Derleme
BibTex RIS Kaynak Göster

µc-Si: H Thin Film Materials and Metastability Effects

Yıl 2017, Cilt: 8 Sayı: 1, 46 - 55, 29.03.2017

Öz

Hydrogenated
Microcrystalline Silicon thin film materials (µc-Si:H) are much more preferable
material group than Single Crystalline Silicon (c-Si) and Hydrogenated
Amorphous Silicon (a-Si:H) due to their optoelectronic specification, easy and
cheap production techniques. New application areas of µc-Si:H have been
improved with concurrently production technology improvement. Diode, Sensors,
TFT, Photovoltaic and Heterojunction applications are examples of these
improvements. Depending on these production improvement, high quality µc-Si:H
can be produced. Therefore, these improvements draw attention of scientists
regarding production of high quality electrical materials and their application
areas. However; µc-Si:H materials have electronic metastability problems after
production. Researchers have been working on solving this metastability problem
of µc-Si:H for since 1983. Unfortunately, ultimate solution of metastability
problem for µc-Si:H material has not been revealed until now. Thus, in this
study, µc-Si:H thin films production, crystallographic structure, electronic
structure, optical and electrical specification of µc-Si:H thin film
chronologically have been analyzed through a detailed literature review and
findings have been investigated through the perspective of metastability
problem.

Kaynakça

  • Brüggemann, R., & Souffi, N. (2006). Metastable dark and photoconductive properties of microcrystalline silicon. Journal of Non-Crystalline Solids, 352(9-20), 1079–1082. http://doi.org/10.1016/j.jnoncrysol.2005.11.089
  • Finger, F., Carius, R., Dylla, T., Klein, S., Okur, S., & Günes, M. (2003). Stability of microcrystalline silicon for thin film solar cell applications. IEE Proceedings - Circuits, Devices and Systems, 150(4), 300. http://doi.org/10.1049/ip-cds:20030636
  • Finger, F., Hapke, P., Luysberg, M., Carius, R., Wagner, H., & Scheib, M. (1994). Improvement of grain size and deposition rate of microcrystalline silicon by use of very high frequency glow discharge. Applied Physics Letters, 65(20), 2588. http://doi.org/10.1063/1.112604
  • Finger, F., Müller, J., Malten, C., & Wagner, H. (1998). Electronic states in hydrogenated microcrystalline silicon. Philosophical Magazine Part B, 77(3), 805–830. http://doi.org/10.1080/13642819808214836
  • Günes, M., Cansever, H., Yilmaz, G., Smirnov, V., Finger, F., & Brüggemann, R. (2012). Metastability effects in hydrogenated microcrystalline silicon thin films investigated by the dual beam photoconductivity method. Journal of Non-Crystalline Solids, 358(17), 2074–2077. http://doi.org/10.1016/j.jnoncrysol.2012.01.063
  • Maissel, L. I., and Clang, R., (eds.), Handbook of Thin Film Technology, McGraw-Hill, New York (1970)
  • Matsuda, A. (1983). Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma. Journal of Non-Crystalline Solids, 59-60(PART 2), 767–774. http://doi.org/10.1016/0022-3093(83)90284-3
  • Matsumura, H. (1991). Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (cat-CVD) Method. Japanese Journal of Applied Physics, 30(Part 2, No. 8B), L1522–L1524. http://doi.org/10.1143/JJAP.30.L1522
  • Meier, J., Flückiger, R., Keppner, H., & Shah, a. (1994). Complete microcrystalline p-i-n solar cell—Crystalline or amorphous cell behavior? Applied Physics Letters, 65(7), 860. http://doi.org/10.1063/1.112183
  • S: Reynolds, V.Smirnov, F.Finger, C.Main, R. C. (2005). TRANSPORT AND INSTABILITIES IN MICROCRYSTALLINE SILICON FILMS, 7(1), 91–98.
  • Shah, A., Meier, J., Wyrsch, N., Kroll, U., Droz, C., & Graf, U. (2003). Material and solar cell research in microcrystalline silicon. Solar Energy Materials and Solar Cells, 78, 469–491. http://doi.org/10.1016/S0927-0248(02)00448-8
  • Shah,A. Thin Film Silicon Solar Cells,Crcpress(2010) ISBN 9781439808108
  • Smirnov, V., Reynolds, S., Finger, F., Main, C., & Carius, R. (2004). The Influence of Light-Soaking and Atmospheric Adsorption on Microcrystalline Silicon Films studied by Coplanar Transient Photoconductivity. MRS Proceedings, 808, A9.11. http://doi.org/10.1557/PROC-808-A9.11
  • Smirnov, V., Reynolds, S., Main, C., Finger, F., & Carius, R. (2004). Aging effects in microcrystalline silicon films studied by transient photoconductivity. Journal of Non-Crystalline Solids, 338-340, 421–424. http://doi.org/10.1016/j.jnoncrysol.2004.03.010
  • Staebler, D. L., & Wronski, C. R. (1977). Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters, 31(4), 292. http://doi.org/10.1063/1.89674
  • Usui, S., & Kikuchi, M. (1979). Properties of heavily doped GDSi with low resistivity. Journal of Non-Crystalline Solids, 34(1), 1–11. http://doi.org/10.1016/0022-3093(79)90002-4
  • Veprek, S., Iqbal, Z., Kuhne, R. O., Capezzuto, P., Sarott, F., & Gimzewski, J. K. (1983). Properties of microcrystalline silicon. IV. Electrical conductivity, electron spin resonance and the effect of gas adsorption. Journal of Physics C: Solid State Physics, 16(32), 6241–6262. http://doi.org/10.1088/0022-3719/16/32/015
  • Vepřek, S., & Mareček, V. (1968). The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport. Solid-State Electronics, 11(7), 683–684. http://doi.org/10.1016/0038-1101(68)90071-3
  • Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., … Wagner, H. (2000). Intrinsic microcrystalline silicon: A new material for photovoltaics. Solar Energy Materials and Solar Cells, 62(1-2), 97–108. http://doi.org/10.1016/S0927-0248(99)00140-3
  • Yilmaz, G., Cansever, H., Sagban, H. M., Günes, M., Smirnov, V., Finger, F., & Brüggemann, R. (2014). Reversible and irreversible effects after oxygen exposure in thick (>1 μm) silicon films deposited by VHF-PECVD on glass substrates investigated by dual beam photoconductivity 1. Canadian Journal of Physics, 92(7/8), 778–782. http://doi.org/10.1139/cjp-2013-0638

µc-Si:H İnce Film Malzemeler ve Metastabilite Etkileri

Yıl 2017, Cilt: 8 Sayı: 1, 46 - 55, 29.03.2017

Öz

Hidrojenlendirilmiş mikrokristal silisyum (µc-Si:H)
ince film malzemeler sahip oldukları optoelektronik özellikleri, üretim
sürecinin kolaylığı ve ucuzluğu açısından tek kristal silisyum (c-Si) ve
Hidrojenlendirilmiş amorf silisyuma (a-Si:H) göre daha çok tercih edilen bir
malzeme grubudur. Özellikle malzeme üretim teknolojilerinin gelişmesi ile µc-Si:H
ince film malzemelerin kullanım alanları da gelişmiş ve gelişmektedir. Diyot,
Sensör, TFT, Fotovoltaik ve Heteroeklem uygulamarı bu gelişmeye örneklerdir. Bu
gelişime bağlı olarak yüksek elektronik kalitede (State of Art) malzemelerin
üretilmesi ve uygulama alanları konusunda araştırmacıların dikkatini
çekmektedir. Ancak µc-Si:H ince film malzemeler üretim sonrası elektronik
olarak kararsızlık (metastabilite) problemi bulunmaktadır. Araştırmacılar
metastabilite probleminin 1983 yılında belirlenmesinden beri hala çözümü için
çalışıyorlar. Maalesef µc-Si:H ince film malzemelerin metastabilite problemi
için nihai bir çözümü günümüze kadar bulunamamıştır. Bu nedenle bu çalışmada µc-Si:H
ince film malzemenin üretimi, kristalografik yapısı, elektronik yapısı,
optiksel ve elektriksel özellikleri detaylı bir literatür araştırması ve
bulguları ile metastabilite problemi bakış açısından incelenmiştir.

Kaynakça

  • Brüggemann, R., & Souffi, N. (2006). Metastable dark and photoconductive properties of microcrystalline silicon. Journal of Non-Crystalline Solids, 352(9-20), 1079–1082. http://doi.org/10.1016/j.jnoncrysol.2005.11.089
  • Finger, F., Carius, R., Dylla, T., Klein, S., Okur, S., & Günes, M. (2003). Stability of microcrystalline silicon for thin film solar cell applications. IEE Proceedings - Circuits, Devices and Systems, 150(4), 300. http://doi.org/10.1049/ip-cds:20030636
  • Finger, F., Hapke, P., Luysberg, M., Carius, R., Wagner, H., & Scheib, M. (1994). Improvement of grain size and deposition rate of microcrystalline silicon by use of very high frequency glow discharge. Applied Physics Letters, 65(20), 2588. http://doi.org/10.1063/1.112604
  • Finger, F., Müller, J., Malten, C., & Wagner, H. (1998). Electronic states in hydrogenated microcrystalline silicon. Philosophical Magazine Part B, 77(3), 805–830. http://doi.org/10.1080/13642819808214836
  • Günes, M., Cansever, H., Yilmaz, G., Smirnov, V., Finger, F., & Brüggemann, R. (2012). Metastability effects in hydrogenated microcrystalline silicon thin films investigated by the dual beam photoconductivity method. Journal of Non-Crystalline Solids, 358(17), 2074–2077. http://doi.org/10.1016/j.jnoncrysol.2012.01.063
  • Maissel, L. I., and Clang, R., (eds.), Handbook of Thin Film Technology, McGraw-Hill, New York (1970)
  • Matsuda, A. (1983). Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma. Journal of Non-Crystalline Solids, 59-60(PART 2), 767–774. http://doi.org/10.1016/0022-3093(83)90284-3
  • Matsumura, H. (1991). Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (cat-CVD) Method. Japanese Journal of Applied Physics, 30(Part 2, No. 8B), L1522–L1524. http://doi.org/10.1143/JJAP.30.L1522
  • Meier, J., Flückiger, R., Keppner, H., & Shah, a. (1994). Complete microcrystalline p-i-n solar cell—Crystalline or amorphous cell behavior? Applied Physics Letters, 65(7), 860. http://doi.org/10.1063/1.112183
  • S: Reynolds, V.Smirnov, F.Finger, C.Main, R. C. (2005). TRANSPORT AND INSTABILITIES IN MICROCRYSTALLINE SILICON FILMS, 7(1), 91–98.
  • Shah, A., Meier, J., Wyrsch, N., Kroll, U., Droz, C., & Graf, U. (2003). Material and solar cell research in microcrystalline silicon. Solar Energy Materials and Solar Cells, 78, 469–491. http://doi.org/10.1016/S0927-0248(02)00448-8
  • Shah,A. Thin Film Silicon Solar Cells,Crcpress(2010) ISBN 9781439808108
  • Smirnov, V., Reynolds, S., Finger, F., Main, C., & Carius, R. (2004). The Influence of Light-Soaking and Atmospheric Adsorption on Microcrystalline Silicon Films studied by Coplanar Transient Photoconductivity. MRS Proceedings, 808, A9.11. http://doi.org/10.1557/PROC-808-A9.11
  • Smirnov, V., Reynolds, S., Main, C., Finger, F., & Carius, R. (2004). Aging effects in microcrystalline silicon films studied by transient photoconductivity. Journal of Non-Crystalline Solids, 338-340, 421–424. http://doi.org/10.1016/j.jnoncrysol.2004.03.010
  • Staebler, D. L., & Wronski, C. R. (1977). Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters, 31(4), 292. http://doi.org/10.1063/1.89674
  • Usui, S., & Kikuchi, M. (1979). Properties of heavily doped GDSi with low resistivity. Journal of Non-Crystalline Solids, 34(1), 1–11. http://doi.org/10.1016/0022-3093(79)90002-4
  • Veprek, S., Iqbal, Z., Kuhne, R. O., Capezzuto, P., Sarott, F., & Gimzewski, J. K. (1983). Properties of microcrystalline silicon. IV. Electrical conductivity, electron spin resonance and the effect of gas adsorption. Journal of Physics C: Solid State Physics, 16(32), 6241–6262. http://doi.org/10.1088/0022-3719/16/32/015
  • Vepřek, S., & Mareček, V. (1968). The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport. Solid-State Electronics, 11(7), 683–684. http://doi.org/10.1016/0038-1101(68)90071-3
  • Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., … Wagner, H. (2000). Intrinsic microcrystalline silicon: A new material for photovoltaics. Solar Energy Materials and Solar Cells, 62(1-2), 97–108. http://doi.org/10.1016/S0927-0248(99)00140-3
  • Yilmaz, G., Cansever, H., Sagban, H. M., Günes, M., Smirnov, V., Finger, F., & Brüggemann, R. (2014). Reversible and irreversible effects after oxygen exposure in thick (>1 μm) silicon films deposited by VHF-PECVD on glass substrates investigated by dual beam photoconductivity 1. Canadian Journal of Physics, 92(7/8), 778–782. http://doi.org/10.1139/cjp-2013-0638
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Gökhan Yılmaz

Yayımlanma Tarihi 29 Mart 2017
Kabul Tarihi 28 Mart 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 8 Sayı: 1

Kaynak Göster

APA Yılmaz, G. (2017). µc-Si:H İnce Film Malzemeler ve Metastabilite Etkileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 46-55.