Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of heat treatment on shore D hardness values of woods of some tree species grown in Turkey

Yıl 2021, , 166 - 173, 27.12.2021
https://doi.org/10.33725/mamad.1005127

Öz

Today, there are patented heat treatment methods using different methods in various countries. One of these methods is the ThermoWood method. It is a known fact that many properties of wood (mechanical, physical, chemical, biological, etc.) change as a result of the change in the structure of wood with heat treatment. At the beginning of these features, the concept of hardness emphasizes an important issue for wood. In this study, the Shore D hardness values of maple, common alder, rowanberry, chestnut, hornbeam, Uludağ fir, willow, Strendzha Oak, and ash woods that occur at 212oC for 1 and 2 hours after and before heat treatment were investigated according to the ThermoWood method. According to the results of the research, variance analysis results were obtained as significant. The highest reduction rate among wood species was obtained in Uludağ fir, which was heat-treated at 212oC for 2 hours, while the lowest was determined in common hornbeam wood, which was heat-treated at 212oC for 1 hour. It was determined that the hardness values of all tree species decreased with heat treatment. In addition, it was shown that the results decreased with the increase of the heat treatment time.

Kaynakça

  • Akpan, M., (2008), Studies on hardness property of neem wood growing in Nigeria, ProLigno, 4(2), 11-18.
  • Anonim, (2003), ThermoWood® Handbook, Finnish ThermoWood Association, Helsinki, Finland.
  • ASTM D 2240, (2010), Standard test method for rubber property-durometer hardness, American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States.
  • Ayata, Ü., (2021), Sibirya’da iç ve dış mekânlarda kullanılan Sibirya çamı odununun yüzey pürüzlülüğü parametreleri ve shore D sertlik değeri üzerine ısıl işlemin etkisi, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 4(1), 1-8. DOI: 10.33725/mamad.911611.
  • Ayata, Ü., Bal, B.C., (2021a), 200oC’de ısıl işlem görmüş kırmızı karaağaç (Ulmus rubra) odununda bazı yüzey özelliklerinin ve shore D sertlik değerinin araştırılması, 5. Asya Pasifik Uluslararası Modern Bilimler Kongresi 16-18 Temmuz 2021, Sydney, Avustralya, 258-270.
  • Ayata, Ü., Bal, B.C., (2021b), Kopie, fukadi ve porsuk ağaç türlerinde renk, parlaklık ve shore D sertlik üzerine ısıl işlemin etkisi, Hoca Ahmet Yesevi, 5. Uluslararası Bilimsel Araştırmalar Kongresi, 5-6 Kasım 2021 Nahçıvan Devlet Üniversitesi, Azerbaycan, 166-180.
  • Balta´ Calleja, F.J., Boneva, D., Krumova, M., Fakirov, S., (1998), Microhardness under strain, 4. Reversible micro hardness in polyblock thermoplastic elastomers with poly (butylene terephthalate) as hard segments, Macromolecular Chemistry and Physics, 199, 2217-2220.
  • Bekhta, P., Niemz, P., (2003), Effect of high temperature on the change in colour, dimensional stabilty and mechanical properties of spruce wood, Holzforschung, 57, 539-546.
  • Briscoe, B.J., Sinha, S.K., (2003), Scratch resistance and localised damage characteristics of polymer surfaces–a review, Mat- wiss U Werkstofftech, 34(10/11), 989-1002.
  • Čermák, P., Dejmal, A., (2013), The effect of heat and ammonia treatment on colour response of oak wood (Quercus robur) and comparison of some physical and mechanical properties, Maderas. Ciencia y tecnología 15(3), 375-389. DOI: 10.4067/S0718-221X2013005000029.
  • Chotikhun, A., Hiziroglu, S., (2016), Measurement of dimensional stability of heat treated southern red oak (Quercus falcata Michx.), Measurement, 87, 99-103. DOI: 10.1016/j.measurement.2016.02.064.
  • Esteves, B., Şahin, S., Ayata, Ü., Domingos, I., Ferreira, J., Gurleyen, L., (2021), The effect of heat treatment on shore - D hardness of some wood species, BioResources, 16(1), 1482-1495. DOI: 10.15376/biores.16.1.1482-1495.
  • Gong, M., Lamason, C., Li, L., (2010), Interactive effect of surface densification and post-heat-treatment on aspen wood, Journal of Materials Processing Technology, 210(2), 293-296. DOI: 10.1016/j.jmatprotec.2009.09.013.
  • Gonzales-Pena, M., Hale, M., (2009), Colour in thermally modified wood of beech, Norway spruce and Scots pine, Part 2: Property predictions from colour changes, Holzforschung, 63(4), 394-401.
  • Grellmann, W., Seidler, S., (2014), Part 3: Mechanical and Thermomechanical Properties of Polymers: Subvolume A: Polymer Solids and Polymer Melts, K.-F. Arndt and M. D. Lechner (eds.), Springer-Verlag, Berlin, Germany.
  • Hansson, L., Antti, A.L., (2006), The effect of drying method and temperature level on the hardness of wood, Journal of Materials Processing Technology, 171(3), 467-470. DOI: 10.1016/j.jmatprotec.2005.08.007.
  • Hillis, W.E., (1984), High temperature and chemical effects on wood stability, Wood Science and Technology, 18(4), 281-293. DOI: 10.1007/BF00353364.
  • Hirata, S., Ohta, M., Homna, Y., (2001), Hardness distribution on wood surface, Journal of Wood Science, 47, 1-7.
  • Holmberg, H., (2000), Influence of grain angle on Brinell hardness of Scots pine (Pinus sylvestris L.), Holz als Rohund Werkstoff, 58, 91-95.
  • ISO 554, (1976), Standard Atmospheres for Conditioning and/or Testing, International Standardization Organization, Geneva, Switzerland.
  • Jamsa, S., Viitaniemi, P., (2001), Heat treatment of wood - better durability without chemicals. in: review on heat treatments of wood, Proceedings of the special seminar on heat treatments, 9 February 2001, Luxembourg: 17-22.
  • Johansson, D., Moren, T., (2006), The potential of colour measurement for strength prediction of thermally treated wood. Holz Roh Werkst, 64, 104-110.
  • Kollmann, F., (1936), Technologie des Holzes, 1st ed.; Springer: Berlin, Germany.
  • Kollmann, F., (1951), Technologie des Holzes und der Holzwerkstoffe, vol 1. Springer, Berlin, pp 910-926.
  • Mina, M.F., Ania, F., Balta´ Calleja, F.J., Asano, T., (2004), Microhardness studies of PMMA/natural rubber blends, Journal of Applied Polymer Science, 91(1), 205-210. DOI: 10.1002/app.13246.
  • Peng, H., Jiang, J., Zhan, T., Lu, J., (2016), Influence of density and equilibrium moisture content on the hardness anisotropy of wood, Forest Products Journal, 66(7-8), 443-452. DOI: 10.13073/FPJ-D-15-00072.
  • Shi, L.J., Kocaefe, D., Zhang, J., (2007), Mechanical behaviour of Quevec wood species heat treated using Thermo Wood process, Holz als Roh-und Werkstoff, 65, 255-259.
  • Şanıvar, N., Zorlu, İ., (1980), Ağaç işleri Gereç Bilgisi Temel Ders Kitabı, Mesleki Ve Teknik Öğretim Kitapları, Milli Eğitim Basımevi, İstanbul, Etüd ve Programlama Dairesi Yayınları No: 43, 472 sayfa.
  • Tabil, L.G., Jr., Sokhansanj, S., Crerar, W.J., Patil, R.T., Khoshtaghaza, M.H., Opoku, A., (2002), Physical characterization of alfalfa cubes: I. Hardness, Canadian Biosystems Engineering, 44, 55-63.
  • Tjeerdsma, B., Militz, H., (2005), Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood, Holz als Roh-und Werkstoff, 63, 102-111.
  • Todorović, N., Popović, Z., (2011), Relationship between colour change and surface hardness in thermally modified sessile oak wood, Forestry Ideas, 17(2), 183-190.
  • TS 2472, (1976), Odunda fiziksel ve mekanik deneyler için birim hacim ağırlığı tayini, T.S.E. Standardı, Ankara.
  • Türk, M., (2021), Eyong, jequtiba ve koto ağaç türlerinde renk, parlaklık ve shore D sertlik değerleri üzerine ısıl işlemin etkisi, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 4(1), 51-60, DOI: 10.33725/mamad.928381.
  • Zamfirova, G., Lorenzo, V., Benavente, R., Perena, J.M., (2003), On the relationship between modulus of elasticity and microhardness, Journal of Applied Polymer Science, 88(7), 1794-1798. DOI: 10.1002/app.11788.

Türkiye’de yetişen bazı ağaç türlerine ait odunlarda shore D sertlik değerleri üzerine ısıl işlemin etkisi

Yıl 2021, , 166 - 173, 27.12.2021
https://doi.org/10.33725/mamad.1005127

Öz

Günümüzde, çeşitli ülkelerde farklı yöntemler kullanılarak yapılan patentli ısıl işlem metotları bulunmaktadır. Bu metotlardan bir tanesi de, ThermoWood metodu olmaktadır. Isıl işlem ile ahşabın yapısının değişmesi ile ahşabın sahip olduğu birçok özelliğinin de (mekanik, fiziksel, kimyasal, biyolojik, vb.) buna sebep olarak değiştiği bilinen bir gerçektir. Bu özelliklerin başında sertlik kavramı ahşap için önemli bir konuya vurgu yapmaktadır. Bu çalışmada, akçaağaç, adi kızılağaç, üvez, kestane, adi gürgen, Uludağ göknarı, söğüt, ıstranca meşesi ve dişbudak odunlarının ThermoWood metoduna göre 212oC’de 1 ve 2 saat süreleri ile ısıl işlem sonralarında ve öncesinde meydana gelen shore D sertlik değerleri araştırılmıştır. Araştırma sonuçlarına göre, varyans analizi sonuçları anlamlı olarak elde edilmiştir. Ağaç türleri arasında en yüksek azalma oranı 212oC’de 2 saat süre ile ısıl işlem görmüş Uludağ göknarında elde edilirken, en düşük 212oC’de 1 saat süre ile ısıl işlem adi gürgen odununda belirlenmiştir. Bütün ağaç türlerinde ısıl işlem ile sertlik değerlerinin azaldığı belirlenmiştir. Buna ek olarak, ısıl işlem süresinin de artması ile sonuçların azaldığını göstermiştir.

Kaynakça

  • Akpan, M., (2008), Studies on hardness property of neem wood growing in Nigeria, ProLigno, 4(2), 11-18.
  • Anonim, (2003), ThermoWood® Handbook, Finnish ThermoWood Association, Helsinki, Finland.
  • ASTM D 2240, (2010), Standard test method for rubber property-durometer hardness, American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States.
  • Ayata, Ü., (2021), Sibirya’da iç ve dış mekânlarda kullanılan Sibirya çamı odununun yüzey pürüzlülüğü parametreleri ve shore D sertlik değeri üzerine ısıl işlemin etkisi, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 4(1), 1-8. DOI: 10.33725/mamad.911611.
  • Ayata, Ü., Bal, B.C., (2021a), 200oC’de ısıl işlem görmüş kırmızı karaağaç (Ulmus rubra) odununda bazı yüzey özelliklerinin ve shore D sertlik değerinin araştırılması, 5. Asya Pasifik Uluslararası Modern Bilimler Kongresi 16-18 Temmuz 2021, Sydney, Avustralya, 258-270.
  • Ayata, Ü., Bal, B.C., (2021b), Kopie, fukadi ve porsuk ağaç türlerinde renk, parlaklık ve shore D sertlik üzerine ısıl işlemin etkisi, Hoca Ahmet Yesevi, 5. Uluslararası Bilimsel Araştırmalar Kongresi, 5-6 Kasım 2021 Nahçıvan Devlet Üniversitesi, Azerbaycan, 166-180.
  • Balta´ Calleja, F.J., Boneva, D., Krumova, M., Fakirov, S., (1998), Microhardness under strain, 4. Reversible micro hardness in polyblock thermoplastic elastomers with poly (butylene terephthalate) as hard segments, Macromolecular Chemistry and Physics, 199, 2217-2220.
  • Bekhta, P., Niemz, P., (2003), Effect of high temperature on the change in colour, dimensional stabilty and mechanical properties of spruce wood, Holzforschung, 57, 539-546.
  • Briscoe, B.J., Sinha, S.K., (2003), Scratch resistance and localised damage characteristics of polymer surfaces–a review, Mat- wiss U Werkstofftech, 34(10/11), 989-1002.
  • Čermák, P., Dejmal, A., (2013), The effect of heat and ammonia treatment on colour response of oak wood (Quercus robur) and comparison of some physical and mechanical properties, Maderas. Ciencia y tecnología 15(3), 375-389. DOI: 10.4067/S0718-221X2013005000029.
  • Chotikhun, A., Hiziroglu, S., (2016), Measurement of dimensional stability of heat treated southern red oak (Quercus falcata Michx.), Measurement, 87, 99-103. DOI: 10.1016/j.measurement.2016.02.064.
  • Esteves, B., Şahin, S., Ayata, Ü., Domingos, I., Ferreira, J., Gurleyen, L., (2021), The effect of heat treatment on shore - D hardness of some wood species, BioResources, 16(1), 1482-1495. DOI: 10.15376/biores.16.1.1482-1495.
  • Gong, M., Lamason, C., Li, L., (2010), Interactive effect of surface densification and post-heat-treatment on aspen wood, Journal of Materials Processing Technology, 210(2), 293-296. DOI: 10.1016/j.jmatprotec.2009.09.013.
  • Gonzales-Pena, M., Hale, M., (2009), Colour in thermally modified wood of beech, Norway spruce and Scots pine, Part 2: Property predictions from colour changes, Holzforschung, 63(4), 394-401.
  • Grellmann, W., Seidler, S., (2014), Part 3: Mechanical and Thermomechanical Properties of Polymers: Subvolume A: Polymer Solids and Polymer Melts, K.-F. Arndt and M. D. Lechner (eds.), Springer-Verlag, Berlin, Germany.
  • Hansson, L., Antti, A.L., (2006), The effect of drying method and temperature level on the hardness of wood, Journal of Materials Processing Technology, 171(3), 467-470. DOI: 10.1016/j.jmatprotec.2005.08.007.
  • Hillis, W.E., (1984), High temperature and chemical effects on wood stability, Wood Science and Technology, 18(4), 281-293. DOI: 10.1007/BF00353364.
  • Hirata, S., Ohta, M., Homna, Y., (2001), Hardness distribution on wood surface, Journal of Wood Science, 47, 1-7.
  • Holmberg, H., (2000), Influence of grain angle on Brinell hardness of Scots pine (Pinus sylvestris L.), Holz als Rohund Werkstoff, 58, 91-95.
  • ISO 554, (1976), Standard Atmospheres for Conditioning and/or Testing, International Standardization Organization, Geneva, Switzerland.
  • Jamsa, S., Viitaniemi, P., (2001), Heat treatment of wood - better durability without chemicals. in: review on heat treatments of wood, Proceedings of the special seminar on heat treatments, 9 February 2001, Luxembourg: 17-22.
  • Johansson, D., Moren, T., (2006), The potential of colour measurement for strength prediction of thermally treated wood. Holz Roh Werkst, 64, 104-110.
  • Kollmann, F., (1936), Technologie des Holzes, 1st ed.; Springer: Berlin, Germany.
  • Kollmann, F., (1951), Technologie des Holzes und der Holzwerkstoffe, vol 1. Springer, Berlin, pp 910-926.
  • Mina, M.F., Ania, F., Balta´ Calleja, F.J., Asano, T., (2004), Microhardness studies of PMMA/natural rubber blends, Journal of Applied Polymer Science, 91(1), 205-210. DOI: 10.1002/app.13246.
  • Peng, H., Jiang, J., Zhan, T., Lu, J., (2016), Influence of density and equilibrium moisture content on the hardness anisotropy of wood, Forest Products Journal, 66(7-8), 443-452. DOI: 10.13073/FPJ-D-15-00072.
  • Shi, L.J., Kocaefe, D., Zhang, J., (2007), Mechanical behaviour of Quevec wood species heat treated using Thermo Wood process, Holz als Roh-und Werkstoff, 65, 255-259.
  • Şanıvar, N., Zorlu, İ., (1980), Ağaç işleri Gereç Bilgisi Temel Ders Kitabı, Mesleki Ve Teknik Öğretim Kitapları, Milli Eğitim Basımevi, İstanbul, Etüd ve Programlama Dairesi Yayınları No: 43, 472 sayfa.
  • Tabil, L.G., Jr., Sokhansanj, S., Crerar, W.J., Patil, R.T., Khoshtaghaza, M.H., Opoku, A., (2002), Physical characterization of alfalfa cubes: I. Hardness, Canadian Biosystems Engineering, 44, 55-63.
  • Tjeerdsma, B., Militz, H., (2005), Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood, Holz als Roh-und Werkstoff, 63, 102-111.
  • Todorović, N., Popović, Z., (2011), Relationship between colour change and surface hardness in thermally modified sessile oak wood, Forestry Ideas, 17(2), 183-190.
  • TS 2472, (1976), Odunda fiziksel ve mekanik deneyler için birim hacim ağırlığı tayini, T.S.E. Standardı, Ankara.
  • Türk, M., (2021), Eyong, jequtiba ve koto ağaç türlerinde renk, parlaklık ve shore D sertlik değerleri üzerine ısıl işlemin etkisi, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 4(1), 51-60, DOI: 10.33725/mamad.928381.
  • Zamfirova, G., Lorenzo, V., Benavente, R., Perena, J.M., (2003), On the relationship between modulus of elasticity and microhardness, Journal of Applied Polymer Science, 88(7), 1794-1798. DOI: 10.1002/app.11788.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kereste, Hamur ve Kağıt
Bölüm Araştırma Makaleleri
Yazarlar

Mutlu Türk 0000-0002-8650-1302

Ümit Ayata 0000-0002-6787-7822

Yayımlanma Tarihi 27 Aralık 2021
Gönderilme Tarihi 5 Ekim 2021
Kabul Tarihi 8 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Türk, M., & Ayata, Ü. (2021). Türkiye’de yetişen bazı ağaç türlerine ait odunlarda shore D sertlik değerleri üzerine ısıl işlemin etkisi. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 4(2), 166-173. https://doi.org/10.33725/mamad.1005127

Uluslararası Dergidir

32217    18332 18333   3221918334 18335   18336   18339   18434   32216 32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400