BibTex RIS Kaynak Göster

Erythroid Differentiation Inducer, Hemin Inhibits Cyclic AMP Production in K562 Cells

Yıl 2011, Cilt: 3 Sayı: 1, 54 - 58, 01.04.2011

Öz

Objective: This study investigated the intracellular cyclic AMP concentrations in hemin-induced and uninduced K562 cell line. Methods: K562 cell line were grown in RPMI medium supplemented with 10% fetal calf serum FCS , 100 IU/ml penicillin, 100 μg/ml streptomycin, 25 μg/ml amphotericin B and 2 mM L-glutamin at 37 oC in humidified air containing 5% CO2. A Trypan blue stain viability test was performed for produced K562 cells, and those used to obtain cell pellets from 1st day to 6th day, under the the following conditions: without hemin treatment as a control group and with hemin treatment as an experimental group. All data were statistically analyzed using one-way ANOVA, followed by Student`s t test. Results: Treatment of K562 cells with hemin leads to inhibition of cell proliferation. Cyclic AMP levels of K562 cells that were treated with hemin are decreased in a time dependent manner, although the hemin-induced cells proliferated. Intracellular cyclic AMP levels of hemininduced K562 cells decreased, while the control cells had stable cyclic AMP concentrations. Conclusion: On the basis of these results, it is recommended that further data collection is needed to analyze the mechanism by which intracellular cyclic AMP levels are regulated in K562 cells treated with hemin or other erythroid inducers.

Kaynakça

  • 1) Sutherland EW, Rall TW.: Fractionation and characterization of cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 1958, 232(2): 1077-1091.
  • 2) Indolfi C, Stabile E, Coppola C et al.: Membranebound protein kinase A inhibits smooth muscle cell proliferation in vitro and in vivo by amplifying cAMPProtein kinase A signals. Circ Res 2001, 88: 319-324.
  • 3) Grieco D, Porcellini A, Avvedimento EV et al.: Requirement for cAMP-PKA pathway activation by M phase-promoting factor in the transition from mitosis to interphase. Science 1996, 271: 1718-1723.
  • 4) Gloerich M, Bos JL.: Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 2010, 50: 355-375.
  • 5) Bos JL.: Epac: a new cAMP target and new venues in cAMP research. Nat Rev Mol Cell Biol 2003, 4: 733- 738.
  • 6) Yu Zhiwen, Jin Tianru.: New insights into the role of cAMP in the production and function of the incretin hormone glucagon-like peptide-1 (GLP-1). Cell Signal 2010, 22: 1-8.
  • 7) Roscioni SS, Elzinga CR, Schmidt M.: Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol 2008, 377: 345-357.
  • 8) Kopperud RC, Krakstad C, Selheim F et al.: cAMP effector mechanisms. Novel twists for an ‘old’ signaling system. FEBS Lett 2003, 546: 121-126.
  • 9) Kiermayer S, Biondi RM, Imig J et al.: Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells. Mol Biol Cell 2005, 16: 5639-5648.
  • 10) Stork PJ, Schmitt JM.: Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 2002, 12: 258-266.
  • 11) Davis RJ.: The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1993, 268: 14553- 14556.
  • 12) Pomerance M, Abdullah HB, Kamerji S et al.: Thyroidstimulating hormone and cyclic AMP activate p38 mitogen-activated protein kinase cascade. Involvement of protein kinase A, rac1, and reactive oxygen species. J Biol Chem 2000, 275: 40539-40546.
  • 13) Cook SJ, McCormick F.: Inhibition by cAMP of RasDependent Activation of Raf. Science 1993, 262: 1069-1072.
  • 14) Takanaga H, Yoshitake T, Hara S et al.: cAMP-induced astrocytic differentiation of C6 glioma cells is mediated by autocrine interleukins-6. J Biol Chem 2004, 279: 15441-15447.
  • 15) Miyata A, Arimura.A, Dahl RR et al.: Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 1989, 164: 567-574.
  • 16) Basille M, Vaudry D, Coulouran Y et al.: Comparative distribution of Pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites and PACAP receptor mRNAs in the rat brain during development. J Comp Neurol 2000, 425: 495-509.
  • 17) Jaworski DM, Proctor MD.: Developmental regulation of pituitary adenylate cyclase-activating polypeptide and PAC(1) receptor mRNA expression in the rat central nervous system. Dev Brain Res 2000, 120: 27-39.
  • 18) Vallejo I, Vallejo M.: Pituitary adenylate cyclaseactivating polypeptide induces astrocyte differentiation of precursor cells from developing cerebral cortex. Mol Cell Neurosci 2002, 21: 671-683.
  • 19) Grdisa M, White MK.: Erythrocytic differentiation and glyceraldehydes-3-phosphate dehydrogenase expression are regulated by protein phosphorylation and cAMP in HD3 cells. Int J Biochem Cell Biol 2000, 32: 589-595.
  • 20) Andersson LC, Jokinen M, Gahmberg CG.: Induction of erythroid differentiation in the human leukemia cell line K562. Nature 1979, 278: 364-365.
  • 21) Küçükkaya B, Öztürk L, Yalç›ntepe L.: Nitric oxide levels during erythroid differentiation in K562 cell line. Indian J Biochem Biophys 2006, 43: 251-253.
  • 22) Cioe L, McNab A, Hubbell HR et al.: Differential expression of the globin genes in human leukemia K562(S) cells induced to differentiate by hemin or butyric acid. Cancer Res 1981, 41: 237-243.
  • 23) Pardoe IU, Grewal KK, Baldeh MP et al.: Persistent infection of K562 cells by encephalomyocarditis virus. J Virol 1990, 64: 6040-6044.
  • 24) Ikuta T, Ausenda S, Cappellini MD.: Mechanism for fetal globin gene expression role of the soluble guanylate cyclase-cyclic GMP-dependent protein kinase pathway. Proc Natl Acad Sci U S A 2001, 98: 1847-1852.
  • 25) Francis SH, Corbin JD.: Structure and function of cyclic-nucleotide dependent protein kinases. Annu Rev Physiol 1994, 56: 237-272.
  • 26) Ghil S, Choi JM, Kim SS et al.: Compartmentalization of protein kinase A signaling by the heterotrimeric G protein Go. Proc Natl Acad Sci U S A 2006, 103: 19158-19163.
  • 27) Lozzio CB, Lozzio BB.: Human chronic myelogenous leukemia cell line with positive Philadelphia chromosome. Blood 1975, 45: 321-334.
  • 28) Rowley PT, Ohlsson-Wilhelm BM, Farley BA et al.: Inducers of erythroid differentiation in K562 human leukemia cells. Exp Hematol 1981, 9: 32-37.
  • 29) Kitanaka A, Waki M, Kamano H, et al.: Antisense src expression inhibits proliferation and erythropoietininduced erythroid differentiation of K562 human leukemia cells. Biochem Biophys Res Commun 1994, 201: 1534-1540.
  • 30) Rutherford TR, Clegg JB, Weatherall DJ.: K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature 1979, 280: 164-165.
  • 31) Morgan L, Jessen KR, Mirsky R.: The effects of camp on differentiation of cultured Schwann cells: Progression from an early phenotype (04+) to a myelin phenotype (Po+, GFAP- N-CAM-, NGFReceptor-) Depends on Growth inhibition. The J Cell Biol 1991, 112: 457-467.
  • 32) Dumont JE, Jauniaux JC, Roger PP.: The cyclic AMPmediated stimulation of cell proliferation. Trends Biochem Sci 1989, 14: 67-71.
  • 33) Chen J, Iyengar R.: Suppression of Ras-induced transformation of NIH 3T3 cells by activated G·s. Science 1994, 263: 1278-1281.
  • 34) Vallar L.: Oncogenic role of heterotrimeric G proteins. Cancer Surv 1996, 27: 325-338.
  • 35) Nahorski SR.: Pharmacology of intracellular signalling pathways. Br J Pharmacol 2006, 147: S38-S45.
  • 36) Sgambati SA, Zarif A, Basson MD.: Octreotide differentially modulates human Caco-2 intestinal epithelial cell proliferation and differentiation by decreasing intracellular cAMP. Regul Pept 1996, 61: 219-227.
  • 37) Inoue A, Kuroyanagi Y, Terui K et al.: Negative regulation of globin gene expression by cyclic AMPdependent pathway in erythroid cells. Exp Hematol 2004, 32: 244-253.
  • 38) Cokic VP, Andric SA, Stojilkovic SS et al.: Hydroxyurea nitrosylates and activates soluble guanylyl cyclase in human erythroid cells. Blood 2008, 111: 1117-1123.
  • 39) Küçükkaya B, Arslan DO, Kan B.: Role of G proteins and ERK activation in hemin-induced erythroid differentiation of K562 cells. Life Sci 2006, 78: 1217- 1224.

K562 Hücrelerinde Eritroid Farklılaşmayı Uyaran Hemin, Siklik AMP Oluşumunu Baskılar

Yıl 2011, Cilt: 3 Sayı: 1, 54 - 58, 01.04.2011

Öz

Amaç: Bu çalışmada heminle indüklenen ve indüklenmeyen K562 hücrelerinde, hücre içi siklik AMP düzeyleri incelendi. Yöntemler: K562 hücreleri %10 fetal dana serumu, 100 IU/ml penisilin, 100 μg/ml streptomisin, 25 μg/ml amfoterisin B ve 2 mM L-glutamin içeren RPMI-1640 içerisinde ve nemli % 5'lik karbondioksit etüvünde, 37 oC'da çoğaltıldı. Çoğaltılan bu hücrelerde Tripan mavisi boyama canlılık testi yapıldı. Hemin ile muamele edilen deney grubu ve hemin ile muamele edilmeyen kontrol grubu hücrelerden birinci günden itibaren altıncı güne kadar hücre peletleri elde edildi. Elde edilen bu hücre peletlerinde siklik AMP konsantrasyonları, siklik AMP Enzim ‹mmuno Analiz sistemi kullanılarak ölçüldü. Tüm veriler Student's t-testi' ni takiben tek-yol ANOVA ile istatistiksel olarak analiz edildi. Bulgular: K562 hücrelerinin heminle muamelesi, hücre çoğalmasının baskılanmasına neden olmuştur. Heminle muamele edilen K562 hücrelerinin çoğalmasına rağmen siklik AMP düzeyleri zamana bağlı olarak azalmıştır. Heminle indüklenen K562 hücrelerinin hücre içi siklik AMP düzeyleri azalırken, kontrol hücrelerinin siklik AMP düzeyleri kararlı kalmıştır. Sonuç: Bu sonuçlara dayanarak, diğer eritroid indükleyiciler veya hemin ile muamele edilen K562 hücrelerinde hücre içi siklik AMP düzeylerinin hangi mekanizmayla düzenlendiğ ini anlamak için daha çok bilgiye gerek vardır.

Kaynakça

  • 1) Sutherland EW, Rall TW.: Fractionation and characterization of cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 1958, 232(2): 1077-1091.
  • 2) Indolfi C, Stabile E, Coppola C et al.: Membranebound protein kinase A inhibits smooth muscle cell proliferation in vitro and in vivo by amplifying cAMPProtein kinase A signals. Circ Res 2001, 88: 319-324.
  • 3) Grieco D, Porcellini A, Avvedimento EV et al.: Requirement for cAMP-PKA pathway activation by M phase-promoting factor in the transition from mitosis to interphase. Science 1996, 271: 1718-1723.
  • 4) Gloerich M, Bos JL.: Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 2010, 50: 355-375.
  • 5) Bos JL.: Epac: a new cAMP target and new venues in cAMP research. Nat Rev Mol Cell Biol 2003, 4: 733- 738.
  • 6) Yu Zhiwen, Jin Tianru.: New insights into the role of cAMP in the production and function of the incretin hormone glucagon-like peptide-1 (GLP-1). Cell Signal 2010, 22: 1-8.
  • 7) Roscioni SS, Elzinga CR, Schmidt M.: Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol 2008, 377: 345-357.
  • 8) Kopperud RC, Krakstad C, Selheim F et al.: cAMP effector mechanisms. Novel twists for an ‘old’ signaling system. FEBS Lett 2003, 546: 121-126.
  • 9) Kiermayer S, Biondi RM, Imig J et al.: Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells. Mol Biol Cell 2005, 16: 5639-5648.
  • 10) Stork PJ, Schmitt JM.: Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 2002, 12: 258-266.
  • 11) Davis RJ.: The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1993, 268: 14553- 14556.
  • 12) Pomerance M, Abdullah HB, Kamerji S et al.: Thyroidstimulating hormone and cyclic AMP activate p38 mitogen-activated protein kinase cascade. Involvement of protein kinase A, rac1, and reactive oxygen species. J Biol Chem 2000, 275: 40539-40546.
  • 13) Cook SJ, McCormick F.: Inhibition by cAMP of RasDependent Activation of Raf. Science 1993, 262: 1069-1072.
  • 14) Takanaga H, Yoshitake T, Hara S et al.: cAMP-induced astrocytic differentiation of C6 glioma cells is mediated by autocrine interleukins-6. J Biol Chem 2004, 279: 15441-15447.
  • 15) Miyata A, Arimura.A, Dahl RR et al.: Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 1989, 164: 567-574.
  • 16) Basille M, Vaudry D, Coulouran Y et al.: Comparative distribution of Pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites and PACAP receptor mRNAs in the rat brain during development. J Comp Neurol 2000, 425: 495-509.
  • 17) Jaworski DM, Proctor MD.: Developmental regulation of pituitary adenylate cyclase-activating polypeptide and PAC(1) receptor mRNA expression in the rat central nervous system. Dev Brain Res 2000, 120: 27-39.
  • 18) Vallejo I, Vallejo M.: Pituitary adenylate cyclaseactivating polypeptide induces astrocyte differentiation of precursor cells from developing cerebral cortex. Mol Cell Neurosci 2002, 21: 671-683.
  • 19) Grdisa M, White MK.: Erythrocytic differentiation and glyceraldehydes-3-phosphate dehydrogenase expression are regulated by protein phosphorylation and cAMP in HD3 cells. Int J Biochem Cell Biol 2000, 32: 589-595.
  • 20) Andersson LC, Jokinen M, Gahmberg CG.: Induction of erythroid differentiation in the human leukemia cell line K562. Nature 1979, 278: 364-365.
  • 21) Küçükkaya B, Öztürk L, Yalç›ntepe L.: Nitric oxide levels during erythroid differentiation in K562 cell line. Indian J Biochem Biophys 2006, 43: 251-253.
  • 22) Cioe L, McNab A, Hubbell HR et al.: Differential expression of the globin genes in human leukemia K562(S) cells induced to differentiate by hemin or butyric acid. Cancer Res 1981, 41: 237-243.
  • 23) Pardoe IU, Grewal KK, Baldeh MP et al.: Persistent infection of K562 cells by encephalomyocarditis virus. J Virol 1990, 64: 6040-6044.
  • 24) Ikuta T, Ausenda S, Cappellini MD.: Mechanism for fetal globin gene expression role of the soluble guanylate cyclase-cyclic GMP-dependent protein kinase pathway. Proc Natl Acad Sci U S A 2001, 98: 1847-1852.
  • 25) Francis SH, Corbin JD.: Structure and function of cyclic-nucleotide dependent protein kinases. Annu Rev Physiol 1994, 56: 237-272.
  • 26) Ghil S, Choi JM, Kim SS et al.: Compartmentalization of protein kinase A signaling by the heterotrimeric G protein Go. Proc Natl Acad Sci U S A 2006, 103: 19158-19163.
  • 27) Lozzio CB, Lozzio BB.: Human chronic myelogenous leukemia cell line with positive Philadelphia chromosome. Blood 1975, 45: 321-334.
  • 28) Rowley PT, Ohlsson-Wilhelm BM, Farley BA et al.: Inducers of erythroid differentiation in K562 human leukemia cells. Exp Hematol 1981, 9: 32-37.
  • 29) Kitanaka A, Waki M, Kamano H, et al.: Antisense src expression inhibits proliferation and erythropoietininduced erythroid differentiation of K562 human leukemia cells. Biochem Biophys Res Commun 1994, 201: 1534-1540.
  • 30) Rutherford TR, Clegg JB, Weatherall DJ.: K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature 1979, 280: 164-165.
  • 31) Morgan L, Jessen KR, Mirsky R.: The effects of camp on differentiation of cultured Schwann cells: Progression from an early phenotype (04+) to a myelin phenotype (Po+, GFAP- N-CAM-, NGFReceptor-) Depends on Growth inhibition. The J Cell Biol 1991, 112: 457-467.
  • 32) Dumont JE, Jauniaux JC, Roger PP.: The cyclic AMPmediated stimulation of cell proliferation. Trends Biochem Sci 1989, 14: 67-71.
  • 33) Chen J, Iyengar R.: Suppression of Ras-induced transformation of NIH 3T3 cells by activated G·s. Science 1994, 263: 1278-1281.
  • 34) Vallar L.: Oncogenic role of heterotrimeric G proteins. Cancer Surv 1996, 27: 325-338.
  • 35) Nahorski SR.: Pharmacology of intracellular signalling pathways. Br J Pharmacol 2006, 147: S38-S45.
  • 36) Sgambati SA, Zarif A, Basson MD.: Octreotide differentially modulates human Caco-2 intestinal epithelial cell proliferation and differentiation by decreasing intracellular cAMP. Regul Pept 1996, 61: 219-227.
  • 37) Inoue A, Kuroyanagi Y, Terui K et al.: Negative regulation of globin gene expression by cyclic AMPdependent pathway in erythroid cells. Exp Hematol 2004, 32: 244-253.
  • 38) Cokic VP, Andric SA, Stojilkovic SS et al.: Hydroxyurea nitrosylates and activates soluble guanylyl cyclase in human erythroid cells. Blood 2008, 111: 1117-1123.
  • 39) Küçükkaya B, Arslan DO, Kan B.: Role of G proteins and ERK activation in hemin-induced erythroid differentiation of K562 cells. Life Sci 2006, 78: 1217- 1224.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Bahire Küçükkaya Bu kişi benim

Yayımlanma Tarihi 1 Nisan 2011
Yayımlandığı Sayı Yıl 2011 Cilt: 3 Sayı: 1

Kaynak Göster

Vancouver Küçükkaya B. Erythroid Differentiation Inducer, Hemin Inhibits Cyclic AMP Production in K562 Cells. Maltepe tıp derg. 2011;3(1):54-8.