Metilamonyum Bizmut İyodür İnce Filmlerinin Flaş ve Eş Zamanlı Buharlaştırma Yöntemleriyle Üretimi: Yapısal ve Optik Özelliklerin Karşılaştırılması
Yıl 2025,
Cilt: 16 Sayı: 2, 71 - 78, 29.12.2025
Gökhan Yılmaz
,
Asuman Koçu
Öz
Bu çalışmada, kurşunsuz perovskit malzeme (CH3NH3)3Bi2I9 (MA3Bi2I9) ince filmleri, iki farklı fiziksel buharlaştırma tekniği olan flaş buharlaştırma ve eş zamanlı buharlaştırma yöntemleri kullanılarak üretilmiştir. Üretilen filmlerin yapısal, morfolojik ve optik özellikleri detaylı bir şekilde karakterize edilerek, üretim yöntemlerinin film kalitesi üzerindeki etkileri karşılaştırmalı olarak değerlendirilmiştir. X-ışını kırınımı (XRD) ile kristal yapı, taramalı elektron mikroskobu (SEM) ile yüzey morfolojisi ve UV-Vis spektroskopisi ile optik özellikler analiz edilmiştir. Elde edilen sonuçlar, her iki yöntemin de optik olarak aktif MA3Bi2I9 ince filmleri üretebildiğini göstermekle birlikte, flaş buharlaştırma yöntemiyle üretilen filmlerin daha yoğun, homojen ve yüksek optik absorpsiyon performansına sahip olduğunu ortaya koymuştur. Doğrudan bant aralığı değerleri eş zamanlı buharlaştırma yöntemi için 1,89 eV, flaş buharlaştırma yöntemi için ise 1,91 eV olarak belirlenirken, dolaylı bant aralığı her iki yöntem için de 1,78 eV olarak hesaplanmıştır. Bu bulgular, flaş buharlaştırma yönteminin kurşunsuz MA3Bi2I9 perovskit ince filmlerin üretim optimizasyonu açısından önemli avantajlar sunduğunu ve yüksek performanslı optoelektronik cihaz uygulamaları için potansiyel taşıdığını göstermektedir.
Etik Beyan
Bu çalışmada, “Yükseköğretim Kurumları Bilimsel Araştırma ve Yayın Etiği Yönergesi” kapsamında uyulması gerekli tüm kurallara uyulduğunu, bahsi geçen yönergenin “Bilimsel Araştırma ve Yayın Etiğine Aykırı Eylemler” başlığı altında belirtilen eylemlerden hiçbirinin gerçekleştirilmediğini taahhüt ederiz.
Destekleyen Kurum
Burdur Mehmet Akif Ersoy Üniversitesi
Proje Numarası
0772-YL-21
Teşekkür
Bu çalışma Burdur Mehmet Akif Ersoy Üniversitesi Bilimsel Araştırmalar Proje Birimi tarafından desteklenmiştir. Proje No: 0772-YL-21.
Kaynakça
-
Babayigit, A., Ethirajan, A., Müller, M., & Conings, B. (2016). Toxicity of organometal halide perovskite solar cells. Nature Materials, 15(3), 247–251. https://doi.org/10.1038/nmat4572
-
Chin, X. Y., Cortecchia, D., Yin, J., Bruno, A., & Soci, C. (2015). Lead iodide perovskite light-emitting field-effect transistor. Nature Communications, 6, 8383. https://doi.org/10.1038/ncomms8383
-
Cullity, B. D., & Stock, S. R. (2001). Elements of X-ray diffraction (3rd ed.). Pearson Education.
-
Deng, Y., Peng, E., Shao, Y., Xiao, Z., Dong, Q., & Huang, J. (2015). Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science, 8(5), 1544–1550. https://doi.org/10.1039/c4ee03907f
-
Guo, Z., Manser, J. S., Wan, Y., Kamat, P. V., & Huang, L. (2015). Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nature Communications, 6, 8471. https://doi.org/10.1038/ncomms8471
-
Hutter, E. M., Eperon, G. E., Stranks, S. D., & Savenije, T. J. (2015). Charge carriers in planar and meso-structured organic-inorganic perovskites: Mobilities, lifetimes, and concentrations of trap states. The Journal of Physical Chemistry Letters, 6(15), 3082–3090. https://doi.org/10.1021/acs.jpclett.5b01361
-
Kim, G. Y., Kim, K., Kim, H. J., Jung, H. S., Jeon, I., & Lee, J. W.(2023). Sustainable and environmentally viableperovskite solar cells. EcoMat, 5(4), e12319.https://doi.org/10.1002/eom2.12319
-
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050–6051. https://doi.org/10.1021/ja809598r
-
Kong, W., Ye, Z., Qi, Z., Zhang, B., Wang, M., Yang, X., … Wu, H.(2017). Nontoxic (CH₃NH₃)₃Bi₂I₉ perovskite solarcells. RSC Advances, 7(13), 7683–7687.https://doi.org/10.1039/C7RA04924B
-
Li, F., Ma, C., Wang, H., Hu, W., Yu, W., Sheikh, A. D., & Wu, T.(2015). Ambipolar solution-processed hybridperovskite phototransistors. Nature Communications, 6, 8238. https://doi.org/10.1038/ncomms9238
-
Lian, Z., Yan, Q., Gao, T., Ding, J., Lv, Q., Ning, C., Li, Q., & Sun, J. L. (2016). Perovskite CH₃NH₃PbI₃(Cl) single crystals: Rapid solution growth, unparalleled crystalline quality, and low trap density toward 10⁸ cm⁻³. Journal of the American Chemical Society, 138(30), 9409–9412. https://doi.org/10.1021/jacs.6b05683
-
Lyu, M., Yun, J. H., Cai, M., Jiao, Y., & Wang, Q. (2016). Organic–inorganic bismuth(III)‐based material: A lead‐free, air‐stable and solution‐processable light absorber beyond organolead perovskites. Nano Research, 9(3), 692–702. https://doi.org/10.1007/s12274-015-0948-y
-
Maiti, A., Paul, G., Bhunia, H., & Pal, A. J. (2019). Band-edges of bismuth-based ternary halide perovskites (A₃Bi₂I₉) through scanning tunneling spectroscopy vis-à-vis impact of defects in limiting the performance of solar cells. Solar Energy Materials and Solar Cells, 200, 109941. https://doi.org/10.1016/j.solmat.2019.109941
-
Mei, Y., Zhang, C., Vardeny, Z. V., & Jurchescu, O. D. (2015). Electrostatic gating of hybrid halide perovskite field-effect transistors: Balanced ambipolar transport at room-temperature. MRS Communications, 5(2), 297–301.https://doi.org/10.1557/mrc.2015.21
-
Momblona, C., Kanda, H., Sutanto, A. A., Mensi, M., Roldán-Carmona, C., & Nazeeruddin, M. K. (2020). Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. Scientific Reports,10(1), 67606. https://doi.org/10.1038/s41598-020-67606-1
-
Motta, C., El-Mellouhi, F., & Sanvito, S. (2015). Charge carrier mobility in hybrid halide perovskites. Scientific Reports, 5, 12746. https://doi.org/10.1038/srep12746
-
National Renewable Energy Laboratory. (2024, December 25). Best research-cell efficiency chart. U.S. Department of Energy. https://www.nrel.gov/pv/cell-efficiency.html
-
Oga, H., Saeki, A., Ogomi, Y., Hayase, S., & Seki, S. (2014). Improved understanding of the electronic and energetic landscapes of perovskite solar cells: High local charge carrier mobility, reduced recombination, and extremely shallow traps. Journal of the American Chemical Society, 136(39), 13818–13825. https://doi.org/10.1021/ja506936f
-
Park, B. W., Philippe, B., Zhang, X., Rensmo, H., Boschloo, G., & Johansson, E. M. (2015). Bismuth based hybrid perovskites A₃Bi₂I₉ (A: methylammonium or cesium) for solar cell application. Advanced Materials, 27(43), 6806–6813. https://doi.org/10.1002/adma.201501978
-
Rani, M., Khan, M. M., Numan, A., Khalid, M., Abbas, S. M., Iqbal, M., & Mansoor, M. A. (2025). Breaking barriers: Addressing challenges in perovskite solar cell development. Journal of Alloys and Compounds, 1010, 177648. https://doi.org/10.1016/j.jallcom.2024.177648
-
Román-Vázquez, M., Vidyasagar, C. C., Muñoz-Flores, B. M., & Jiménez-Pérez, V. M. (2020). Recent advances on synthesis and applications of lead- and tin-free perovskites. Journal of Alloys and Compounds, 835, 155112. https://doi.org/10.1016/j.jallcom.2020.155112
-
Stranks, S. D., & Snaith, H. J. (2015). Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology, 10(5), 391–402. https://doi.org/10.1038/nnano.2015.90
-
Swanepoel, R. (1983). Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E: Scientific Instruments, 16(12), 1214–1222. https://doi.org/10.1088/0022-3735/16/12/023
-
Tang, M., Barrit, D., Munir, R., Li, R., Barbé, J. M., Smilgies, D., Del Gobbo, S., Anthopoulos, T. D., & Amassian, A. (2019). Bismuth-based perovskite-inspired solar cells: In situ diagnostics reveal similarities and differences in the film formation of bismuth- and lead-based films. Solar: Rapid Research Letters, 3(2), 1800305. https://doi.org/10.1002/solr.201800305
-
Tauc, J. (1974). Optical properties of solids. In F. Abeles (Ed.), Optical Properties of Solids (pp. 277–301). North-Holland.
-
Zhou, K., Qi, B., Liu, Z., Wang, X., Sun, Y., & Zhang, L. (2024). Advanced organic–inorganic hybrid materials for optoelectronic applications. Advanced Functional Materials, 34(52), 2411671. https://doi.org/10.1002/adfm.202411671
Fabrication of Methylammonium Bismuth Iodide Thin Films by Flash Evaporation and Co-Evaporation Methods: Comparison of Structural and Optical Properties
Yıl 2025,
Cilt: 16 Sayı: 2, 71 - 78, 29.12.2025
Gökhan Yılmaz
,
Asuman Koçu
Öz
In this study, lead-free perovskite material (CH3NH3)3Bi2I9 (MA3Bi2I9) thin films were fabricated using two different physical vapor deposition techniques: flash evaporation and co-evaporation. The structural, morphological, and optical properties of the fabricated films were thoroughly characterized, and the effects of the deposition methods on film quality were comparatively evaluated. The crystal structure was analyzed by X-ray diffraction (XRD), surface morphology by scanning electron microscopy (SEM), and optical properties by UV-Vis spectroscopy. The results demonstrated that both methods are capable of producing optically active MA3Bi2I9 thin films; however, films produced by flash evaporation exhibited a denser, more homogeneous structure with superior optical absorption performance. The direct band gap was determined to be 1.89 eV for the co-evaporation method and 1.91 eV for the flash evaporation method, while the indirect band gap was calculated as 1.78 eV for both. These findings indicate that the flash evaporation technique offers significant advantages in the fabrication of lead-free MA3Bi2I9 perovskite thin films and holds potential for high-performance optoelectronic device applications.
Proje Numarası
0772-YL-21
Kaynakça
-
Babayigit, A., Ethirajan, A., Müller, M., & Conings, B. (2016). Toxicity of organometal halide perovskite solar cells. Nature Materials, 15(3), 247–251. https://doi.org/10.1038/nmat4572
-
Chin, X. Y., Cortecchia, D., Yin, J., Bruno, A., & Soci, C. (2015). Lead iodide perovskite light-emitting field-effect transistor. Nature Communications, 6, 8383. https://doi.org/10.1038/ncomms8383
-
Cullity, B. D., & Stock, S. R. (2001). Elements of X-ray diffraction (3rd ed.). Pearson Education.
-
Deng, Y., Peng, E., Shao, Y., Xiao, Z., Dong, Q., & Huang, J. (2015). Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science, 8(5), 1544–1550. https://doi.org/10.1039/c4ee03907f
-
Guo, Z., Manser, J. S., Wan, Y., Kamat, P. V., & Huang, L. (2015). Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nature Communications, 6, 8471. https://doi.org/10.1038/ncomms8471
-
Hutter, E. M., Eperon, G. E., Stranks, S. D., & Savenije, T. J. (2015). Charge carriers in planar and meso-structured organic-inorganic perovskites: Mobilities, lifetimes, and concentrations of trap states. The Journal of Physical Chemistry Letters, 6(15), 3082–3090. https://doi.org/10.1021/acs.jpclett.5b01361
-
Kim, G. Y., Kim, K., Kim, H. J., Jung, H. S., Jeon, I., & Lee, J. W.(2023). Sustainable and environmentally viableperovskite solar cells. EcoMat, 5(4), e12319.https://doi.org/10.1002/eom2.12319
-
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050–6051. https://doi.org/10.1021/ja809598r
-
Kong, W., Ye, Z., Qi, Z., Zhang, B., Wang, M., Yang, X., … Wu, H.(2017). Nontoxic (CH₃NH₃)₃Bi₂I₉ perovskite solarcells. RSC Advances, 7(13), 7683–7687.https://doi.org/10.1039/C7RA04924B
-
Li, F., Ma, C., Wang, H., Hu, W., Yu, W., Sheikh, A. D., & Wu, T.(2015). Ambipolar solution-processed hybridperovskite phototransistors. Nature Communications, 6, 8238. https://doi.org/10.1038/ncomms9238
-
Lian, Z., Yan, Q., Gao, T., Ding, J., Lv, Q., Ning, C., Li, Q., & Sun, J. L. (2016). Perovskite CH₃NH₃PbI₃(Cl) single crystals: Rapid solution growth, unparalleled crystalline quality, and low trap density toward 10⁸ cm⁻³. Journal of the American Chemical Society, 138(30), 9409–9412. https://doi.org/10.1021/jacs.6b05683
-
Lyu, M., Yun, J. H., Cai, M., Jiao, Y., & Wang, Q. (2016). Organic–inorganic bismuth(III)‐based material: A lead‐free, air‐stable and solution‐processable light absorber beyond organolead perovskites. Nano Research, 9(3), 692–702. https://doi.org/10.1007/s12274-015-0948-y
-
Maiti, A., Paul, G., Bhunia, H., & Pal, A. J. (2019). Band-edges of bismuth-based ternary halide perovskites (A₃Bi₂I₉) through scanning tunneling spectroscopy vis-à-vis impact of defects in limiting the performance of solar cells. Solar Energy Materials and Solar Cells, 200, 109941. https://doi.org/10.1016/j.solmat.2019.109941
-
Mei, Y., Zhang, C., Vardeny, Z. V., & Jurchescu, O. D. (2015). Electrostatic gating of hybrid halide perovskite field-effect transistors: Balanced ambipolar transport at room-temperature. MRS Communications, 5(2), 297–301.https://doi.org/10.1557/mrc.2015.21
-
Momblona, C., Kanda, H., Sutanto, A. A., Mensi, M., Roldán-Carmona, C., & Nazeeruddin, M. K. (2020). Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. Scientific Reports,10(1), 67606. https://doi.org/10.1038/s41598-020-67606-1
-
Motta, C., El-Mellouhi, F., & Sanvito, S. (2015). Charge carrier mobility in hybrid halide perovskites. Scientific Reports, 5, 12746. https://doi.org/10.1038/srep12746
-
National Renewable Energy Laboratory. (2024, December 25). Best research-cell efficiency chart. U.S. Department of Energy. https://www.nrel.gov/pv/cell-efficiency.html
-
Oga, H., Saeki, A., Ogomi, Y., Hayase, S., & Seki, S. (2014). Improved understanding of the electronic and energetic landscapes of perovskite solar cells: High local charge carrier mobility, reduced recombination, and extremely shallow traps. Journal of the American Chemical Society, 136(39), 13818–13825. https://doi.org/10.1021/ja506936f
-
Park, B. W., Philippe, B., Zhang, X., Rensmo, H., Boschloo, G., & Johansson, E. M. (2015). Bismuth based hybrid perovskites A₃Bi₂I₉ (A: methylammonium or cesium) for solar cell application. Advanced Materials, 27(43), 6806–6813. https://doi.org/10.1002/adma.201501978
-
Rani, M., Khan, M. M., Numan, A., Khalid, M., Abbas, S. M., Iqbal, M., & Mansoor, M. A. (2025). Breaking barriers: Addressing challenges in perovskite solar cell development. Journal of Alloys and Compounds, 1010, 177648. https://doi.org/10.1016/j.jallcom.2024.177648
-
Román-Vázquez, M., Vidyasagar, C. C., Muñoz-Flores, B. M., & Jiménez-Pérez, V. M. (2020). Recent advances on synthesis and applications of lead- and tin-free perovskites. Journal of Alloys and Compounds, 835, 155112. https://doi.org/10.1016/j.jallcom.2020.155112
-
Stranks, S. D., & Snaith, H. J. (2015). Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology, 10(5), 391–402. https://doi.org/10.1038/nnano.2015.90
-
Swanepoel, R. (1983). Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E: Scientific Instruments, 16(12), 1214–1222. https://doi.org/10.1088/0022-3735/16/12/023
-
Tang, M., Barrit, D., Munir, R., Li, R., Barbé, J. M., Smilgies, D., Del Gobbo, S., Anthopoulos, T. D., & Amassian, A. (2019). Bismuth-based perovskite-inspired solar cells: In situ diagnostics reveal similarities and differences in the film formation of bismuth- and lead-based films. Solar: Rapid Research Letters, 3(2), 1800305. https://doi.org/10.1002/solr.201800305
-
Tauc, J. (1974). Optical properties of solids. In F. Abeles (Ed.), Optical Properties of Solids (pp. 277–301). North-Holland.
-
Zhou, K., Qi, B., Liu, Z., Wang, X., Sun, Y., & Zhang, L. (2024). Advanced organic–inorganic hybrid materials for optoelectronic applications. Advanced Functional Materials, 34(52), 2411671. https://doi.org/10.1002/adfm.202411671