BibTex RIS Kaynak Göster

Autism and cerebellar mutism: A review of the neuroanatomical findings

Yıl 2013, Cilt: 5 Sayı: 2, 57 - 65, 01.08.2013

Öz

Autistic Spectrum Disorder ASD is behaviorally defined syndrome characterized by atypical social interaction, disordered verbal and non-verbal communication, restricted areas of interest and limited imaginative play. The prevalence of ASD is considered to be approximately 4 to 5 per 1000, but numbers differ according to criteria used for diagnosis 1 . Individuals with ASD have three core features; 1. İmpairments of reciprocal social interactions; 2. Abnormal development and use of language; and, 3. Repetitive and ritualized behaviors and a narrow range of interests. In addition to the core features of autism, there are common co-morbid neurological disorders. The prevalence of mental retardation in the autism spectrum is approximately 30%. Epilepsy prevalence associated with autism varies from 5% to 44%. Anxiety and mood disorders are also very common in autism. There is a heterogeneity in the onset of autism. Although some children have signs of development delays between 0-18 months of life, up to 40% of children with ASD initially demonstrate the near-normal developemnt until 18-24 months. As Brunelle et al. says: All the results are converging toward the description of anatomical and functional anomalies in the regions of the so-called “social brain” 2 . Several brain regions such as frontal lobe, the superior temporal cortex, the parietal cortex, and amygdala have been implicated in social behavior. But the recent developments make us think more about the role of cerebellum in ASD. This review presents an overview of the neuroanatomical abnormalities that occur within ASD. We discuss the findings that have advanced our understanding of cerebellar organization in ASD.

Kaynakça

  • Acosta MT, Pearl PL. Imaging data in autism: From structure to malfunction. Semin Pediatr Neurol. 2008;11:205-213.
  • Brunelle F, Bargiacchi A, Chabane N, et al. Bra- in imaging of infantile autism. Arch Pediatr. 2012;19(5):547-550.
  • Courchesne E, Pierce K, Schumann CM, et al. Mapping early brain development in autism. Neuron. 2007;56:399-413.
  • Amaral GD, Schumann CM, Nordahl CW. Neuroanatomy of Autism. Trends in Neuros- ciences. 2008;31:137-145.
  • Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neuronsin au- tism spectrum disorders. Brain Res. 2010;1309: 83-94.
  • Schumann CM, Nordahl CW. Bridging the gap between MRI and postmortem research in au- tism. Brain Res. 2011;1380:175-186.
  • Casanova MF, Buxhoeveden DP, Switala AE, et al. Minicolumnar pathology in autism. Neuro- logy. 2002; 58:428–432.
  • Casanova MF, van Kooten IAJ, Switala AE, et al. Minicolumnar abnormalities in autism. Acta Neuropathol. 2006; 112:287–303.
  • Cheung C, Chua SE, Cheung V, et al. White mat- ter fractional anisotrophy differences and corre- lates of diagnostic symptoms in autism. J Child Psychol Psychiatry. 2009;50(9):1102-1112.
  • Herbert, M.R., Ziegler, D.A., Makris, N., et al. Larger brain and white matter volumes in child- ren with developmental language disorder. De- velopmental Science. 2003;6, F11–F22.
  • Herbert, M.R., Ziegler, D.A., Makris, N, et al. Lo- calization of white matter volume increase in autism and developmental language disorder. Annals of Neurology. 2004;55, 530–540.
  • Ecker C, Suckling J, Deoni SC, et al. Brain ana- tomy and its relationship to behavior in adults with autism spectrum disorder: a multicenter magnetic resonance imaging study. Arch Gen Psychiatry. 2012;69(2):195-209.
  • Hardan, A.Y., Minshew, N.J., Keshavan, M.S. Corpus callosum size in autism. Neurology. 2000;55, 1033–1036.
  • Vidal, C.N., Nicolson, R., De Vito, T.J, et al. Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. Biologi- cal Psychiatry. 2006;60, 218–225.
  • Just MA, Cherkassky VL, Keller TA, et al. Functi- onal and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007;17(4):951- 961.
  • Keller TA, Kana RK, Just MA. A developmental study of the structural integrity of white matter in autism. Neuroreport. 2007;18(1):23-27.
  • Duerden EG, Mak-Fan KM, Taylor MJ, et al. Re- gional differences in grey and white matter in children and adults with autism spectrum di- sorders: an activation likelihood estimate (ALE) meta-analysis. Autism Res. 2012; Vol. 5 (1), pp. 49-66.
  • Shukla DK, Keehn B, Müller RA. Tract-specific analyses of diffusion tensor imaging show wi- despread white matter compromise in autism spectrum disorder. J Child Psychol Psychiatry. 2011;52(3):286-295.
  • Adolphs R. The neurobiology of social recogni- tion. Curr Opin Neurobiol. 2001; 11:231–239.
  • Amaral, D.G. The amygdala, social behavior, and danger detection. Annals of the New York Academy of Sciences. 2003;1000, 337–347.
  • Davis, M., Walker, D.L., Myers, K.M. Role of the amygdala in fear extinction measured with po- tentiated startle. Annals of the New York Aca- demy of Sciences. 2003;985, 218–232.
  • Deeley, Q., Daly, E.M., Surguladze, S, et al. An event related functional magnetic resonance imaging study of facial emotion processing in Asperger syndrome. Biological Psychiatry. 2007;62, 207–217.
  • Cody, H., Pelphrey, K., Piven, J. Structural and functional magnetic resonance imaging of au- tism. International Journal of Developmental Neurosciences. 2002;20, 421–438.
  • Juranek J, Filipek PA, Berenji GR, et al. Associ- ation between amygdala volume and anxiety level: magnetic resonance imaging (MRI) study in autistic children. J Child Neurol. 2006; 21:1051–1058.
  • Munson J, Dawson G, Abbott R, et al. Amygda- lar volume and behavioral development in au- tism. Arch Gen Psychiatry. 2006; 63:686–669.
  • Schumann CM, Hamstra J, Goodlin-Jones BL, et al. The amygdala is enlarged in children but not adolescents with autism; the hippocam- pus is enlarged at all ages. J Neurosci. 2004; 24:6392–6401.
  • Murphy CM, Deeley Q, Daly EM, et al. Anatomy and aging of the amygdala and hippocampus in autism spectrum disorder: an in vivo magne- tic resonance imaging study of Asperger synd- rome. Autism Res. 2012 Feb;5(1):3-12.
  • Brodmann G. Brodmann’s Localisation in the cerebral cortex: the principles of comparative localisation in the cerebral cortex based on the cytoarchitectonics. New York: Springer; 2006.
  • Gervais H, Belin P, Boddaert N, et al. Abnormal cortical voice processing in autism. Nat Neuros- ci. 2004;7:801 - 802.
  • Boddaert N, Chabane N, Gervais H, et al. Superi- or temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage. 2004;23:364 - 369.
  • McAlonan GM, Cheung V, Cheung C, et al. Mapping the brain in autism. A voxel-based MRI study of volumetric differences and inter- correlations in autism. Brain. 2005;128:268 - 276.
  • Redcay E, Courchesne E. Deviant functional magnetic resonance imaging patterns of brain activity to speech in 2–3-year-old children with autism spectrum disorder. Biol Psychiatry. 2008; 64:589–598.
  • Haxby, J.V., Hoffman, E.A., Gobbini, M.I., Hu- man neural systems for face recognition and social communication. Biological Psychiatry. 2002; 51, 59–67.
  • Rojas DC, Peterson E, Winterrowd E, et al. Regi- onal gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry. 2006;6:56.
  • Pierce K, Muller RA, Ambrose J, et al. Face pro- cessing occurs outside the fusiform ‘face area’ in autism: evidence from functional MRI. Brain. 2001;124:2059 - 2073.
  • Pierce K. Early functional brain development in autism and the promise of sleep fMRI. Brain Res. 2010; 1380:162–174.
  • Haznedar MM, Buchsbaum MS, Metzger M, et al. Anterior cingulate gyrus volume and glucose metabolism in autistic disorder. Am J Psychiatry. 1997;154(8):1047–1050.
  • Schmitz, N., Rubia, K., van Amelsvoort, et al. Neural correlates of reward in autism. British Journal of Psychiatry. 2008;192, 19–24.
  • Simms ML, Kemper TL, Timbie CM, et al. The anterior cingulate cortex in autism: heteroge- neity of qualitative and quantitative cytoarchi- tectonic features suggests possible subgroups. Acta Neuropathol. 2009; 118:673–684.
  • Noriuchi M, Kikuchi Y, Yoshiura T, et al. Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder. Brain Res. 2010; 1362:141–149.
  • Ohnishi T, Matsuda H, Hashimoto T, et al. Ab- normal regional cerebral blood flow in childho- od autism. Brain. 2000;123(Pt 9):1838—44.
  • Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31:137–145.
  • Scott JA, Schumann CM, Goodlin-Jones BL, et al. A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder. Autism Res. 2009;2:246–257.
  • Piven J, Saliba K, Bailey J, et al. An MRI study of autism: the cerebellum revisited. Neurology. 1997; 49:546–551.
  • Carper RA, Courchesne E. Inverse correlation betweenfrontal lobe and cerebellum in children with autism. Brain. 2000;123:836–84445.
  • Allen G, Muller RA, Courchesne E. Cerebellar function in autism: functional magnetic reso- nance image activation during a simple motor task. Biol Psychiatry. 2004;56:269 - 278.
  • Martineau J, Andersson F, Barthelemy C, et al. Atypical activation of the mirror neuron system during perception of hand motion in autism. Brain Res. 2010;1320:168 - 175.
  • Quartz SR, Sejnowski TS. The neural basis of cognitive development: a constructivistmani- festo. Behav Brain Sci. 1997;20:537–556.
  • Ritvo ER, Freeman BJ, Scheibel AB, et al. Lower Purkinje cell counts in the cerebella of four au- tistic subjects: initial findings of the UCLA-N- SAC Autopsy Research Report. Am J Psychiatry. 1986;143(7):862 - 866.
  • Catsman-Berrevoets CE, Aarsen FK. The spect- rum of neurobehavioural deficits in the Poste- rior Fossa Syndrome in children after cerebellar tumour surgery. Cortex. 2010; 46:933 - 946.
  • Mei C, Morgan AT. Incidence of mutism, dy- sarthria and dysphagia associated with childho- od posterior fossa tumor. CNS. 2011; 27:1129- 1136.
  • Kupeli S, Yalcın B, Bilginer B, et al. Posterior fossa syndrome after posterior fossa surgery in children with brain tumors. Pediatric Blood and Cancer. 2011; 56:206-210.
  • Korah MP, Esiashvili N, Mazewski CM, et al. In- cidence, risks, and sequelae of posterior fossa syndrome in pediatric medulloblastoma. Int J Radiat Oncol Biol Phys. 2010 May 77:106-112.
  • Wells EM, Walsh KS, Khademian ZP, et al. The cerebellar mutism syndrome and its relation to cerebellar cognitive function and cerebellar cognitive affective disorder. Dev Disabil Res Rev. 2008;14:221-228.
  • Palmer SL, Hassal T, Evankovich K, et al. Neuro- cognitive outcome 12 months following cere- bellar mutism syndrome in pediatric patients with 2010;12:1311-1317. Neuro-Oncology.
  • Morgan AT, Liegeois F, Liederkerke C, et al. Role of cerebellum in fine speech control in chil- dhood: persistent dysarthria after surgical tre- atment fpr posterior fossa tumor. Brain Lang. 2011;11/: 69-76.
  • De Smet HJ, Baillieux H, Wackenier P, et al. Long term cognitive deficits following osterior fossa tumor resection: a neuropsychological and functional neuroimaging follow-up study. Neuropsychology. 2009; 23:694-704.
  • Di Rocco C, Chieffo D, Frassanito P, et al. He- ralding cerebellar mutism: Evidence for pre -surgical language impairment as primary risk factor in posterior fossa surgery. Cerebellum. 2011;Sep;10(3):551 - 562.
  • Patel AJ, Fox BD, Fulkerson DH, et al. The pos- terior reversible encephalopathy syndrome during posterior fossa fossa tumor resection in a child. Case report. J Neurosurg-Pediatrics. 2010;6:377-380.
  • Ozgur BM, Berberian J, Aryan HE, et al. The pathophysiologic mechanism of cerebellar mu- tism. Surg Neurol. 2009;66:18 - 25.
  • Riva D, Giorgi C. The cerebellum contributes to higher functions during development: eviden- ce from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(Pt 5):1051 - 1061.
  • Redcay E. The superior temporal sulcus performs a common function for social and speech per- ception: implications for the emergence of au- tism. Neurosci Biobehav Rev. 2008;32(1):123- 142.

Otizm ve serebellar mutizm: Nöroanatomik bulguların bir derlemesi

Yıl 2013, Cilt: 5 Sayı: 2, 57 - 65, 01.08.2013

Öz

Otistik Spektrum Bozukluğu OSB , atipik sosyal etkileşim, bozulmuş sözel ve sözel olmayan iletişim, ilgi azlığı ve yaratıcı oyunun sınırlanması ile karakterize, davranışsal olarak tanımlanmış bir sendromdur. OSB'nin prevalansının yaklaşık olarak binde 4-5 arasında olduğu düşünülmektedir ama sayılar uygulanan tanı kriterlerine göre değişmektedir 1 . OSB'li olan bireyler 3 temel özelliğe sahiptirler; 1. Karşılıklı etkileşimlerin bozuklukları; 2. Gelişmede ve dil kullanımında anormallik; ve, 3. Tekrarlayıcı ve ritüelize edilmiş davranışlar ve ilgi alanlarının daralmış olması. Otizmin temel özelliklerine ek olarak, tabloyu ağırlaştıran yaygın nörolojik bozukluklar mevcuttur. Otizm spektrumunda mental geriliğin prevalansı yaklaşık olarak %30'dur. Otizm ile ilişkili epilepsinin prevalansı %5 ile %44 arasında değişmektedir. Anksiyete ve duygu durum bozuklukları da otizmde oldukça yaygındır. Otizmin ortaya çıkışında bir heterojenlik mevcuttur. Bazı çocuklar, 0-18 ay arasında gelişme geriliği bulguları gösterirken, OSB'si olanların %40'a kadarı 18-24'üncü aylara kadar normale yakın gelişme gösterirler. Brunelle ve arkadaşlarının belirttiği gibi: Tüm sonuçlar “sosyal beyin” denilen bölgelerin anatomik ve fonksiyonel anormalilerin açıklanmasında birleşmektedirler 2 . Süperior temporal korteks, parietal korteks ve amigdala gibi bazı beyin bölgeleri sosyal davranışla ilişkilidir. Ama son gelişmeler, OSB'de serebellumun rolünü daha fazla düşünmemize yol açmaktadır. Bu derleme OSB dâhilinde görülen nöroanatomik anormalliklerin gözden geçirilmesini sunmaktadır. Burada OSB'de serebellar organizasyonu anlamamıza katkıda bulunan bulguları tartışacağız.

Kaynakça

  • Acosta MT, Pearl PL. Imaging data in autism: From structure to malfunction. Semin Pediatr Neurol. 2008;11:205-213.
  • Brunelle F, Bargiacchi A, Chabane N, et al. Bra- in imaging of infantile autism. Arch Pediatr. 2012;19(5):547-550.
  • Courchesne E, Pierce K, Schumann CM, et al. Mapping early brain development in autism. Neuron. 2007;56:399-413.
  • Amaral GD, Schumann CM, Nordahl CW. Neuroanatomy of Autism. Trends in Neuros- ciences. 2008;31:137-145.
  • Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neuronsin au- tism spectrum disorders. Brain Res. 2010;1309: 83-94.
  • Schumann CM, Nordahl CW. Bridging the gap between MRI and postmortem research in au- tism. Brain Res. 2011;1380:175-186.
  • Casanova MF, Buxhoeveden DP, Switala AE, et al. Minicolumnar pathology in autism. Neuro- logy. 2002; 58:428–432.
  • Casanova MF, van Kooten IAJ, Switala AE, et al. Minicolumnar abnormalities in autism. Acta Neuropathol. 2006; 112:287–303.
  • Cheung C, Chua SE, Cheung V, et al. White mat- ter fractional anisotrophy differences and corre- lates of diagnostic symptoms in autism. J Child Psychol Psychiatry. 2009;50(9):1102-1112.
  • Herbert, M.R., Ziegler, D.A., Makris, N., et al. Larger brain and white matter volumes in child- ren with developmental language disorder. De- velopmental Science. 2003;6, F11–F22.
  • Herbert, M.R., Ziegler, D.A., Makris, N, et al. Lo- calization of white matter volume increase in autism and developmental language disorder. Annals of Neurology. 2004;55, 530–540.
  • Ecker C, Suckling J, Deoni SC, et al. Brain ana- tomy and its relationship to behavior in adults with autism spectrum disorder: a multicenter magnetic resonance imaging study. Arch Gen Psychiatry. 2012;69(2):195-209.
  • Hardan, A.Y., Minshew, N.J., Keshavan, M.S. Corpus callosum size in autism. Neurology. 2000;55, 1033–1036.
  • Vidal, C.N., Nicolson, R., De Vito, T.J, et al. Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. Biologi- cal Psychiatry. 2006;60, 218–225.
  • Just MA, Cherkassky VL, Keller TA, et al. Functi- onal and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007;17(4):951- 961.
  • Keller TA, Kana RK, Just MA. A developmental study of the structural integrity of white matter in autism. Neuroreport. 2007;18(1):23-27.
  • Duerden EG, Mak-Fan KM, Taylor MJ, et al. Re- gional differences in grey and white matter in children and adults with autism spectrum di- sorders: an activation likelihood estimate (ALE) meta-analysis. Autism Res. 2012; Vol. 5 (1), pp. 49-66.
  • Shukla DK, Keehn B, Müller RA. Tract-specific analyses of diffusion tensor imaging show wi- despread white matter compromise in autism spectrum disorder. J Child Psychol Psychiatry. 2011;52(3):286-295.
  • Adolphs R. The neurobiology of social recogni- tion. Curr Opin Neurobiol. 2001; 11:231–239.
  • Amaral, D.G. The amygdala, social behavior, and danger detection. Annals of the New York Academy of Sciences. 2003;1000, 337–347.
  • Davis, M., Walker, D.L., Myers, K.M. Role of the amygdala in fear extinction measured with po- tentiated startle. Annals of the New York Aca- demy of Sciences. 2003;985, 218–232.
  • Deeley, Q., Daly, E.M., Surguladze, S, et al. An event related functional magnetic resonance imaging study of facial emotion processing in Asperger syndrome. Biological Psychiatry. 2007;62, 207–217.
  • Cody, H., Pelphrey, K., Piven, J. Structural and functional magnetic resonance imaging of au- tism. International Journal of Developmental Neurosciences. 2002;20, 421–438.
  • Juranek J, Filipek PA, Berenji GR, et al. Associ- ation between amygdala volume and anxiety level: magnetic resonance imaging (MRI) study in autistic children. J Child Neurol. 2006; 21:1051–1058.
  • Munson J, Dawson G, Abbott R, et al. Amygda- lar volume and behavioral development in au- tism. Arch Gen Psychiatry. 2006; 63:686–669.
  • Schumann CM, Hamstra J, Goodlin-Jones BL, et al. The amygdala is enlarged in children but not adolescents with autism; the hippocam- pus is enlarged at all ages. J Neurosci. 2004; 24:6392–6401.
  • Murphy CM, Deeley Q, Daly EM, et al. Anatomy and aging of the amygdala and hippocampus in autism spectrum disorder: an in vivo magne- tic resonance imaging study of Asperger synd- rome. Autism Res. 2012 Feb;5(1):3-12.
  • Brodmann G. Brodmann’s Localisation in the cerebral cortex: the principles of comparative localisation in the cerebral cortex based on the cytoarchitectonics. New York: Springer; 2006.
  • Gervais H, Belin P, Boddaert N, et al. Abnormal cortical voice processing in autism. Nat Neuros- ci. 2004;7:801 - 802.
  • Boddaert N, Chabane N, Gervais H, et al. Superi- or temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage. 2004;23:364 - 369.
  • McAlonan GM, Cheung V, Cheung C, et al. Mapping the brain in autism. A voxel-based MRI study of volumetric differences and inter- correlations in autism. Brain. 2005;128:268 - 276.
  • Redcay E, Courchesne E. Deviant functional magnetic resonance imaging patterns of brain activity to speech in 2–3-year-old children with autism spectrum disorder. Biol Psychiatry. 2008; 64:589–598.
  • Haxby, J.V., Hoffman, E.A., Gobbini, M.I., Hu- man neural systems for face recognition and social communication. Biological Psychiatry. 2002; 51, 59–67.
  • Rojas DC, Peterson E, Winterrowd E, et al. Regi- onal gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry. 2006;6:56.
  • Pierce K, Muller RA, Ambrose J, et al. Face pro- cessing occurs outside the fusiform ‘face area’ in autism: evidence from functional MRI. Brain. 2001;124:2059 - 2073.
  • Pierce K. Early functional brain development in autism and the promise of sleep fMRI. Brain Res. 2010; 1380:162–174.
  • Haznedar MM, Buchsbaum MS, Metzger M, et al. Anterior cingulate gyrus volume and glucose metabolism in autistic disorder. Am J Psychiatry. 1997;154(8):1047–1050.
  • Schmitz, N., Rubia, K., van Amelsvoort, et al. Neural correlates of reward in autism. British Journal of Psychiatry. 2008;192, 19–24.
  • Simms ML, Kemper TL, Timbie CM, et al. The anterior cingulate cortex in autism: heteroge- neity of qualitative and quantitative cytoarchi- tectonic features suggests possible subgroups. Acta Neuropathol. 2009; 118:673–684.
  • Noriuchi M, Kikuchi Y, Yoshiura T, et al. Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder. Brain Res. 2010; 1362:141–149.
  • Ohnishi T, Matsuda H, Hashimoto T, et al. Ab- normal regional cerebral blood flow in childho- od autism. Brain. 2000;123(Pt 9):1838—44.
  • Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31:137–145.
  • Scott JA, Schumann CM, Goodlin-Jones BL, et al. A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder. Autism Res. 2009;2:246–257.
  • Piven J, Saliba K, Bailey J, et al. An MRI study of autism: the cerebellum revisited. Neurology. 1997; 49:546–551.
  • Carper RA, Courchesne E. Inverse correlation betweenfrontal lobe and cerebellum in children with autism. Brain. 2000;123:836–84445.
  • Allen G, Muller RA, Courchesne E. Cerebellar function in autism: functional magnetic reso- nance image activation during a simple motor task. Biol Psychiatry. 2004;56:269 - 278.
  • Martineau J, Andersson F, Barthelemy C, et al. Atypical activation of the mirror neuron system during perception of hand motion in autism. Brain Res. 2010;1320:168 - 175.
  • Quartz SR, Sejnowski TS. The neural basis of cognitive development: a constructivistmani- festo. Behav Brain Sci. 1997;20:537–556.
  • Ritvo ER, Freeman BJ, Scheibel AB, et al. Lower Purkinje cell counts in the cerebella of four au- tistic subjects: initial findings of the UCLA-N- SAC Autopsy Research Report. Am J Psychiatry. 1986;143(7):862 - 866.
  • Catsman-Berrevoets CE, Aarsen FK. The spect- rum of neurobehavioural deficits in the Poste- rior Fossa Syndrome in children after cerebellar tumour surgery. Cortex. 2010; 46:933 - 946.
  • Mei C, Morgan AT. Incidence of mutism, dy- sarthria and dysphagia associated with childho- od posterior fossa tumor. CNS. 2011; 27:1129- 1136.
  • Kupeli S, Yalcın B, Bilginer B, et al. Posterior fossa syndrome after posterior fossa surgery in children with brain tumors. Pediatric Blood and Cancer. 2011; 56:206-210.
  • Korah MP, Esiashvili N, Mazewski CM, et al. In- cidence, risks, and sequelae of posterior fossa syndrome in pediatric medulloblastoma. Int J Radiat Oncol Biol Phys. 2010 May 77:106-112.
  • Wells EM, Walsh KS, Khademian ZP, et al. The cerebellar mutism syndrome and its relation to cerebellar cognitive function and cerebellar cognitive affective disorder. Dev Disabil Res Rev. 2008;14:221-228.
  • Palmer SL, Hassal T, Evankovich K, et al. Neuro- cognitive outcome 12 months following cere- bellar mutism syndrome in pediatric patients with 2010;12:1311-1317. Neuro-Oncology.
  • Morgan AT, Liegeois F, Liederkerke C, et al. Role of cerebellum in fine speech control in chil- dhood: persistent dysarthria after surgical tre- atment fpr posterior fossa tumor. Brain Lang. 2011;11/: 69-76.
  • De Smet HJ, Baillieux H, Wackenier P, et al. Long term cognitive deficits following osterior fossa tumor resection: a neuropsychological and functional neuroimaging follow-up study. Neuropsychology. 2009; 23:694-704.
  • Di Rocco C, Chieffo D, Frassanito P, et al. He- ralding cerebellar mutism: Evidence for pre -surgical language impairment as primary risk factor in posterior fossa surgery. Cerebellum. 2011;Sep;10(3):551 - 562.
  • Patel AJ, Fox BD, Fulkerson DH, et al. The pos- terior reversible encephalopathy syndrome during posterior fossa fossa tumor resection in a child. Case report. J Neurosurg-Pediatrics. 2010;6:377-380.
  • Ozgur BM, Berberian J, Aryan HE, et al. The pathophysiologic mechanism of cerebellar mu- tism. Surg Neurol. 2009;66:18 - 25.
  • Riva D, Giorgi C. The cerebellum contributes to higher functions during development: eviden- ce from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(Pt 5):1051 - 1061.
  • Redcay E. The superior temporal sulcus performs a common function for social and speech per- ception: implications for the emergence of au- tism. Neurosci Biobehav Rev. 2008;32(1):123- 142.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Collection
Yazarlar

Hakan Erdoğan Bu kişi benim

Bilal Kelten Bu kişi benim

Osman Akdemir Bu kişi benim

Alper Karaoğlan Bu kişi benim

Erol Taşdemiroğlu Bu kişi benim

Yayımlanma Tarihi 1 Ağustos 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 5 Sayı: 2

Kaynak Göster

Vancouver Erdoğan H, Kelten B, Akdemir O, Karaoğlan A, Taşdemiroğlu E. Otizm ve serebellar mutizm: Nöroanatomik bulguların bir derlemesi. Maltepe tıp derg. 2013;5(2):57-65.