Araştırma Makalesi
BibTex RIS Kaynak Göster

Kavak Kök Özütü Kullanılarak Yeşil Sentez Yöntemiyle Ag₂O, Fe₃O₄ Nanopartikülleri ve Ag₂O/Fe₃O₄ Nanokompozitinin Sentezi ve Karakterizasyonu

Yıl 2025, Cilt: 16 Sayı: 2, 79 - 89, 29.12.2025
https://doi.org/10.29048/makufebed.1745868

Öz

Bu çalışmada, kavak kökü özütü kullanılarak çevre dostu yeşil sentez yöntemiyle Ag₂O, Fe₃O₄ nanopartikülleri ve Ag₂O/Fe₃O₄ nanokompoziti başarıyla sentezlenmiştir. GC-MS analiz sonuçlarına göre, özütte anti-inflamatuar, anti-anjiyojenik ve antioksidan özelliklere sahip çeşitli biyoaktif bileşenlerin varlığı tespit edilmiş, bu bileşiklerin nanopartikül oluşumu ve stabilizasyonunda etkili olduğu değerlendirilmiştir. FT-IR analizleri, elde edilen nanopartikül ve nanokompozitlerin fonksiyonel gruplar açısından zengin bir yüzey kimyasına sahip olduğunu ve Ag-O ile Fe-O bağlarının karakteristik bantlarla doğrulandığını ortaya koymuştur. XRD analizleri, her bir yapının kristal fazlarının Ag₂O ve Fe₃O₄’e özgü karakteristik kırınım pikleriyle uyumlu olduğunu göstermiştir. SEM görüntüleri ile Ag₂O, Fe₃O₄, Ag₂O/Fe₃O₄ örneklerinin morfolojileri incelenmiştir. EDS analizleri, nanoyapıların elementel kompozisyonunu doğrulamıştır. Hemoliz test sonuçları, tüm nanoyapıların %5 hemoliz eşiğinin altında kaldığını göstermiş ve bu yapıların hemouyumlu olduğunu ortaya koymuştur. Sonuç olarak kavak kök özütünün eşsiz fitokimyasal içeriği sayesinde düşük maliyetli, çevreci ve sürdürülebilir bir yöntem ile metal oksit nanopartiküller ve metal oksit nanokompozitleri sentezlenmiştir.

Kaynakça

  • Abad, W. K., Abd, A. N., & Habubi, N. F. (2023). Synthesis of Ag₂O nanoparticles via fresh pomegranate peel extract for bioapplications. Nano Biomedicine and Engineering, 15(8), 363-368.https://doi.org/10.26599/NBE.2023.9290032
  • Abo El-Fadl, R. E., El-Saber, M. M., Ahmed, M. E., Abd Elaziem, T. M., & El-Sayed, A. A. (2022). Impact on growth and secondary metabolites in white poplar (Populus alba L.) callus using SeNPs@ Moringa. Current Materials Science: Formerly: Recent Patents on Materials Science, 15(2), 175-191. https://doi.org/10.2174/2666145414666211125093640
  • Aftabtalab, A., Adeleh, M., & Sadabadi, H. (2015). Application of magnetite (Fe₃O₄) nanoparticles in hexavalent chromium adsorption from aquatic solutions. Petroleum & Environmental Biotechnology, 6(1), 1-9. http://dx.doi.org/10.4172/2157-7463.1000200
  • Ahmed, S., & Ikram, S. (2015). Silver nanoparticles: One pot green synthesis using Terminalia arjuna extract for biological application. Journal of Nanomedicine & Nanotechnology,6(4). 1-6.https://doi.org/10.4172/2157-7439.1000309
  • Aktepe, N., Bütüner, H., Baran, A., Firat Baran, M., & Keskin, C. (2022). Synthesis, characterization and evaluation of antimicrobial activities of silver nanoparticles obtained from Rumex acetosella L. (Sorrel) plant. International Journal of Agriculture Environment and Food Sciences, 6(4), 522-529. https://doi.org/10.31015/jaefs.2022.4.4
  • ALAtawi, M. K., AlAsmari, A. A., AlAliany, A. D., Almajed, M. M., & Sakran, M. I. (2024). Silver nanoparticles: forensic uses and toxicity on vital organs and different body systems. Advances in Toxicology and Toxic Effects, 8(1), 15–29. https://doi.org/10.17352/atte.000018
  • Alcalde-Eon, C., García-Estévez, I., Rivas-Gonzalo, J. C., de la Cruz, D. R., & Escribano-Bailón, M. T. (2016). Anthocyanins of the anthers as chemotaxonomic markers in the genus Populus L. differentiation between Populus nigra, Populus alba and Populus tremula. Phytochemistry, 128, 35-49.https://doi.org/10.1016/j.phytochem.2016.04.004
  • Al-Hakkani, M. F., Gouda, G. A., & Hassan, S. H. (2021). A review of green methods for phyto-fabrication of hematite (α-Fe2O3) nanoparticles and their characterization, properties, and applications. Heliyon, 7(1), e05806. https://doi.org/10.1016/j.heliyon.2020.e05806
  • Alharbi, N. S., Alsubhi, N. S., & Felimban, A. I. (2022). Green synthesis of silver nanoparticles using medicinal plants: characterization and application. Journal of Radiation Research and Applied Sciences, 15(3), 109-124.https://doi.org/10.1016/j.jrras.2022.06.012
  • Ali, M., Kim, B., D. Belfield, K., Norman, D., Brennan, M., & Ali, G. S. (2016). Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract — A comprehensive study. Materials Science and Engineering:C, 58(1), 359–365. https://doi.org/10.1016/j.msec.2015.08.045
  • Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment, 32(6), 666-681. https://doi.org/10.1111/j.1365-3040.2009.01926.x
  • Balasubramani, G., Ramkumar, R., Krishnaveni, N., Sowmiya, R., Deepak, P., Arul, D., & Perumal, P. (2015). GC–MS analysis of bioactive components and synthesis of gold nanoparticle using Chloroxylon swietenia DC leaf extract and its larvicidal activity. Journal of Photochemistry and Photobiology B: Biology, 148, 1–8. https://doi.org/10.1016/j.jphotobiol.2015.03.016
  • Bolade, O. P., Akinsiku, A. A., Adeyemi, A. O., Williams, A. B., & Benson, N. U. (2018). Dataset on phytochemical screening, FTIR and GC-MS characterisation of Azadirachta indica and Cymbopogon citratus as reducing and stabilising agents for nanoparticles synthesis. Data in Brief, 20, 917-926. https://doi.org/10.1016/j.dib.2018.08.133
  • De Rigo, D., Enescu, C. M., Houston Durrant, T., & Caudullo, G. (2016). Populus nigra in Europe: Distribution, habitat, usage and threats. In J.San Miguel Ayanz,D.de Rigo,G.Caudullo,T.Houston Durrant, & A. Mauri (Eds.), European atlasof forest tree species (pp. 136–137). Publications Officeof the European Union.https://w3id.org/mtv/FISE Comm/v01/e0182a4
  • Chauhan, R., Agarwal, K., Bala, K., Krishnan, A., Tavhare, S., De Rossi, D., Fabbro, A., & Sharma, Y. (2024). Cytotoxic potential of hemp seed oil and molecular docking studies with inflammatory markers of diabetic cardiomyopathy. South African Journal of Botany, 174, 876–886. https://doi.org/10.1016/j.sajb.2024.09.052
  • Chavali, M. S., & Nikolova, M. P. (2019). Metal oxide nanoparticles and their applications in nanotechnology. Discover Applied Sciences, 1(6), 607. https://doi.org/10.1007/s42452-019-0592-3
  • Alahmad, A. (2014). Preparation and characterization of silver nanoparticles. International Journal of ChemTech Research, 6(1), 450-459.
  • Dobrovolskaia, M. A., Clogston, J. D., Neun, B. W., Hall, J. B., Patri, A. K., & McNeil, S. E. (2008). Method for analysis of nanoparticle hemolytic properties in vitro. Nano Letters, 8(8), 2180–2187. https://doi.org/10.1021/nl0805615
  • Dos Santos, C. A., Seckler, M. M., Ingle, A. P., Gupta, I., Galdiero, S., Galdiero, M., Gade, A., & Rai, M. (2014). Silver nanoparticles: therapeutical uses, toxicity, and safety issues. Journal of Pharmaceutical Sciences, 103(7), 1931–1944. https://doi.org/10.1002/jps.24001
  • El-Gebaly, A. S., Sofy, A. R., Hmed, A. A., & Youssef, A. M. (2024). Green synthesis, characterization and medicinal uses of silver nanoparticles (Ag-NPs), copper nanoparticles (Cu-NPs) and zinc oxide nanoparticles (ZnO-NPs) and their mechanism of action: a review. Biocatalysis and Agricultural Biotechnology, 55, 103006. https://doi.org/10.1039/D5NA00037H
  • El-Sheekh, M. M., Deyab, M. A., Hassan, N. I., & Abu Ahmed, S. E. (2023). Bioadsorption of Fe (II) ions from aqueous solution using Sargassum latifolium aqueous extract and its synthesized silver nanoparticles. International Journal of Phytoremediation, 25(9), 1234-1247. https://doi.org/10.1080/15226514.2022.2145000
  • Feng, L., Shen, W., Feng, H., Lei, A., & Liu, Z. (2014). Magnetic and sterilizing properties of Ag(II)O–Fe3O4 hybrids synthesized via mechano-chemistry. Ceramics International, 40(5), 6963–6972. https://doi.org/10.1016/j.ceramint.2013.12
  • Fowsiya, J., & Madhumitha, G. (2019). Biomolecules derived from carissa edulis for the microwave assisted synthesis of Ag2O nanoparticles: a study against S. incertulas, C. medinalis and S. mauritia. Journal of Cluster Science, 30(5), 1243-1252. https://doi.org/10.1007/s10876-019-01627-3
  • Ge, Y., Shen, W., Wang, X., Feng, H., & Feng, L. (2018). Synthesis and bactericidal action of Fe3O4/AgO bifunctional magnetic-bactericidal nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 563, 160-169.https://doi.org/10.1016/j.colsurfa.2018.11.063
  • Hano, C., & Abbasi, B. H. (2022). Plant-based green synthesis of nanoparticles: production, characterization and applications. Biomolecules, 12(1), 31.https://doi.org/10.3390/biom12010031
  • Hastak, V., Bandi, S., Kashyap, S., Singh, S., Luqman, S., Lodhe, M., Peshwe, D., & Srivastav, A. (2018). Antioxidant efficacy of chitosan/graphene functionalized superparamagnetic iron oxide nanoparticles. Journal of Materials Science: Materials in Medicine, 29(154). https://doi.org/10.1007/s10856-018-6163-0
  • Huston, M., DeBella, M., DiBella, M., & Gupta, A. (2021). Green synthesis of nanomaterials. Nanomaterials, 11(8), 2130. https://doi.org/10.3390/nano11082130
  • Jadoun, S., Arif, R., & Jangid, N. K. (2021). Green synthesis of nanoparticles using plant extracts: a review. Environmental Chemistry Letters,19, 355–374. https://doi.org/10.1007/s10311-020-01074-x
  • Khan, S. H. (2019). Green nanotechnology for the environment and sustainable development. In Green materials for wastewater treatment (pp. 13-46). Cham: Springer International Publishing.
  • Khandel, P., Yadaw, R. K., Soni, D. K., Kanwar, L., & Shahi, S. K.(2018). Biogenesis of metal nanoparticles and theirpharmacological applications: present status andapplication prospects. Journal of Nanostructure inChemistry, 8(3), 217-254.https://doi.org/10.1007/s40097-018-0267-4
  • Kis, B., Avram, S., Pavel, I. Z., Lombrea, A., Buda, V., Dehelean, C. A., & Danciu, C. (2020). Recent advances regarding the phytochemical and therapeutic uses of Populus nigra L. buds. Plants, 9(11), 1464. https://doi.org/10.3390/plants9111464
  • Kour, D., Kaur, T., Kumari, S., Bassi, A., Khan, S. S., Gusain, M., & Singh, S. (2025). Advances and innovations in green nanotechnology for agro-environmental sustainability. Nanotechnology for Environmental Engineering, 10(3), 49. https://doi.org/10.1007/s41204-025-00450-8
  • Malik, S., Muhammad, K., & Waheed, Y. (2023). Nanotechnology: a revolution in modern industry. Molecules, 28(2), 661. https://doi.org/10.3390/molecules28020661
  • Masho, T. J., Ayane, M. M., Endale, G. N., Adula, S. H., Negasa, Y. D., Likasa, B. W., & Jida, S. M. (2025). Biosynthesis, characterization of Ag2O nanoparticles for enhancement of antioxidant and photo degradation activities. Results in Chemistry, 13, 101919. https://doi.org/10.1016/j.rechem.2024.101919
  • Mejía-Méndez, J. L., Sánchez-Ante, G., Cerro-López, M., Minutti-Calva, Y., Navarro-López, D. E., Lozada-Ramírez, J. D., & Sánchez-Arreola, E. (2024). Green synthesis of silver nanoparticles with extracts from Kalanchoe fedtschenkoi: characterization and bioactivities. Biomolecules, 14(7), 782. https://doi.org/10.3390/biom14070782
  • Mengesha B, Mekbib F, Abraha E. (2016). In vitro screening of Cactus Opuntia Ficus-Indicia (L.) mill genotypes for drought tolerance. American Journal of Plant Sciences, 7(13), 1741. http://dx.doi.org/10.4236/ajps.2016.713163
  • Mohammadpour, A., Karami, N., Zabihi, R., Fazeliyan, E., Abbasi, A., Karimi, S., Barbosa de Farias, M., Adeodato Vieira, M. G., Shahsavani, E., & Mousavi Khaneghah, A. (2023). Green synthesis, characterization, and application of Fe3O4 nanoparticles for methylene blue removal: RSM optimization, kinetic, isothermal studies, and molecular simulation. Environmental Research, 225, 115507. https://doi.org/10.1016/j.envres.2023.115507
  • Muthusamy, G., Thangasamy, S., Raja, M., Chinnappan, S., & Kandasamy, S. (2017). Biosynthesis of silver nanoparticles from Spirulina microalgae and its antibacterial activity. Environmental Science and Pollution Research, 24(23), 19459-19464. https://doi.org/10.1007/s11356-017-9772-0
  • Navaei, F., Zandi, M., Ganjloo, A., & Dardmeh, N. (2025). Fabrication of magnetic nanoparticle-enhanced bi-layer films: Fe₃O₄-loaded electrospun PVA/Gelatin nanofibers on a balangu seed mucilage-gelatin base. Industrial Crops and Products, 229, 121037. https://doi.org/10.1016/j.indcrop.2025.121037
  • Radulescu, D. M., Surdu, V. A., Ficai, A., Ficai, D., Grumezescu, A. M., & Andronescu, E. (2023). Green synthesis of metal and metal oxide nanoparticles: a review of the principles and biomedical applications. International Journal of Molecular Sciences, 24(20), 15397. https://doi.org/10.3390/ijms242015397
  • Saito, T., Yamamoto, Y., Feng, G., G., Kazaoka, Y., Fujiwara, Y., & Kinoshita, H. (2017). Lidocaine prevents oxidative stress-induced endothelial dysfunction of the systemic artery in rats with intermittent periodontal inflammation. Anesthesia & Analgesia, 124(6), 2054–2062. https://doi.org/10.1213/ANE.0000000000002102
  • Sajjadi, M., Nasrollahzadeh, M., & Mohammad Sajadi, S. (2017). Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus linn leaf extract and evaluation of its catalytic activity. Journal of Colloid and Interface Science,497,1–13. https://doi.org/10.1016/j.jcis.2017.02.037
  • Selvan, D. A., Mahendiran, D., Kumar, R. S., & Rahiman, A. K.(2018). Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles:Phytochemical, antioxidant and in vitro cytotoxicitystudies. Journal of Photochemistry and Photobiology B:Biology, 180, 243-252.https://doi.org/10.1016/j.jphotobiol.2018.02.014
  • Sengul, A. B., & Asmatulu, E. (2020). Toxicity of metal and metal oxide nanoparticles: a review. Environmental Chemistry Letters, 18(5), 1659-1683.
  • Shan, C., Su, Z., Liu, Z., Xu, R., Wen, J., Hu, G., & Li, M. (2023). One-step synthesis of Ag2O/Fe3O4 magnetic photocatalyst for efficient organic pollutant removal via wide spectral response photocatalysis fenton coupling. Molecules, 28(10), 4155. https://doi.org/10.3390/molecules28104155
  • Sharmla, D., Sivakumaran, G., Kamalishwari, S., Prabhu, K., Rao, M. R. K., Parijatham, S., & Sundaram, R. L. (2020). The gas chromatography–mass spectrometry analysis of one Ayurvedic medicine, dasanakanti churnam. Drug Invention Today, 14(5).
  • Sintov, A. C. (2024). The distinctive role of gluconic acid in retarding percutaneous drug permeation: Formulation of lidocaine-loaded chitosan nanoparticles. Pharmaceutics,16(6), 831.https://doi.org/10.3390/pharmaceutics16060831
  • Şensoy Gün, B., Gurbanov, R., & Tunalı, B. (2025). Biofilm-inhibiting ZnO@ Eggshell nanocomposites: green synthesis, characterization, and biomedical potential. BioMetals, 38, 1447-1468.
  • Şensoy Gün, B., Tunalı, B., & Gurbanov R. (2024). Yeşil Sentez Yöntemi ile Althaea officinalis Kaynaklı Nanokompozitlerin Karakterizasyonu ve Hemolitik Aktivitelerinin Değerlendirilmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(1), 22-32. https://doi.org/10.29048/makufebed.1402681
  • Temelie, M., Popescu, R. C., Cocioaba, D., Vasile, B. S., & Savu, D. (2018). Biocompatibility study of magnetite nanoparticle synthesized using a green method. Romanian Journal of Physics, 63(7-8), 1-13.
  • Thangaraj, B., Jia, Z., Dai, L., & Liu, D. (2016). Lipase NS81006 immobilized on Fe3O4 magnetic nanoparticles for biodiesel production. Ovidius University Annals of Chemistry, 27(1), 13-21. https://doi.org/10.1515/auoc-2016-0008
  • Tiwari, S., Yadav, R. S., & Kuanr, B. K. (2018). Hemolysis and cytotoxicity studies of surface functionalized and bare core–shell Fe3O4 nanoparticles. Advanced Science Letters, 24(2), 907-912.
  • Tlili, H., Elaoud, A., Asses, N., Horchani-Naifer, K., & Ferhi, M.(2024). New process for the treatment of pollutedwater using the coupling of nanoparticles (Fe3O4) andintense magnetic system. Emergent Materials, 7(3),947-957.
  • Villagrán, Z., Anaya-Esparza, L. M., Velázquez-Carriles, C. A., Silva-Jara, J. M., Ruvalcaba-Gómez, J. M., Aurora-Vigo, E. F., & Martínez-Esquivias, F. (2024). Plant-based extracts as reducing, capping, and stabilizing agents for the green synthesis of inorganic nanoparticles. Resources, 13(6), 70. https://doi.org/10.3390/resources13060070
  • Xu, Y.-J., Dong, L., Lu, Y., Zhang, L.-C., An, D., Gao, H.-L., & Yu, S.-H. (2016). Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury. Nanoscale, 8(3), 1684–1690. https://doi.org/10.1039/c5nr07023f
  • Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 102336. https://doi.org/10.1016/j.eti.2022.102336
  • Yontar, A. K., & Gün, B. Ş. (2025). A green polymer biomaterial functionalized with waste coffee grounds for anti-hemolytic and antibacterial applications. Polymer Bulletin, 82, 8051–8085. https://doi.org/10.1007/s00289-025-05861-w
  • Zulfiqar, Z., Khan, R. R. M., Summer, M., Saeed, Z., Pervaiz, M., Rasheed, S., & Ishaq, S. (2024). Plant-mediated green synthesis of silver nanoparticles: synthesis, characterization, biological applications, and toxicological considerations: a review. Biocatalysis and Agricultural Biotechnology, 57, 103121. https://doi.org/10.1016/j.bcab.2024.103121

Synthesis and Characterization of Ag₂O, Fe₃O₄ Nanoparticles and Ag₂O/Fe₃O₄ Nanocomposite via Green Synthesis Method Using Poplar Root Extract

Yıl 2025, Cilt: 16 Sayı: 2, 79 - 89, 29.12.2025
https://doi.org/10.29048/makufebed.1745868

Öz

In this study, Ag₂O, Fe₃O₄ nanoparticles, and an Ag₂O/Fe₃O₄ nanocomposite were successfully synthesized using poplar root extract via an environmentally friendly green synthesis method. GC-MS analysis revealed the presence of various bioactive components with anti-inflammatory, anti-angiogenic, and antioxidant properties in the extract, and these compounds were evaluated to be effective in nanoparticle formation and stabilization. FT-IR analyses revealed that the obtained nanoparticles and nanocomposites had a surface chemistry rich in functional groups, and characteristic bands confirmed the Ag-O and Fe-O bonds. XRD analyses showed that the crystalline phases of each structure were consistent with the characteristic diffraction peaks specific to Ag₂O and Fe₃O₄. The morphologies of Ag₂O, Fe₃O₄, and Ag₂O/Fe₃O₄ samples were examined using SEM images. EDS analyses confirmed the elemental composition of the nanostructures. Hemolysis test results showed that all nanostructures remained below the 5% hemolysis threshold, demonstrating their hemocompatibility. In conclusion, metal oxide nanoparticles and metal oxide nanocomposites were synthesized using a low-cost, environmentally friendly, and sustainable method, leveraging the unique phytochemical content of poplar root extract.

Kaynakça

  • Abad, W. K., Abd, A. N., & Habubi, N. F. (2023). Synthesis of Ag₂O nanoparticles via fresh pomegranate peel extract for bioapplications. Nano Biomedicine and Engineering, 15(8), 363-368.https://doi.org/10.26599/NBE.2023.9290032
  • Abo El-Fadl, R. E., El-Saber, M. M., Ahmed, M. E., Abd Elaziem, T. M., & El-Sayed, A. A. (2022). Impact on growth and secondary metabolites in white poplar (Populus alba L.) callus using SeNPs@ Moringa. Current Materials Science: Formerly: Recent Patents on Materials Science, 15(2), 175-191. https://doi.org/10.2174/2666145414666211125093640
  • Aftabtalab, A., Adeleh, M., & Sadabadi, H. (2015). Application of magnetite (Fe₃O₄) nanoparticles in hexavalent chromium adsorption from aquatic solutions. Petroleum & Environmental Biotechnology, 6(1), 1-9. http://dx.doi.org/10.4172/2157-7463.1000200
  • Ahmed, S., & Ikram, S. (2015). Silver nanoparticles: One pot green synthesis using Terminalia arjuna extract for biological application. Journal of Nanomedicine & Nanotechnology,6(4). 1-6.https://doi.org/10.4172/2157-7439.1000309
  • Aktepe, N., Bütüner, H., Baran, A., Firat Baran, M., & Keskin, C. (2022). Synthesis, characterization and evaluation of antimicrobial activities of silver nanoparticles obtained from Rumex acetosella L. (Sorrel) plant. International Journal of Agriculture Environment and Food Sciences, 6(4), 522-529. https://doi.org/10.31015/jaefs.2022.4.4
  • ALAtawi, M. K., AlAsmari, A. A., AlAliany, A. D., Almajed, M. M., & Sakran, M. I. (2024). Silver nanoparticles: forensic uses and toxicity on vital organs and different body systems. Advances in Toxicology and Toxic Effects, 8(1), 15–29. https://doi.org/10.17352/atte.000018
  • Alcalde-Eon, C., García-Estévez, I., Rivas-Gonzalo, J. C., de la Cruz, D. R., & Escribano-Bailón, M. T. (2016). Anthocyanins of the anthers as chemotaxonomic markers in the genus Populus L. differentiation between Populus nigra, Populus alba and Populus tremula. Phytochemistry, 128, 35-49.https://doi.org/10.1016/j.phytochem.2016.04.004
  • Al-Hakkani, M. F., Gouda, G. A., & Hassan, S. H. (2021). A review of green methods for phyto-fabrication of hematite (α-Fe2O3) nanoparticles and their characterization, properties, and applications. Heliyon, 7(1), e05806. https://doi.org/10.1016/j.heliyon.2020.e05806
  • Alharbi, N. S., Alsubhi, N. S., & Felimban, A. I. (2022). Green synthesis of silver nanoparticles using medicinal plants: characterization and application. Journal of Radiation Research and Applied Sciences, 15(3), 109-124.https://doi.org/10.1016/j.jrras.2022.06.012
  • Ali, M., Kim, B., D. Belfield, K., Norman, D., Brennan, M., & Ali, G. S. (2016). Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract — A comprehensive study. Materials Science and Engineering:C, 58(1), 359–365. https://doi.org/10.1016/j.msec.2015.08.045
  • Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment, 32(6), 666-681. https://doi.org/10.1111/j.1365-3040.2009.01926.x
  • Balasubramani, G., Ramkumar, R., Krishnaveni, N., Sowmiya, R., Deepak, P., Arul, D., & Perumal, P. (2015). GC–MS analysis of bioactive components and synthesis of gold nanoparticle using Chloroxylon swietenia DC leaf extract and its larvicidal activity. Journal of Photochemistry and Photobiology B: Biology, 148, 1–8. https://doi.org/10.1016/j.jphotobiol.2015.03.016
  • Bolade, O. P., Akinsiku, A. A., Adeyemi, A. O., Williams, A. B., & Benson, N. U. (2018). Dataset on phytochemical screening, FTIR and GC-MS characterisation of Azadirachta indica and Cymbopogon citratus as reducing and stabilising agents for nanoparticles synthesis. Data in Brief, 20, 917-926. https://doi.org/10.1016/j.dib.2018.08.133
  • De Rigo, D., Enescu, C. M., Houston Durrant, T., & Caudullo, G. (2016). Populus nigra in Europe: Distribution, habitat, usage and threats. In J.San Miguel Ayanz,D.de Rigo,G.Caudullo,T.Houston Durrant, & A. Mauri (Eds.), European atlasof forest tree species (pp. 136–137). Publications Officeof the European Union.https://w3id.org/mtv/FISE Comm/v01/e0182a4
  • Chauhan, R., Agarwal, K., Bala, K., Krishnan, A., Tavhare, S., De Rossi, D., Fabbro, A., & Sharma, Y. (2024). Cytotoxic potential of hemp seed oil and molecular docking studies with inflammatory markers of diabetic cardiomyopathy. South African Journal of Botany, 174, 876–886. https://doi.org/10.1016/j.sajb.2024.09.052
  • Chavali, M. S., & Nikolova, M. P. (2019). Metal oxide nanoparticles and their applications in nanotechnology. Discover Applied Sciences, 1(6), 607. https://doi.org/10.1007/s42452-019-0592-3
  • Alahmad, A. (2014). Preparation and characterization of silver nanoparticles. International Journal of ChemTech Research, 6(1), 450-459.
  • Dobrovolskaia, M. A., Clogston, J. D., Neun, B. W., Hall, J. B., Patri, A. K., & McNeil, S. E. (2008). Method for analysis of nanoparticle hemolytic properties in vitro. Nano Letters, 8(8), 2180–2187. https://doi.org/10.1021/nl0805615
  • Dos Santos, C. A., Seckler, M. M., Ingle, A. P., Gupta, I., Galdiero, S., Galdiero, M., Gade, A., & Rai, M. (2014). Silver nanoparticles: therapeutical uses, toxicity, and safety issues. Journal of Pharmaceutical Sciences, 103(7), 1931–1944. https://doi.org/10.1002/jps.24001
  • El-Gebaly, A. S., Sofy, A. R., Hmed, A. A., & Youssef, A. M. (2024). Green synthesis, characterization and medicinal uses of silver nanoparticles (Ag-NPs), copper nanoparticles (Cu-NPs) and zinc oxide nanoparticles (ZnO-NPs) and their mechanism of action: a review. Biocatalysis and Agricultural Biotechnology, 55, 103006. https://doi.org/10.1039/D5NA00037H
  • El-Sheekh, M. M., Deyab, M. A., Hassan, N. I., & Abu Ahmed, S. E. (2023). Bioadsorption of Fe (II) ions from aqueous solution using Sargassum latifolium aqueous extract and its synthesized silver nanoparticles. International Journal of Phytoremediation, 25(9), 1234-1247. https://doi.org/10.1080/15226514.2022.2145000
  • Feng, L., Shen, W., Feng, H., Lei, A., & Liu, Z. (2014). Magnetic and sterilizing properties of Ag(II)O–Fe3O4 hybrids synthesized via mechano-chemistry. Ceramics International, 40(5), 6963–6972. https://doi.org/10.1016/j.ceramint.2013.12
  • Fowsiya, J., & Madhumitha, G. (2019). Biomolecules derived from carissa edulis for the microwave assisted synthesis of Ag2O nanoparticles: a study against S. incertulas, C. medinalis and S. mauritia. Journal of Cluster Science, 30(5), 1243-1252. https://doi.org/10.1007/s10876-019-01627-3
  • Ge, Y., Shen, W., Wang, X., Feng, H., & Feng, L. (2018). Synthesis and bactericidal action of Fe3O4/AgO bifunctional magnetic-bactericidal nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 563, 160-169.https://doi.org/10.1016/j.colsurfa.2018.11.063
  • Hano, C., & Abbasi, B. H. (2022). Plant-based green synthesis of nanoparticles: production, characterization and applications. Biomolecules, 12(1), 31.https://doi.org/10.3390/biom12010031
  • Hastak, V., Bandi, S., Kashyap, S., Singh, S., Luqman, S., Lodhe, M., Peshwe, D., & Srivastav, A. (2018). Antioxidant efficacy of chitosan/graphene functionalized superparamagnetic iron oxide nanoparticles. Journal of Materials Science: Materials in Medicine, 29(154). https://doi.org/10.1007/s10856-018-6163-0
  • Huston, M., DeBella, M., DiBella, M., & Gupta, A. (2021). Green synthesis of nanomaterials. Nanomaterials, 11(8), 2130. https://doi.org/10.3390/nano11082130
  • Jadoun, S., Arif, R., & Jangid, N. K. (2021). Green synthesis of nanoparticles using plant extracts: a review. Environmental Chemistry Letters,19, 355–374. https://doi.org/10.1007/s10311-020-01074-x
  • Khan, S. H. (2019). Green nanotechnology for the environment and sustainable development. In Green materials for wastewater treatment (pp. 13-46). Cham: Springer International Publishing.
  • Khandel, P., Yadaw, R. K., Soni, D. K., Kanwar, L., & Shahi, S. K.(2018). Biogenesis of metal nanoparticles and theirpharmacological applications: present status andapplication prospects. Journal of Nanostructure inChemistry, 8(3), 217-254.https://doi.org/10.1007/s40097-018-0267-4
  • Kis, B., Avram, S., Pavel, I. Z., Lombrea, A., Buda, V., Dehelean, C. A., & Danciu, C. (2020). Recent advances regarding the phytochemical and therapeutic uses of Populus nigra L. buds. Plants, 9(11), 1464. https://doi.org/10.3390/plants9111464
  • Kour, D., Kaur, T., Kumari, S., Bassi, A., Khan, S. S., Gusain, M., & Singh, S. (2025). Advances and innovations in green nanotechnology for agro-environmental sustainability. Nanotechnology for Environmental Engineering, 10(3), 49. https://doi.org/10.1007/s41204-025-00450-8
  • Malik, S., Muhammad, K., & Waheed, Y. (2023). Nanotechnology: a revolution in modern industry. Molecules, 28(2), 661. https://doi.org/10.3390/molecules28020661
  • Masho, T. J., Ayane, M. M., Endale, G. N., Adula, S. H., Negasa, Y. D., Likasa, B. W., & Jida, S. M. (2025). Biosynthesis, characterization of Ag2O nanoparticles for enhancement of antioxidant and photo degradation activities. Results in Chemistry, 13, 101919. https://doi.org/10.1016/j.rechem.2024.101919
  • Mejía-Méndez, J. L., Sánchez-Ante, G., Cerro-López, M., Minutti-Calva, Y., Navarro-López, D. E., Lozada-Ramírez, J. D., & Sánchez-Arreola, E. (2024). Green synthesis of silver nanoparticles with extracts from Kalanchoe fedtschenkoi: characterization and bioactivities. Biomolecules, 14(7), 782. https://doi.org/10.3390/biom14070782
  • Mengesha B, Mekbib F, Abraha E. (2016). In vitro screening of Cactus Opuntia Ficus-Indicia (L.) mill genotypes for drought tolerance. American Journal of Plant Sciences, 7(13), 1741. http://dx.doi.org/10.4236/ajps.2016.713163
  • Mohammadpour, A., Karami, N., Zabihi, R., Fazeliyan, E., Abbasi, A., Karimi, S., Barbosa de Farias, M., Adeodato Vieira, M. G., Shahsavani, E., & Mousavi Khaneghah, A. (2023). Green synthesis, characterization, and application of Fe3O4 nanoparticles for methylene blue removal: RSM optimization, kinetic, isothermal studies, and molecular simulation. Environmental Research, 225, 115507. https://doi.org/10.1016/j.envres.2023.115507
  • Muthusamy, G., Thangasamy, S., Raja, M., Chinnappan, S., & Kandasamy, S. (2017). Biosynthesis of silver nanoparticles from Spirulina microalgae and its antibacterial activity. Environmental Science and Pollution Research, 24(23), 19459-19464. https://doi.org/10.1007/s11356-017-9772-0
  • Navaei, F., Zandi, M., Ganjloo, A., & Dardmeh, N. (2025). Fabrication of magnetic nanoparticle-enhanced bi-layer films: Fe₃O₄-loaded electrospun PVA/Gelatin nanofibers on a balangu seed mucilage-gelatin base. Industrial Crops and Products, 229, 121037. https://doi.org/10.1016/j.indcrop.2025.121037
  • Radulescu, D. M., Surdu, V. A., Ficai, A., Ficai, D., Grumezescu, A. M., & Andronescu, E. (2023). Green synthesis of metal and metal oxide nanoparticles: a review of the principles and biomedical applications. International Journal of Molecular Sciences, 24(20), 15397. https://doi.org/10.3390/ijms242015397
  • Saito, T., Yamamoto, Y., Feng, G., G., Kazaoka, Y., Fujiwara, Y., & Kinoshita, H. (2017). Lidocaine prevents oxidative stress-induced endothelial dysfunction of the systemic artery in rats with intermittent periodontal inflammation. Anesthesia & Analgesia, 124(6), 2054–2062. https://doi.org/10.1213/ANE.0000000000002102
  • Sajjadi, M., Nasrollahzadeh, M., & Mohammad Sajadi, S. (2017). Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus linn leaf extract and evaluation of its catalytic activity. Journal of Colloid and Interface Science,497,1–13. https://doi.org/10.1016/j.jcis.2017.02.037
  • Selvan, D. A., Mahendiran, D., Kumar, R. S., & Rahiman, A. K.(2018). Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles:Phytochemical, antioxidant and in vitro cytotoxicitystudies. Journal of Photochemistry and Photobiology B:Biology, 180, 243-252.https://doi.org/10.1016/j.jphotobiol.2018.02.014
  • Sengul, A. B., & Asmatulu, E. (2020). Toxicity of metal and metal oxide nanoparticles: a review. Environmental Chemistry Letters, 18(5), 1659-1683.
  • Shan, C., Su, Z., Liu, Z., Xu, R., Wen, J., Hu, G., & Li, M. (2023). One-step synthesis of Ag2O/Fe3O4 magnetic photocatalyst for efficient organic pollutant removal via wide spectral response photocatalysis fenton coupling. Molecules, 28(10), 4155. https://doi.org/10.3390/molecules28104155
  • Sharmla, D., Sivakumaran, G., Kamalishwari, S., Prabhu, K., Rao, M. R. K., Parijatham, S., & Sundaram, R. L. (2020). The gas chromatography–mass spectrometry analysis of one Ayurvedic medicine, dasanakanti churnam. Drug Invention Today, 14(5).
  • Sintov, A. C. (2024). The distinctive role of gluconic acid in retarding percutaneous drug permeation: Formulation of lidocaine-loaded chitosan nanoparticles. Pharmaceutics,16(6), 831.https://doi.org/10.3390/pharmaceutics16060831
  • Şensoy Gün, B., Gurbanov, R., & Tunalı, B. (2025). Biofilm-inhibiting ZnO@ Eggshell nanocomposites: green synthesis, characterization, and biomedical potential. BioMetals, 38, 1447-1468.
  • Şensoy Gün, B., Tunalı, B., & Gurbanov R. (2024). Yeşil Sentez Yöntemi ile Althaea officinalis Kaynaklı Nanokompozitlerin Karakterizasyonu ve Hemolitik Aktivitelerinin Değerlendirilmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(1), 22-32. https://doi.org/10.29048/makufebed.1402681
  • Temelie, M., Popescu, R. C., Cocioaba, D., Vasile, B. S., & Savu, D. (2018). Biocompatibility study of magnetite nanoparticle synthesized using a green method. Romanian Journal of Physics, 63(7-8), 1-13.
  • Thangaraj, B., Jia, Z., Dai, L., & Liu, D. (2016). Lipase NS81006 immobilized on Fe3O4 magnetic nanoparticles for biodiesel production. Ovidius University Annals of Chemistry, 27(1), 13-21. https://doi.org/10.1515/auoc-2016-0008
  • Tiwari, S., Yadav, R. S., & Kuanr, B. K. (2018). Hemolysis and cytotoxicity studies of surface functionalized and bare core–shell Fe3O4 nanoparticles. Advanced Science Letters, 24(2), 907-912.
  • Tlili, H., Elaoud, A., Asses, N., Horchani-Naifer, K., & Ferhi, M.(2024). New process for the treatment of pollutedwater using the coupling of nanoparticles (Fe3O4) andintense magnetic system. Emergent Materials, 7(3),947-957.
  • Villagrán, Z., Anaya-Esparza, L. M., Velázquez-Carriles, C. A., Silva-Jara, J. M., Ruvalcaba-Gómez, J. M., Aurora-Vigo, E. F., & Martínez-Esquivias, F. (2024). Plant-based extracts as reducing, capping, and stabilizing agents for the green synthesis of inorganic nanoparticles. Resources, 13(6), 70. https://doi.org/10.3390/resources13060070
  • Xu, Y.-J., Dong, L., Lu, Y., Zhang, L.-C., An, D., Gao, H.-L., & Yu, S.-H. (2016). Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury. Nanoscale, 8(3), 1684–1690. https://doi.org/10.1039/c5nr07023f
  • Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 102336. https://doi.org/10.1016/j.eti.2022.102336
  • Yontar, A. K., & Gün, B. Ş. (2025). A green polymer biomaterial functionalized with waste coffee grounds for anti-hemolytic and antibacterial applications. Polymer Bulletin, 82, 8051–8085. https://doi.org/10.1007/s00289-025-05861-w
  • Zulfiqar, Z., Khan, R. R. M., Summer, M., Saeed, Z., Pervaiz, M., Rasheed, S., & Ishaq, S. (2024). Plant-mediated green synthesis of silver nanoparticles: synthesis, characterization, biological applications, and toxicological considerations: a review. Biocatalysis and Agricultural Biotechnology, 57, 103121. https://doi.org/10.1016/j.bcab.2024.103121
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Nanomalzemeler, Nanoteknoloji (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Büşra Şensoy Gün 0000-0001-5190-9490

Arda Aytimur 0000-0001-6995-6164

Gönderilme Tarihi 18 Temmuz 2025
Kabul Tarihi 9 Ekim 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 2

Kaynak Göster

APA Şensoy Gün, B., & Aytimur, A. (2025). Kavak Kök Özütü Kullanılarak Yeşil Sentez Yöntemiyle Ag₂O, Fe₃O₄ Nanopartikülleri ve Ag₂O/Fe₃O₄ Nanokompozitinin Sentezi ve Karakterizasyonu. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16(2), 79-89. https://doi.org/10.29048/makufebed.1745868