Araştırma Makalesi
BibTex RIS Kaynak Göster

Süperkritik Brayton Çevriminin Termodinamik Analizi

Yıl 2021, , 500 - 509, 31.12.2021
https://doi.org/10.29048/makufebed.1008178

Öz

Gaz türbini çevrimlerinde, son on yılda yapılan çalışmalarda önemli gelişmeler görülmektedir. Bununla birlikte çevrimin verimini attırabilmek için farklı uygulamalar üzerine çalışmalar yapılmaktadır. Bu çalışmada, ayrı ayrı CO2 (karbondioksit veya R744) ve hava akışkanlı süperkritik Brayton çevrimlerinin termodinamik analizi yapılmıştır. Süperkritik koşullarda çalışan çevrim ekipmanlarının farklı çevrim parametrelerinde enerji ekserji verimliliği ve net gücü alınarak, türbin giriş sıcaklık ve basıncının etkileri, kompresör basınç oranı ve kompresör verimlerinin performans üzerine etkileri incelenmiştir. Analiz çalışması bir bilgisayar yazılımı (Engineering Equation Solver-EES) ile çözümlenmiştir. Güç çevrimlerindeki verim artışına, süperkritik CO2 (S-CO2) türbinlerinin etkisi değerlendirilmiş ve enerji sektöründeki geleceği tartışılmıştır.

Kaynakça

  • Ahn, Y., Bae, S.J., Kim, M., Cho, S.K., Baik, S., Lee, J.I., Cha, J.E. (2015). Review of supercritical CO2 power cycle technology and current status of research and development. Nuclear Engineering and Technology, 47: 647–661.
  • Angelino, G. (1968). Carbon dioxide condensation cycles for power production. Journal of Engineering for Gas Turbines and Power, 90: 287-295.
  • Coms, O.V. (1997). An Investigation of the supercritical CO2 cycle (feher cycle) for shipboard application. Massachusetts Institute of Technology, Massachusetts, USA.
  • Çengel, Y.A., Boles, M.A. (2008). Termodinamik: Mühendislik Yaklaşımıyla. Güven Kitabevi, İzmir.
  • Çetin, B. (2017). Basit Brayton çevriminde elektrik üretimi maliyetinin parametrik analizi. Fırat Üniversitesi Mühendislik Bilimi Dergisi, 29(2):1-8.
  • Dostal, V., Driscoll, M.J., Hejzlar, P. A. (2004). Supercritical carbon dioxide cycle for next generation nuclear reactors. Massachusetts Institute of Technology Center for Advanced Nuclear Power Technology Program, Massachusetts, USA.
  • Holcomb, G.R., Doğan, Ö.N., Carney, C., Rozman, K., Hawk, J.A., Anderson, M.H. (2016). Materials performance in supercritical CO2 in comparison with atmospheric pressure CO2 and supercritical steam. The 5th Supercritical CO2 Power Cycle Symposium. San Antonio, Texas, USA, 29-31.
  • Horlock, J.H. (1997). Aero-engine derivative gas turbines for power generation: thermodynamic and economic perspectives. Journal of Engineering for Gas Turbines and Power, 119(1): 119-123.
  • Kato, Y., Nitawaki, T., Muto, Y. (2004). Medium temperature carbon dioxide gas turbine reactor. Nuclear Engineering and Design, 230(1-3): 195-207.
  • Kim, H.M., Pettersen, J., Bullard, C.W. (2004). Fundamental process and system design ıssues in CO2 vapor compression systems. Progress in Energy and Combustion Science, 30: 119-174.
  • Klein S.A. (2020). EES, Engineering Equation Solver, F-Chart Software. www.fchart.com/ees/ees.shtml
  • Korpela S. (2011). Principles of turbo machinery. A John Wiley & Sons, Incules, Hoboken, New Jersey, USA.
  • Muto, Y., Watanabe, N., Aritomi, M., Ishizuka, T. (2016). Dependence of thermal effıciency on receiver temperature of solar thermal Power systems combined with supercrıtical CO2 gas turbine cycle and Brayton CO2 gas turbine cycle. The Fifth International Symposium, Supercritical CO2 Power Cycles March 29–31, 2016, San Antonio, Texas, USA.
  • Özgür, A.E. (2014). CO2 Soğutkanlı transkritik soğutma çevrimlerinde optimum gaz soğutucu basıncı ve literatürdeki optimum basınç denklemlerinin karşılaştırılması. Tesisat Mühendisliği Dergisi, 141:43-47.
  • Özgür, A.E., Ceylan, V. (2019). CO2 akışkanlı transkritik bir güç çevriminin termodinamik analizi. 22nd Thermal Science and Technology Congress, Eylül 11-14, Kocaeli.
  • Padilla, R.V., Soo Too, Y.C., Benito, R., Stein, W. (2015). Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. Appl. Energy,148(C): 348–365.
  • Tozlu, A., Özahi, E., Abuşoğlu, A. (2017). Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi. Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 33(3): 917-928.
  • Wright, S., Radel, R., Vernon, M., Rochau, G., Pickard, P. (2010). Operation and analysis of a supercritical CO2 Brayton cycle. Advanced Nuclear Concepts Department Sandia National Laboratories. Albuquerque, New Mexico 87185 and Livermore, California 94550.

Thermodynamic Analysis of a Supercritical Brayton Cycle

Yıl 2021, , 500 - 509, 31.12.2021
https://doi.org/10.29048/makufebed.1008178

Öz

Enormous strides have been made on gas turbine cycles in recent years. In addition, different practices of studies are being carried on in order to increase the cycle efficiency. In this study, CO2 (carbon dioxide or R744) and thermo dynamic analysis of supercritical Brayton cycles having air flow fluidity have separately been studied. Cyclical equipment working in supercritical conditions and its energy exergy performance at different cycles of parameters, and turbine inlet temperature and the effects of pressure, and compressor pressure ratio, and compressor efficiency on performance are surveyed examined. Analyze work is sorted out through a computer software (Engineering Equation Solver-EES).Supercritical CO2 (S-CO2) turbine effects on efficiency increase in power conversions are evaluated and its future in the energy sector is discussed.

Kaynakça

  • Ahn, Y., Bae, S.J., Kim, M., Cho, S.K., Baik, S., Lee, J.I., Cha, J.E. (2015). Review of supercritical CO2 power cycle technology and current status of research and development. Nuclear Engineering and Technology, 47: 647–661.
  • Angelino, G. (1968). Carbon dioxide condensation cycles for power production. Journal of Engineering for Gas Turbines and Power, 90: 287-295.
  • Coms, O.V. (1997). An Investigation of the supercritical CO2 cycle (feher cycle) for shipboard application. Massachusetts Institute of Technology, Massachusetts, USA.
  • Çengel, Y.A., Boles, M.A. (2008). Termodinamik: Mühendislik Yaklaşımıyla. Güven Kitabevi, İzmir.
  • Çetin, B. (2017). Basit Brayton çevriminde elektrik üretimi maliyetinin parametrik analizi. Fırat Üniversitesi Mühendislik Bilimi Dergisi, 29(2):1-8.
  • Dostal, V., Driscoll, M.J., Hejzlar, P. A. (2004). Supercritical carbon dioxide cycle for next generation nuclear reactors. Massachusetts Institute of Technology Center for Advanced Nuclear Power Technology Program, Massachusetts, USA.
  • Holcomb, G.R., Doğan, Ö.N., Carney, C., Rozman, K., Hawk, J.A., Anderson, M.H. (2016). Materials performance in supercritical CO2 in comparison with atmospheric pressure CO2 and supercritical steam. The 5th Supercritical CO2 Power Cycle Symposium. San Antonio, Texas, USA, 29-31.
  • Horlock, J.H. (1997). Aero-engine derivative gas turbines for power generation: thermodynamic and economic perspectives. Journal of Engineering for Gas Turbines and Power, 119(1): 119-123.
  • Kato, Y., Nitawaki, T., Muto, Y. (2004). Medium temperature carbon dioxide gas turbine reactor. Nuclear Engineering and Design, 230(1-3): 195-207.
  • Kim, H.M., Pettersen, J., Bullard, C.W. (2004). Fundamental process and system design ıssues in CO2 vapor compression systems. Progress in Energy and Combustion Science, 30: 119-174.
  • Klein S.A. (2020). EES, Engineering Equation Solver, F-Chart Software. www.fchart.com/ees/ees.shtml
  • Korpela S. (2011). Principles of turbo machinery. A John Wiley & Sons, Incules, Hoboken, New Jersey, USA.
  • Muto, Y., Watanabe, N., Aritomi, M., Ishizuka, T. (2016). Dependence of thermal effıciency on receiver temperature of solar thermal Power systems combined with supercrıtical CO2 gas turbine cycle and Brayton CO2 gas turbine cycle. The Fifth International Symposium, Supercritical CO2 Power Cycles March 29–31, 2016, San Antonio, Texas, USA.
  • Özgür, A.E. (2014). CO2 Soğutkanlı transkritik soğutma çevrimlerinde optimum gaz soğutucu basıncı ve literatürdeki optimum basınç denklemlerinin karşılaştırılması. Tesisat Mühendisliği Dergisi, 141:43-47.
  • Özgür, A.E., Ceylan, V. (2019). CO2 akışkanlı transkritik bir güç çevriminin termodinamik analizi. 22nd Thermal Science and Technology Congress, Eylül 11-14, Kocaeli.
  • Padilla, R.V., Soo Too, Y.C., Benito, R., Stein, W. (2015). Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. Appl. Energy,148(C): 348–365.
  • Tozlu, A., Özahi, E., Abuşoğlu, A. (2017). Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi. Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 33(3): 917-928.
  • Wright, S., Radel, R., Vernon, M., Rochau, G., Pickard, P. (2010). Operation and analysis of a supercritical CO2 Brayton cycle. Advanced Nuclear Concepts Department Sandia National Laboratories. Albuquerque, New Mexico 87185 and Livermore, California 94550.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Volkan Ceylan 0000-0003-3355-2656

Arif Emre Özgür 0000-0001-6382-5462

Yayımlanma Tarihi 31 Aralık 2021
Kabul Tarihi 12 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Ceylan, V., & Özgür, A. E. (2021). Süperkritik Brayton Çevriminin Termodinamik Analizi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(Ek (Suppl.) 1), 500-509. https://doi.org/10.29048/makufebed.1008178