BibTex RIS Kaynak Göster

Demiryolu Üstyapısında Balast Kirliliği

Yıl 2015, Cilt: 6 Sayı: 1, 11 - 17, 20.12.2015

Öz

Türkiye’deki şehirlerarası demiryolu hatlarının hemen hemen tamamı balastlı üstyapı niteliğindedir. Granit, bazalt, kireçtaşı, yüksek fırın cürufu, kırılmış kaya ya da granüle çakıl balast olarak kullanılmaktadır. Zamanla balast agregalarının arasına ince taneli agregaların, metal tozlarının ve kömür tozlarının girerek balastın boşluklu yapısını bozmasına “Balast kirliliği” denilmektedir. Balast agregasındaki bu kirlilik kritik bir eşiğe ulaştığı zaman balastın yapısal bütünlüğü bozulmakta ve drenaj yeteneği ve esnekliği kaybolmaktadır. Bu durum demiryolu üstyapısının stabilitesini bozmakta ve hatta demiryolu araçlarında deraymana (raydan çıkmaya) sebep olmaktadır. Son 5 yıl içinde Türkiye’de gerçekleştirilen demiryolu yük taşımacılığına baktığımızda, toplam 25,422 milyon-ton yükün yaklaşık %35’i balast kirliliğine sebep olan yüklerden (kömür, linyit ve kok gibi katı mineral yakıtlar, demir cevheri ve metal atıkları) oluşmaktadır. Dolayısıyla emniyetli, ekonomik ve sürdürülebilir bir demiryolu taşımacılığı için büyük öneme sahip olan balast kirliliği konusu bu çalışmada etraflıca incelenmiştir. 

Kaynakça

  • Anbazhaga, P., B. Inraratna, C. Rujikiatkamjorn, and L. Su. (2010). “Using a seismic survey to measure the shear modulus of clean and fouled ballast.” Geomechanics and Geoengineering: An International Journal, 5, no. 2: 117-126.
  • Arlı, V., (2002), Demiryolu Mühendisliği, V.A. Profillidis Railway Engineering – Çeviri, İBB, Ulaşım A.Ş., İstanbul.
  • Coenraad Esveld, (2001). Modern Railway Track, Delft University of Technology, MRT Productions.
  • Demiryolları Genel Teknik Şartnamesi (2007). Malzeme, Yapım, Kontrol, Bakım-Onarım.
  • Dombrow, W., H. Huang, and E. Tutumluer. (2009). Comparison of coal dust fouled railroad ballast behavior, granite vs. limestone. In E. Tutumluer and I. Al-Qadi (Eds.), Bearing Capacity of Roads, Railways and Airfields. 8th International Conference (BCR2A'09), Volume 2, Champaign, IL, pp. 1349.
  • Erel, A., Dündar, S., (2005). Derayman Olaylarının Muhtelif Nedenleri ve Derayman Riskini Azaltmak için Alınacak Önlemler, 6. Ulaştırma Kongresi, İTÜ İstanbul.
  • Hay, W.W., H.C. Peterson, D.E. Plotkin, and P.T. Bakas, (1997). “Lateral Stability of Ballast,” Report for FRA, DOT-FR-30038, Washington, D.C.
  • Hussaini, S. K Karimullah., Indraratna, B. & Vinod, J. S. (2012). Performance of Geosynthetically-reinforced Rail Ballast in Direct Shear Conditions. In G. A. Narsilio, A. Arulrajah & J. Kodikara (Eds.), 11th Australia - New Zealand Conference on Geomechanics: Ground Engineering in a Changing World, Australia, pp. 1268-1273.
  • Imad L. Al-Qadi, Wei Xie, Douglas L. Jones and Roger Roberts, (2010). “Development of a time–frequency approach to quantify railroad ballast fouling condition usingultra-wide band ground-penetrating radar data”, International Journal of Pavement Engineering Vol. 11, No. 4, pp. 269–279.
  • Indraratna, B., Salim, W., Lonescu, D. and Christie D., (2001). Stress-Strain and Degradation Behavior of Railway Ballast Under Static and Dynamic Loading, Based on Large-Scale Triaxial Testing. Faculty of Engineering - Papers.
  • Leng. Z, and I. Al-Qadi. (2010). “Railroad ballast evaluation using ground penetrating radar: Laboratory investigation and field evaluation.” Transportation Research Record: Journal of the Transportation Research Bord. 2159: 110-117.
  • Li, D. and D. Davis. (2005). “Transition of Railroad Bridge Approaches.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 11, pp. 1392–1398
  • Lim, W. L. (2004) Mechanics of railway ballast behaviour. PhD thesis, University of Nottingham.
  • McDowell, G., W. Lim, A. Collop, R. Armitage, and N. Thom. (2005). Laboratory simulation of train loading and tamping on ballast. Proceedings of the Institution of Civil Engineers Transport 158 (2), pp. 89-95.
  • Roberts, R., Rudy, J., Qadi, I.A., Tutumluer, E., Boyle, J. (2006). Railroad Ballast Fouling Detection Using Ground Penetrating Radar – A New Approach Based on Scattering from Voids, ECNDT 2006 Symposium, Berlin.
  • Selig E. T. and Waters, J. M. (1994). “Track Geotechnology and Substructure Management”, Thomas Telford, 446 p.
  • Sözal, S. Sırrı, (2005). Yol Bilgisi, TCDD Eskişehir Eğitim Merkezi Yayını.
  • Sparrow, R.W., (1976). A Repeated Load Biaxial Shear Box For Tests on Railway Ballast, Proceedings of the Second Seminar on the Behavior of Granular Materials Under Repeated Loading, University of Nottingham.
  • T.C. Devlet Demiryolları 2007 – 2011 İstatistik Yıllığı, Devlet Demiryolları İşletmesi Genel Müdürlüğü Ankara, TCDD Yayın No: 2012-4.
  • Tennakoon, N. C., (2012). Geotechnical Study of Engineering Behaviour of Fouled Ballast,, University of Wollongong, PhD Thesis, 257 p.
  • TS 7043 EN 13450, (2004). Demiryolu Balastlari için Agregalar, Türk Standartları Enstitüsü, Ankara.
  • Tutumluer, E., Dawson A., (2004). Mechanical Laboratory Testing Methods for Compacted Aggregate, in TRB-2004 Workshop - Describing Aggregate Behavior for Today’s Pavements.
  • Tutumluer, E., Dombrow, W., Huang, H., (2008). Laboratory Characterization of Coal Dust Fouled Ballast Behavior AREMA 2008 Annual Conference & Exposition, Salt Lake City, UT.
  • Tutumluer, E., Huang, H., and Bian, X. (2012). Geogrid-Aggregate Interlock Mechanism Investigated through Aggregate Imaging-Based Discrete Element Modeling Approach. Int. J. Geomech., 12(4), pp. 391–398.
Yıl 2015, Cilt: 6 Sayı: 1, 11 - 17, 20.12.2015

Öz

Kaynakça

  • Anbazhaga, P., B. Inraratna, C. Rujikiatkamjorn, and L. Su. (2010). “Using a seismic survey to measure the shear modulus of clean and fouled ballast.” Geomechanics and Geoengineering: An International Journal, 5, no. 2: 117-126.
  • Arlı, V., (2002), Demiryolu Mühendisliği, V.A. Profillidis Railway Engineering – Çeviri, İBB, Ulaşım A.Ş., İstanbul.
  • Coenraad Esveld, (2001). Modern Railway Track, Delft University of Technology, MRT Productions.
  • Demiryolları Genel Teknik Şartnamesi (2007). Malzeme, Yapım, Kontrol, Bakım-Onarım.
  • Dombrow, W., H. Huang, and E. Tutumluer. (2009). Comparison of coal dust fouled railroad ballast behavior, granite vs. limestone. In E. Tutumluer and I. Al-Qadi (Eds.), Bearing Capacity of Roads, Railways and Airfields. 8th International Conference (BCR2A'09), Volume 2, Champaign, IL, pp. 1349.
  • Erel, A., Dündar, S., (2005). Derayman Olaylarının Muhtelif Nedenleri ve Derayman Riskini Azaltmak için Alınacak Önlemler, 6. Ulaştırma Kongresi, İTÜ İstanbul.
  • Hay, W.W., H.C. Peterson, D.E. Plotkin, and P.T. Bakas, (1997). “Lateral Stability of Ballast,” Report for FRA, DOT-FR-30038, Washington, D.C.
  • Hussaini, S. K Karimullah., Indraratna, B. & Vinod, J. S. (2012). Performance of Geosynthetically-reinforced Rail Ballast in Direct Shear Conditions. In G. A. Narsilio, A. Arulrajah & J. Kodikara (Eds.), 11th Australia - New Zealand Conference on Geomechanics: Ground Engineering in a Changing World, Australia, pp. 1268-1273.
  • Imad L. Al-Qadi, Wei Xie, Douglas L. Jones and Roger Roberts, (2010). “Development of a time–frequency approach to quantify railroad ballast fouling condition usingultra-wide band ground-penetrating radar data”, International Journal of Pavement Engineering Vol. 11, No. 4, pp. 269–279.
  • Indraratna, B., Salim, W., Lonescu, D. and Christie D., (2001). Stress-Strain and Degradation Behavior of Railway Ballast Under Static and Dynamic Loading, Based on Large-Scale Triaxial Testing. Faculty of Engineering - Papers.
  • Leng. Z, and I. Al-Qadi. (2010). “Railroad ballast evaluation using ground penetrating radar: Laboratory investigation and field evaluation.” Transportation Research Record: Journal of the Transportation Research Bord. 2159: 110-117.
  • Li, D. and D. Davis. (2005). “Transition of Railroad Bridge Approaches.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 11, pp. 1392–1398
  • Lim, W. L. (2004) Mechanics of railway ballast behaviour. PhD thesis, University of Nottingham.
  • McDowell, G., W. Lim, A. Collop, R. Armitage, and N. Thom. (2005). Laboratory simulation of train loading and tamping on ballast. Proceedings of the Institution of Civil Engineers Transport 158 (2), pp. 89-95.
  • Roberts, R., Rudy, J., Qadi, I.A., Tutumluer, E., Boyle, J. (2006). Railroad Ballast Fouling Detection Using Ground Penetrating Radar – A New Approach Based on Scattering from Voids, ECNDT 2006 Symposium, Berlin.
  • Selig E. T. and Waters, J. M. (1994). “Track Geotechnology and Substructure Management”, Thomas Telford, 446 p.
  • Sözal, S. Sırrı, (2005). Yol Bilgisi, TCDD Eskişehir Eğitim Merkezi Yayını.
  • Sparrow, R.W., (1976). A Repeated Load Biaxial Shear Box For Tests on Railway Ballast, Proceedings of the Second Seminar on the Behavior of Granular Materials Under Repeated Loading, University of Nottingham.
  • T.C. Devlet Demiryolları 2007 – 2011 İstatistik Yıllığı, Devlet Demiryolları İşletmesi Genel Müdürlüğü Ankara, TCDD Yayın No: 2012-4.
  • Tennakoon, N. C., (2012). Geotechnical Study of Engineering Behaviour of Fouled Ballast,, University of Wollongong, PhD Thesis, 257 p.
  • TS 7043 EN 13450, (2004). Demiryolu Balastlari için Agregalar, Türk Standartları Enstitüsü, Ankara.
  • Tutumluer, E., Dawson A., (2004). Mechanical Laboratory Testing Methods for Compacted Aggregate, in TRB-2004 Workshop - Describing Aggregate Behavior for Today’s Pavements.
  • Tutumluer, E., Dombrow, W., Huang, H., (2008). Laboratory Characterization of Coal Dust Fouled Ballast Behavior AREMA 2008 Annual Conference & Exposition, Salt Lake City, UT.
  • Tutumluer, E., Huang, H., and Bian, X. (2012). Geogrid-Aggregate Interlock Mechanism Investigated through Aggregate Imaging-Based Discrete Element Modeling Approach. Int. J. Geomech., 12(4), pp. 391–398.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Altan Yılmaz

Yayımlanma Tarihi 20 Aralık 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 6 Sayı: 1

Kaynak Göster

APA Yılmaz, A. (2015). Demiryolu Üstyapısında Balast Kirliliği. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 11-17.