrup (CS) induced renal injury. Forty male Sprague–Dawley rats (14–16 weeks) were randomly classified into 5 groups, each containing 8 rats: control group (C), CS group, CS+ASA group (ASA-10 mg/kg/day/po), CS+AA group (AA-200 mg/kg/day/po) and CS+ASA+AA group (combination treatment with ASA and AA doses). At the end of the experiment, blood and tissue samples were collected for biochemical, histopathological and immunohistochemical examinations. Malondialdehyde (p<0.001) levels were increased in the CS group compared with control group and were decreased in the ASA, AA and ASA+AA treated groups (p≤0.001 for all) compared with CS group. Catalase activities were decreased in the CS group (p≤0.001) compared with the control group (p<0.001) and significantly increased in AS+AA-treated group (p<0.001) compared with the CS group. Significant histopathological changes including tubular vacuoler degeneration, tubular dilatation, cortical and medullar haemorrhage, mononuclear cell infiltration, and increased inducible nitric oxide synthase and tumor necrosis factor-α staining were observed in the CS group. Combination theraphy reversed all these changes. The administration of ASA and AA for the treatment of kidney damage due to corn syrup consumption provides an ideal target for improving oxidative stress and potential therapeutic treatments.

Kaynakça

  • 1. Arslan S, Şanlıer N. Fructose and health. Mersin Üniversitesi Sağlık Bilimleri Dergisi. 2016; 9(3):150–158
  • 2. Tappy L, Le KA, Tran C, Paquot N. Fructose and metabolic diseases: New findings, new questions. Nutrition. 2010;26(11-12):1044–1049.
  • 3. Vos MB, Kimmons JE, Gillespie C, Welsh J, Michels Blanck H. Dietary fructose consumption among US children and adults; The Third National Health and Nutrition Examination Survey. Medscape J. Med. 2008;10(7):160.
  • 4. Korkmaz A. Fruktoz; Kronik Hastalıklar İçin Gizli Bir Tehdit [Fructose; A Hidden Threat for Chronic Diseases]. TAF Preventive Medicine Bullletin. 2008;7:343–346.
  • 5. Libuda L, Mathilde K. Soft drinks and body weight development in childhood is there a relationship? Curr. Opin. Clin. Nutr. Metab. Care. 2009;12(6):596–600.
  • 6. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 2009;119(5):1322–1334.
  • 7. Hu FB, Malik VS. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiol. Behav. 2010;100(1):47–54.
  • 8. Yılmaz H, Öngün YH. Fructose Consumption and Health Effects. Cumhuriyet Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi. 2019;4(2):57–50.
  • 9. Bratoeva KZ, Radanova MA, Merdzhanova AV, Donev IS. Protective role of sadenosylmethionine against fructose-induced oxidative damage in obesity. J Mind Med Sci. 2017; 4:163–171.
  • 10. Bekyarova G, Bratoeva K, Bekyarov N. Uric acid and vascular disorders in metabolic syndrome. Medical Review- Cardiovascular Diseases. 2013;44:40–44.
  • 11. Johnson RJ, Perez-Pozo SE, Sautin YY, Manitius J, Sanchez-Lozada LG, Feig DI, et al. Hypothesis: Could Excessive Fructose Intake and Uric Acid Cause Type 2 Diabetes? Endocrine Reviews. 2009;30(1):96–116.
  • 12. Sanchez-Lozada LG, Tapia E, Jimenez A, Bautista P, Cristóbal M, Nepomuceno T, et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol. 2007;292:423– 429.
  • 13. Nandhini AT, Thirunavukkarasu V, Ravichandran MK, Anuradha CV. Effect of taurine on biomarkers of oxidative stress in tissues of fructose-fed insulin-resistant rats. Singapore Med J. 2005;46(2):82.
  • 14. Chou CL, Lin H, Chen JS, Fang TC. Renin inhibition improves metabolic syndrome, and reduces angiotensin II levels and oxidative stress in visceral fat tissues in fructose-fed rats. PLoS One. 2017;12(7):1–17.
  • 15. Johnson RJ, Sanchez-Lozada LG, Nakagawa T. The Effect of Fructose on Renal Biology and Disease. J Am Soc Nephrol. 2010;21:2036–2039.
  • 16. Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang D-H, et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr. 2007;86:899–906.
  • 17. Kizhner T, Werman MJ. Long-term fructose intake: biochemical consequences and altered renal histology in the male rat. Metabolism. 2002;51:1538–1547.
  • 18. Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, et al. Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am J Physiol Renal Physiol. 2007;293:1256–1261.
  • 19. Roberts LS, Marrow JD. Analgesic-Antipyretic and antiinflammatory agents and drugs employed in the treatment of gout. In: Limbird LE, Hardman JG, editors. Goodman and Gilman’s. The pharmacological basis of therapeutics. 10th ed. USA: The Mcgraw-Hill Companies; 2001. p. 687–703.
  • 20. Shi X, Ding M, Dong Z, Chen F, Ye J, Wang S, et al. Antioxidant properties of aspirin: characterization of the ability of aspirin to inhibit silica-induced lipid peroxidation, DNA damage, NF-kappaB activation, and TNF-alpha production. Mol Cell Biochem. 1999;199(1-2):93–102.
  • 21. Frei B, Stocker R, England L, Ames BN. Ascorbate: the most effective antioxidant in human blood plasma. Av Exp Med Biol. 1990;264:155–163.
  • 22. Draper HH, Hadley M. Malondialdehyde determination as index of lipid Peroxidation. Methods in Enzymol. 1990;186:421–431.
  • 23. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem. 1976;72:248–54.
  • 24. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126.
  • 25. Refaiy A, Muhammad E, ElGanainy E. Semiquantitative smoothelin expression in detection of muscle invasion in transurethral resection and cystectomy specimens in cases of urinary bladder carcinoma. African J Urol. 2011;17(1):6–10.
  • 26. Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004;79(4):537–543.
  • 27. Smith SM. High fructose corn syrup replaces sugar in processed food. Environ Nutr. 1998;11: 7–8.
  • 28. Asci H, Saygin M, Yesilot S, Topsakal S, Cankara FN, Ozmen O, et al. Protective effects of aspirin and vitamin C against corn syrup consumption-induced cardiac damage through sirtuin-1 and HIF-1α pathway. Anatol J Cardiol. 2016;16:648–54.
  • 29. Topsakal S, Ozmen O, Ozgocmen M. Effects of alpha-lipoic acid on high fructose induced hepatic pathology. Biotech Histochem. 2019;94(4):271–276.
  • 30. Saygin M, Asci H, Cankara FN, Bayram D, Yesilot S, Candan IA, et al. The impact of high fructose on cardiovascular system: Role of α-lipoic acid. Hum Exp Toxicol. 2016;35(2): 194–204.
  • 31. Tappy L. Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders. J Exp. Biol. 2018;221:1–9.
  • 32. Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med. 2004;140:167–174.
  • 33. Shapiro A, Mu W, Roncal C, Cheng K, Johnson RJ, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feding. Am J Physiol Regul Integr Comp Physiol. 2008;295:1370–1375.
  • 34. Del RD, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2015;15(4):316 –328.
  • 35. Djordjević VB. Free Radicals in Cell Biology. Int Rev Cytol. 2004;237:57–59.
  • 36. Pasko P, Barton H, Zagrodzki P, Izewska A, Krosniak M, Gawlik M, et al. Effect of Diet Supplemented with Quinoa Seeds on Oxidative Status in Plasma and Selected Tissues of High Fructose-Fed Rats. Plant Foods Hum Nutr. 2010;65:146–151.
  • 37. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant Mechanisms in Renal Injury and Disease. Antioxid Redox Signal. 2016;25(3):119–146.
  • 38. Yesilot S, Özer MK, Bayram D, Oncu M, Karabacak HI, Cicek E. Effects of Aspirin and Nimesulide on tissue damage in diabetic rats. Cytokine. 2010;52(3):163–167.
  • 39. Savran M, Cicek E, Kumbul Doguc D, Asci H, Yesilot S, Dagdeviren B, et al. Vitamin C attenuates methotrexate-induced oxidative stress in kidney and liver of rats. Physiology international. 2017;104(2):139–149.
  • 40. Adrian OH. BUN and Creatinine. In: Walker HK, Hall WD, Hurst JW editors. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd ed. Boston: Butterworths; 1990. p. 874–878.
  • 41. Fan CY, Wang MX, Ge CX, Wang X, Li JM, Kong LD. Betaine supplementation protects against high-fructose-induced renal injury in rats. J Nutr Biochem. 2014;25(3):353–362.
  • 42. Manitius J, Baines AD, Roszkiewicz A. The effect of high fructose intake on renal morphology and renal function in rats. J Physiol Pharmacol. 1995;46(2):179–183.
  • 43. Nakayama T, Kosugi T, Gersch M, Connor T, Sanchez-Lozada LG, Lanaspa MA, et al. Dietary fructose causes tubulointerstitial injury in the normal rat kidney. Am J Physiol Renal Physiol. 2010;298:712–720.
  • 44. Lirk P, Hoffmann G, Rieder J. Inducible nitric oxide synthase--time for reappraisal. Curr Drug Targets Inflamm Allergy. 2002;1(1):89–108.
  • 45. Ramseyer VD, Garvin JL. Tumor necrosis factor-α: regulation of renal function and blood pressure. Am J Physiol Renal Physiol. 2013;304(10):1231–1242.
  • 46. Cosenzi A, Bernobich E, Bonavita M, Gris F, Odoni G, Bellini G. Role of nitric oxide in the early renal changes induced by high fructose diet in rats. Kidney Blood Press Res. 2002;25(6):363–9.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Şükriye Yeşilot 0000-0003-3354-8489

Halil Aşçı 0000-0002-1545-035X

Meltem Özgöçmen 0000-0003-3190-4486

Mustafa Saygın 0000-0003-4925-3503

İlkay Armağan 0000-0002-8080-9429

Ekrem Çiçek 0000-0002-4954-3482

Yayımlanma Tarihi 30 Nisan 2022
Gönderilme Tarihi 12 Ağustos 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 7 Sayı: 1

Kaynak Göster

APA Yeşilot, Ş., Aşçı, H., Özgöçmen, M., Saygın, M., vd. (2022). The ameliorative effect of Acetylsalicylic acid plus Ascorbic acid against renal injury in Corn Syrup-fed rats. Veterinary Journal of Mehmet Akif Ersoy University, 7(1), 26-33. https://doi.org/10.24880/maeuvfd.981913