Araştırma Makalesi
BibTex RIS Kaynak Göster

Marmaris Peridotiti ile İlişkili Yüzey ve Yeraltısularının Hidrojeokimyasal Özellikleri: Acıpayam (Denizli) Batısı

Yıl 2023, , 216 - 230, 31.12.2023
https://doi.org/10.29048/makufebed.1288772

Öz

Güneybatı Türkiye’de Likya napları içerisinde bulunan Marmaris Peridotiti birimi geniş alanlarda yüzeylemektedir. Bu birimin kırık-çatlak düzlemleri boyunca farklı debilerde kaynak boşalımları gözlenmektedir. Bu çalışmada Acıpayam (Denizli) ilçesi batısında Marmaris peridotiti ile etkileşimi olan yüzey ve yeraltısularının hidrojeokimyasal özellikleri incelenmiştir. İnceleme alanında yüzey sularının Mg-HCO3 su sınıfında, kaynak sularının ise Mg-HCO3, Ca-Mg-HCO3, Mg-Ca-HCO3 ve Ca-HCO3 su sınıflarında oldukları belirlenmiştir. İnceleme alanında suların kimyasal yapısını oluşturan hidrojeokimyasal süreçlerin tespit edilmesinde majör iyon içerikleri kullanılmıştır. Bölgede yüzey ve yeraltısularının kimyasını denetleyen baskın faktörün silikat ayrışması olduğu belirlenmiştir. Su örneklerinde baskın katyon Mg+2 olup, Mg+2 artışı Marmaris peridotitini oluşturan harzjburjit ve dünit birimleri içerisinde bulunan olivin ve piroksen minerallerinin ayrışmasından kaynaklanmaktadır. İnceleme alanında dere sularının As içeriği 13.3 ve 15.7 µg/l, kaynak sularının As içeriği ise 0.36-14.4 µg/l arasında değişmektedir. Cr içeriği dere sularında 8.5-12 µg/l, kaynak sularında 3.5-14.1 µg/l arasındadır. Sularda iz elementlerin varlığı Marmaris peridotiti ile kaya-su etkileşimi kaynaklıdır.

Destekleyen Kurum

Bulunmamaktadır.

Kaynakça

  • Akdeniz, N. (2011). Maden Tetkik ve Arama Genel Müdür-lüğü, 1/100000 ölçekli Türkiye Jeoloji Haritaları No:164, Denizli-N22 paftası
  • Appelo, C.A.J., Postma, D. (1993). Geochemistry, gro-undwater and pollution. A. A.Balkema, Rotterdam.
  • Back, W. (1966). Hydrochemical Facies and Ground-Water Flow Patterns in Northern Part of Atlantic Coastal Plain, 498-A:1-42.
  • Basu, A., Saha, D., Saha, R., Ghosh, T., Saha, B. (2014). A review on sources, toxicity and remediation technolo-gies for removing arsenic from drinking water. Rese-arch on Chemical Intermediates, 40: 447-485.
  • Berg, G., (1932). Das Vorkommen der chemischen Ele-mente auf der Erde. JA Barth.
  • Chaerul, M., .Pallu, S., Selintung, M., Patanduk, D.J. (2015). The relationship of ultramafıc rocks and the occurrence of Arsenic heavy metal ion (As3+) Cad-mium (Cd2+) and Chromıum (Cr6+) in river water (A Case Study: River Lambuluo Motui, Southeast Su-lawesi). International Journal of Science, Environment and Technology, 4(4):896 – 904
  • Chavagnac, V., Monnin, C., Ceuleneer, G., Boulart, C., Hoareau, G. (2013). Characterization of hyperalkaline fluids produced by lowtemperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites. Geochem Geophys Geosyst, 14(7):2496–2516. Cole-man, R.G. (1977). Ophiolites: Ancient Oceanic Lithosp-here? Springer-Verlag, Berlin, 229 pp
  • D’Alessandro, W., Daskalopoulou, K., Calabrese, S., Bel-lomo, S. (2018). Water chemistry and abiogenic met-hane content of a hyperalkaline spring related to ser-pentinization in the Argolida ophiolite (Ermioni, Gree-ce). Marine and Petrolium Geology, 89:185–193.
  • Datta, P.S., Tyagi, S.K. (1996). Major ion Chemistry of Groundwater in Delhi Area: Chemical Weathering Pro-cesses and Groundwater Flow Regime. Journal of Ge-ological Society India, 47:179–188.
  • De Hoog, C.J., Gall, L., Cornell, D.H. (2010). Trace-element geochemistry of mantle olivine and applica-tion to mantle petrogenesis and geothermobarometry. Chemical Geology, 270(1-4):196-215. https://doi.org/10.1016/j.chemgeo.2009.11.017
  • Demer, S., Elitok, Ö., Memiş, Ü. (2019). Origin and geoc-hemical evolution of groundwaters at the northeastern extend of the active Fethiye-Burdur fault zone within the ophiolitic Teke nappes, SW Turkey. Arabian Jour-nal of Geosciences, 12:783
  • DSİ, Genel Müdürlüğü (1974). Acıpayam ovası Hidrojeolo-jik Etüt Raporu
  • Elango, L., Kannan, R. (2007). Rock-water interaction and its control on chemical composition of groundwater. Section II, Paper 11, 229-247. Developments in Envi-ronmental Science 5, Series Editor: S.V. Krupa; Con-cepts and Applications in Environmental Geoche-mistry, Edited by D. Sarkar, R. Datta, R. Hannigan, El-sevier publication
  • Elango, L., Rannan, R., Senthil, K.M. (2003). Major İon Chemistry And İdentification Of Hydrogeochemical Processes Of Groundwater in A Part of Kancheepuram District, Tamil Nadu, India. Journal of Environmental Geosciences, 10:157 – 166.
  • Evans, B.W., Hattori, K., Baronnet, A. (2013). Serpentinite: What, why, where? Elements, 9: 99-106
  • Freeze, A.R.,Cherry, A.J. (1979). Groundwater. by Prenti-ce-Hall, Inc., Englewood Cliffs, N.J. 07632 London UK. Garrels, R.M. (1967). Genesis of Some Groundwaters from Igneous Rocks. In P. Abelson (Ed.), Researches in Geochemistry, 2:405-420
  • Garrels, R. M., Mackenzie, F.T. (1967). Origin of the che-mical compositions of some springs and lakes. In W. Stumm (Ed.), Equilibrium concepts innatural water sys-tems. Advances in Chemistry Series, 67:222–242.
  • Ghrefat, H.A., Zaman, H., Batayneh, A.T., Zumlot, T. (2014). Major ion chemistry and weathering processes in the Midyan basin, northwestern Saudi Arabia. Jour-nal of Environmental Monitoring and Assessment, 185(10):8695-8705.
  • Giampouras, M., Garrido, C. J., Zwicker, J., Vadillo, I., Smrzka, D., Bach, W., Peckmann, J., Jimenez, P., Be-navente, J., García-Ruiz, J. M. (2019). Geochemistry and mineralogy of serpentinization-driven hyperalkali-ne springs in the Ronda peridotites. Lithos, 350, 105215; DOI 10.1016/j.lithos.2019.105215
  • Gibbs, R.J. (1970). Mechanism controlling world water chemistry. Science, 170:795-840
  • Guillot, S., Hattori, K. (2013). Serpentinites: essential roles in geodynamics, Arc volcanism, sustainable develop-ment and the origin of life. Elements, 9:95–98.
  • Hattori, K., Guillot, S. (2003). Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31: 525-528
  • Hattori, K., Takahashi, Y., Guillot, S., Johanson, B. (2005). Occurrence of arsenic (V) in forearc mantle serpentini-tes based on X-ray absorption spectroscopy study. Ge-ochim. Cosmochim. Acta, 69:5585–5596.
  • Hounslow, A.W. (1995). Water quality data analysis and interpretation. Lewis Publishers, Boca Raton Ishimaru, S., Arai, S. (2008). Arsenide in a metasomatized peridotite xenolith as a constraint on arsenic behavior in the mantle wedge. Am. Mineral, 93:1061–1065.
  • Johnson, C.C. (1979). Land application of waste-an acci-dent waiting to happen. Groundwater, 17(1): 69-72. Kahriman, S. (2012). Acıpayam ve Beyağaç (Denizli gü-neyi) bölgesindeki ofiyolitlerin jeolojisi, petrografisi ve petrokimyası. Yüksek lisans tezi, Pamukkale Üniversi-tesi Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Anabi-lim Dalı, Denizli.
  • Kumar Singh, A., Mondal, G.C., Singh, T.B., Singh, S., Tewary, B.K., Sinha, A. (2012). Hydrogeochemical pro-cesses and quality assessment of groundwater in Dumka and Jamtara districts, Jharkhand, India. Envi-ronmetal Earth Science, 67: 2175–2191.
  • Lakshmanan, E., Kannan, R., Senthil Kumar, M. (2003). Major ion chemistry and identification of hydrogeoc-hemical processes of ground water in a part of Kanc-heepuram district, Tamil Nadu, India. Environmental Geosciences, 10(4):157–166.
  • Monnin, C., Chavagnac, V., Boulart, C., Ménez, B., Gérard, M., Gérard, E., Pisapia, C., Quéméneur, M., Erauso, G., Postec, A., Guentas- Dombrowski, L., Payri, C., Pelle-tier, B. (2014). Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia). Biogeosciences, 11:5687–5706.
  • Pettine, M., Camusso, M., Martinotti, W. (1992). Dissolved and particulate transport of arsenic and chromium in the Po River. Science of the Total Environment, 119:253-280
  • Piper, A.M. (1944). A Graphic Procedure in the Geochemi-cal Interpretation of Water Analyses. Trans. Amer. Ge-ophys. Union, 25:914-923.
  • Prohaska, T., Stingeder, G. (2005) Speciation of arsenic. In: Cornelis R (ed) Handbook of Elemental Speciation II - Species in the Environment, Food, Medecine and Occupational Health. Wiley, Chichester, pp 69-85 (https://doi.org/10.1002/0470856009)
  • Rajmohan, N., Elango, L. (2004) Identification and evolu-tion of hydrogeochemical processes in the gro-undwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environmental Geology, 46:47–61
  • Ryan, P.C., Kim, J., Wall, A.J., Moen, J.C., Corenthal, L G., Chow, D.R., Sullivan,C.M., Bright, K.S. (2011). Ultrama-fic-derived arsenic in a fractured bedrock aquifer. App-lied Geochemistry, 26(4):444-457.
  • Sajil Kumar, P.J. (2013) Interpretation of groundwater chemistry using piper and chadha´s diagrams: a com-parative study from perambalur taluk. Elixir Geoscien-ce, 54:12208-12211.
  • Schmidt, M.W., Poli, S. (2003). Generation of mobile com-ponents during subduction of oceanic crust. Treatise on Geochemistry, 3: 567-593
  • Schmidt, G., Witt-Eickschen, G., Palme, H., Seck, H., Spet-tel, B., Kratz, K.L. (2003). Highly siderophile elements (PGE, Re and Au) in mantle xenoliths from the West Ei-fel volcanic field (Germany). Chemical Geology, 196:77–105.
  • Schneider, K., Le Mestre,M., Desriaux, I., Gunkel-Grillon, P. (2020). First investigations on arsenic content in ultra-mafic rocks’ alterites from Nickel mines, implications for surface waters quality in ultramafic watersheds (New-Caledonia). Environmental Chemistry Letters, 10.1007/s10311-020-01009-6. hal-02888355
  • Schoeller, H. (1965). Qualitative Evaluation of gro-undwater resources. In methods and techniques of groundwater investigations and development (Pp. 54–83). Paris: UNESCO.
  • Schoeller, H. (1967). Qualitative evaluation of gro-undwater Resources. In methods and techniques of Groundwater investigation and development. Water Research, Series-33: UNESCO, Pp. 45 – 52.
  • Singh, A.K., Mahato, M.K., Neogi, B., Tewary, B.K., Sinha, A. (2012). Environmental geochemistry and quality as-sessment of mine water of Jharia coalfield, India. Envi-ronental Geology, 65:49–65.
  • Smedley, P.L., Kinniburgh, D.G. (2002). A review of the source, behavior and distribution of As in natural waters. Applied Geochemistry, 17:517–568.
  • Stallard, R.F., Edmond, J.M. (1983). Geochemistry of the Amazon , the influence of geology and weathering en-vironment on the dissolved load. Journal of Geophysi-cal Research, 88: 9671 –9688.
  • Şenel, M., Selçuk, H., Bilgin, Z.R., Şen, A.M., Karaman, T., Dinçer, M.A., Durukan, E., Arbas, A., Örçen, S., Bilgi, C. (1989). Çameli (Denizli)- Yeşilova (Burdur)- Elmalı (Antalya) ve kuzeyinin jeolojisi. Maden Tetkik ve Ara-ma Genel Müdürlüğü (MTA) Rap: 9429 (yayımlanma-mış), Ankara.
  • Tay, C.K. (2012). Hydrochemistry of groundwater in the Savelugu–Nanton District, Northern Ghana. Environ-mental Earth Science, 67:2077–2087.
  • Thin, P.P., Hendrayana, H., Wilopo, W., Kawasaki, S. (2018). Assessment of groundwater facies inWates Coastal Area, Kulon Progo, Yogyakarta, Indonesia. Jo-urnal of Degraded Andmining Lands management, 5(4):1389-1401
  • Voutsis, A., Kelepertzis, E., Tziritis, E., Kelepertsis, A. (2015). Assessing the hydrogeochemistry of gro-undwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods. Journal of Ge-ochemical Exploration, 159:79–92.
  • Zhang, C., Kibriya, M.G., Jasmine, F., Roy, S., Gao, J., Sabarinathan, M., Delgado, D., Ahmed, A., Islam, T., Eunus, M., Islam, Md.T., Hasan, R., Graziano, J.H., Ah-san, H., Pierce, B.L. (2018). A study of telomere length, arsenic exposure, and arsenic toxicity in a Bangladeshi cohort. Environmental Research, 164:346-355
  • Zwicker, J., Smrzka, D., Vadillo, I., Jiménez-Gavilán, P., Giampouras, M., Peckmann, J., Bach, W. (2022). Trace and rare earth element distribution in hyperalkaline serpentinite-hosted spring waters and associated aut-higenic carbonates from the Ronda peridotite. Applied Geochemistry, 147, 105492.

Hydrogeochemical Characteristics of Surface and Groundwaters Associated With Marmaris Peridotite: West of Acıpayam (Denizli)

Yıl 2023, , 216 - 230, 31.12.2023
https://doi.org/10.29048/makufebed.1288772

Öz

The Marmaris Peridodite unit, located within the Lycian nappes in southwestern Turkey, crops out in large areas. Spring discharges at different flow rates are observed along the fracture-crack planes of this unit. In this study, the hydrogeochemical properties of surface and groundwaters interacting with Marmaris peridotite in the west of Acıpayam (Denizli) district were investigated. It was determined that the surface waters in the study area are in Mg-HCO3 water class, and the spring waters are in Mg-HCO3, Mg-Ca-HCO3, Ca-Mg-HCO3 and Ca-HCO3 water classes. Major ion contents were used to determine the hydrogeochemical processes that make up the chemical structure of the waters in the study area. It has been determined that the dominant factor controlling the chemistry of surface and groundwaters in the region is silicate weathering. The dominant cation in the water samples are Mg+2, and the Mg+2 increase is due to the decomposition of olivine and pyroxene minerals in the harzburgite and dunite units that make up the Marmaris peridotite. In the study area, the As content of the stream waters varies between 13.3 and 15.7 µg/l, and the As content of the spring waters varies between 0.36-14.4 µg/l. The Cr content is between 8.5-12 µg/l in stream waters and 3.5-14.1 µg/l in spring waters. The presence of trace elements in the waters is due to the Marmaris peridotite and the rock-water interaction.

Kaynakça

  • Akdeniz, N. (2011). Maden Tetkik ve Arama Genel Müdür-lüğü, 1/100000 ölçekli Türkiye Jeoloji Haritaları No:164, Denizli-N22 paftası
  • Appelo, C.A.J., Postma, D. (1993). Geochemistry, gro-undwater and pollution. A. A.Balkema, Rotterdam.
  • Back, W. (1966). Hydrochemical Facies and Ground-Water Flow Patterns in Northern Part of Atlantic Coastal Plain, 498-A:1-42.
  • Basu, A., Saha, D., Saha, R., Ghosh, T., Saha, B. (2014). A review on sources, toxicity and remediation technolo-gies for removing arsenic from drinking water. Rese-arch on Chemical Intermediates, 40: 447-485.
  • Berg, G., (1932). Das Vorkommen der chemischen Ele-mente auf der Erde. JA Barth.
  • Chaerul, M., .Pallu, S., Selintung, M., Patanduk, D.J. (2015). The relationship of ultramafıc rocks and the occurrence of Arsenic heavy metal ion (As3+) Cad-mium (Cd2+) and Chromıum (Cr6+) in river water (A Case Study: River Lambuluo Motui, Southeast Su-lawesi). International Journal of Science, Environment and Technology, 4(4):896 – 904
  • Chavagnac, V., Monnin, C., Ceuleneer, G., Boulart, C., Hoareau, G. (2013). Characterization of hyperalkaline fluids produced by lowtemperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites. Geochem Geophys Geosyst, 14(7):2496–2516. Cole-man, R.G. (1977). Ophiolites: Ancient Oceanic Lithosp-here? Springer-Verlag, Berlin, 229 pp
  • D’Alessandro, W., Daskalopoulou, K., Calabrese, S., Bel-lomo, S. (2018). Water chemistry and abiogenic met-hane content of a hyperalkaline spring related to ser-pentinization in the Argolida ophiolite (Ermioni, Gree-ce). Marine and Petrolium Geology, 89:185–193.
  • Datta, P.S., Tyagi, S.K. (1996). Major ion Chemistry of Groundwater in Delhi Area: Chemical Weathering Pro-cesses and Groundwater Flow Regime. Journal of Ge-ological Society India, 47:179–188.
  • De Hoog, C.J., Gall, L., Cornell, D.H. (2010). Trace-element geochemistry of mantle olivine and applica-tion to mantle petrogenesis and geothermobarometry. Chemical Geology, 270(1-4):196-215. https://doi.org/10.1016/j.chemgeo.2009.11.017
  • Demer, S., Elitok, Ö., Memiş, Ü. (2019). Origin and geoc-hemical evolution of groundwaters at the northeastern extend of the active Fethiye-Burdur fault zone within the ophiolitic Teke nappes, SW Turkey. Arabian Jour-nal of Geosciences, 12:783
  • DSİ, Genel Müdürlüğü (1974). Acıpayam ovası Hidrojeolo-jik Etüt Raporu
  • Elango, L., Kannan, R. (2007). Rock-water interaction and its control on chemical composition of groundwater. Section II, Paper 11, 229-247. Developments in Envi-ronmental Science 5, Series Editor: S.V. Krupa; Con-cepts and Applications in Environmental Geoche-mistry, Edited by D. Sarkar, R. Datta, R. Hannigan, El-sevier publication
  • Elango, L., Rannan, R., Senthil, K.M. (2003). Major İon Chemistry And İdentification Of Hydrogeochemical Processes Of Groundwater in A Part of Kancheepuram District, Tamil Nadu, India. Journal of Environmental Geosciences, 10:157 – 166.
  • Evans, B.W., Hattori, K., Baronnet, A. (2013). Serpentinite: What, why, where? Elements, 9: 99-106
  • Freeze, A.R.,Cherry, A.J. (1979). Groundwater. by Prenti-ce-Hall, Inc., Englewood Cliffs, N.J. 07632 London UK. Garrels, R.M. (1967). Genesis of Some Groundwaters from Igneous Rocks. In P. Abelson (Ed.), Researches in Geochemistry, 2:405-420
  • Garrels, R. M., Mackenzie, F.T. (1967). Origin of the che-mical compositions of some springs and lakes. In W. Stumm (Ed.), Equilibrium concepts innatural water sys-tems. Advances in Chemistry Series, 67:222–242.
  • Ghrefat, H.A., Zaman, H., Batayneh, A.T., Zumlot, T. (2014). Major ion chemistry and weathering processes in the Midyan basin, northwestern Saudi Arabia. Jour-nal of Environmental Monitoring and Assessment, 185(10):8695-8705.
  • Giampouras, M., Garrido, C. J., Zwicker, J., Vadillo, I., Smrzka, D., Bach, W., Peckmann, J., Jimenez, P., Be-navente, J., García-Ruiz, J. M. (2019). Geochemistry and mineralogy of serpentinization-driven hyperalkali-ne springs in the Ronda peridotites. Lithos, 350, 105215; DOI 10.1016/j.lithos.2019.105215
  • Gibbs, R.J. (1970). Mechanism controlling world water chemistry. Science, 170:795-840
  • Guillot, S., Hattori, K. (2013). Serpentinites: essential roles in geodynamics, Arc volcanism, sustainable develop-ment and the origin of life. Elements, 9:95–98.
  • Hattori, K., Guillot, S. (2003). Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31: 525-528
  • Hattori, K., Takahashi, Y., Guillot, S., Johanson, B. (2005). Occurrence of arsenic (V) in forearc mantle serpentini-tes based on X-ray absorption spectroscopy study. Ge-ochim. Cosmochim. Acta, 69:5585–5596.
  • Hounslow, A.W. (1995). Water quality data analysis and interpretation. Lewis Publishers, Boca Raton Ishimaru, S., Arai, S. (2008). Arsenide in a metasomatized peridotite xenolith as a constraint on arsenic behavior in the mantle wedge. Am. Mineral, 93:1061–1065.
  • Johnson, C.C. (1979). Land application of waste-an acci-dent waiting to happen. Groundwater, 17(1): 69-72. Kahriman, S. (2012). Acıpayam ve Beyağaç (Denizli gü-neyi) bölgesindeki ofiyolitlerin jeolojisi, petrografisi ve petrokimyası. Yüksek lisans tezi, Pamukkale Üniversi-tesi Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Anabi-lim Dalı, Denizli.
  • Kumar Singh, A., Mondal, G.C., Singh, T.B., Singh, S., Tewary, B.K., Sinha, A. (2012). Hydrogeochemical pro-cesses and quality assessment of groundwater in Dumka and Jamtara districts, Jharkhand, India. Envi-ronmetal Earth Science, 67: 2175–2191.
  • Lakshmanan, E., Kannan, R., Senthil Kumar, M. (2003). Major ion chemistry and identification of hydrogeoc-hemical processes of ground water in a part of Kanc-heepuram district, Tamil Nadu, India. Environmental Geosciences, 10(4):157–166.
  • Monnin, C., Chavagnac, V., Boulart, C., Ménez, B., Gérard, M., Gérard, E., Pisapia, C., Quéméneur, M., Erauso, G., Postec, A., Guentas- Dombrowski, L., Payri, C., Pelle-tier, B. (2014). Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia). Biogeosciences, 11:5687–5706.
  • Pettine, M., Camusso, M., Martinotti, W. (1992). Dissolved and particulate transport of arsenic and chromium in the Po River. Science of the Total Environment, 119:253-280
  • Piper, A.M. (1944). A Graphic Procedure in the Geochemi-cal Interpretation of Water Analyses. Trans. Amer. Ge-ophys. Union, 25:914-923.
  • Prohaska, T., Stingeder, G. (2005) Speciation of arsenic. In: Cornelis R (ed) Handbook of Elemental Speciation II - Species in the Environment, Food, Medecine and Occupational Health. Wiley, Chichester, pp 69-85 (https://doi.org/10.1002/0470856009)
  • Rajmohan, N., Elango, L. (2004) Identification and evolu-tion of hydrogeochemical processes in the gro-undwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environmental Geology, 46:47–61
  • Ryan, P.C., Kim, J., Wall, A.J., Moen, J.C., Corenthal, L G., Chow, D.R., Sullivan,C.M., Bright, K.S. (2011). Ultrama-fic-derived arsenic in a fractured bedrock aquifer. App-lied Geochemistry, 26(4):444-457.
  • Sajil Kumar, P.J. (2013) Interpretation of groundwater chemistry using piper and chadha´s diagrams: a com-parative study from perambalur taluk. Elixir Geoscien-ce, 54:12208-12211.
  • Schmidt, M.W., Poli, S. (2003). Generation of mobile com-ponents during subduction of oceanic crust. Treatise on Geochemistry, 3: 567-593
  • Schmidt, G., Witt-Eickschen, G., Palme, H., Seck, H., Spet-tel, B., Kratz, K.L. (2003). Highly siderophile elements (PGE, Re and Au) in mantle xenoliths from the West Ei-fel volcanic field (Germany). Chemical Geology, 196:77–105.
  • Schneider, K., Le Mestre,M., Desriaux, I., Gunkel-Grillon, P. (2020). First investigations on arsenic content in ultra-mafic rocks’ alterites from Nickel mines, implications for surface waters quality in ultramafic watersheds (New-Caledonia). Environmental Chemistry Letters, 10.1007/s10311-020-01009-6. hal-02888355
  • Schoeller, H. (1965). Qualitative Evaluation of gro-undwater resources. In methods and techniques of groundwater investigations and development (Pp. 54–83). Paris: UNESCO.
  • Schoeller, H. (1967). Qualitative evaluation of gro-undwater Resources. In methods and techniques of Groundwater investigation and development. Water Research, Series-33: UNESCO, Pp. 45 – 52.
  • Singh, A.K., Mahato, M.K., Neogi, B., Tewary, B.K., Sinha, A. (2012). Environmental geochemistry and quality as-sessment of mine water of Jharia coalfield, India. Envi-ronental Geology, 65:49–65.
  • Smedley, P.L., Kinniburgh, D.G. (2002). A review of the source, behavior and distribution of As in natural waters. Applied Geochemistry, 17:517–568.
  • Stallard, R.F., Edmond, J.M. (1983). Geochemistry of the Amazon , the influence of geology and weathering en-vironment on the dissolved load. Journal of Geophysi-cal Research, 88: 9671 –9688.
  • Şenel, M., Selçuk, H., Bilgin, Z.R., Şen, A.M., Karaman, T., Dinçer, M.A., Durukan, E., Arbas, A., Örçen, S., Bilgi, C. (1989). Çameli (Denizli)- Yeşilova (Burdur)- Elmalı (Antalya) ve kuzeyinin jeolojisi. Maden Tetkik ve Ara-ma Genel Müdürlüğü (MTA) Rap: 9429 (yayımlanma-mış), Ankara.
  • Tay, C.K. (2012). Hydrochemistry of groundwater in the Savelugu–Nanton District, Northern Ghana. Environ-mental Earth Science, 67:2077–2087.
  • Thin, P.P., Hendrayana, H., Wilopo, W., Kawasaki, S. (2018). Assessment of groundwater facies inWates Coastal Area, Kulon Progo, Yogyakarta, Indonesia. Jo-urnal of Degraded Andmining Lands management, 5(4):1389-1401
  • Voutsis, A., Kelepertzis, E., Tziritis, E., Kelepertsis, A. (2015). Assessing the hydrogeochemistry of gro-undwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods. Journal of Ge-ochemical Exploration, 159:79–92.
  • Zhang, C., Kibriya, M.G., Jasmine, F., Roy, S., Gao, J., Sabarinathan, M., Delgado, D., Ahmed, A., Islam, T., Eunus, M., Islam, Md.T., Hasan, R., Graziano, J.H., Ah-san, H., Pierce, B.L. (2018). A study of telomere length, arsenic exposure, and arsenic toxicity in a Bangladeshi cohort. Environmental Research, 164:346-355
  • Zwicker, J., Smrzka, D., Vadillo, I., Jiménez-Gavilán, P., Giampouras, M., Peckmann, J., Bach, W. (2022). Trace and rare earth element distribution in hyperalkaline serpentinite-hosted spring waters and associated aut-higenic carbonates from the Ronda peridotite. Applied Geochemistry, 147, 105492.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ayşen Davraz 0000-0003-2442-103X

Erken Görünüm Tarihi 15 Eylül 2023
Yayımlanma Tarihi 31 Aralık 2023
Kabul Tarihi 11 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Davraz, A. (2023). Marmaris Peridotiti ile İlişkili Yüzey ve Yeraltısularının Hidrojeokimyasal Özellikleri: Acıpayam (Denizli) Batısı. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(2), 216-230. https://doi.org/10.29048/makufebed.1288772