Araştırma Makalesi
BibTex RIS Kaynak Göster

Silindirik yoğunlaştırmada sıvama makarası kullanımı; masif ağaçta (Karaçam) yoğunlaştırılma sonrası sertlik, parlaklık ve yüzey pürüzlülüğü değişimi

Yıl 2023, , 14 - 25, 30.06.2023
https://doi.org/10.33725/mamad.1260723

Öz

Ağaç malzemeler birçok olumlu özelliğe sahip olmasından dolayı geçmişten günümüze her alanda yaygın olarak kullanılmaktadır. Özelliklerini iyileştirmek, kullanım alanlarının yaygınlaşmasını ve doğal olan bu malzemenin daha fazla tercih edilmesini sağlamaktadır. Ağaç malzemenin özelliklerinin iyileştirilmesi amacıyla yapılan çalışmalardan birisi de yoğunlaştırma işlemidir. Yoğunlaştırma işlemleri, ağaç malzemenin fiziksel ve mekaniksel özelliklerini iyileştirmek amacıyla kullanılmaktadır. Ağaç malzemenin yoğunlaştırılması çeşitli metotlar kullanılarak gerçekleştirilebilmektedir. Bu çalışmada silindir şeklindeki tornalanmış karaçam (Pinus nigra Arnold) ağaç türünün yoğunlaştırılması bu amaç için tasarlanarak imalatı yapılmış olan sıvama makarası kullanılarak torna tezgahında gerçekleştirilmiştir. 0.081, 0.121 ve 0.202 mm/devir ilerleme miktarlarında, 200 ve 400 devir/dakika devir sayılarında, 0.5 ve 1 mm yüzey yoğunlaştırma derinliklerinde yoğunlaştırma işlemleri gerçekleştirilmiştir. Yoğunlaştırma yapılmamış ve çeşitli yoğunlaştırma koşullarında yüzeyleri yoğunlaştırılmış silindir şeklindeki masif ağaç malzemelerde sertlik, parlaklık ve pürüzlülük ölçümleri gerçekleştirilmiştir. Tüm yoğunlaştırma koşullarında sertlik ve parlaklık değerlerinde artış, pürüzlülük değerlerinde (Rz) düşme meydana gelmiştir. En yüksek sertlik ve parlaklık değerleri 1 mm yoğunlaştırma derinliği, 200 devir/dakika devir sayısı ve 0.121 mm/devir ilerleme miktarında elde edilmiştir. En düşük Rz değeri 1 mm yoğunlaştırma derinliği, 400 devir/dakika devir sayısı ve 0.081 mm/devir ilerleme miktarında elde edilmiştir.

Kaynakça

  • Blomberg, J., Persson, B., (2004), Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process, Journal of Wood Science, 50(4), 307–314.
  • Blomberg, J., Persson, B., Blomberg, A., (2005), Effects of semi-isostatic densification of wood on the variation in strength properties with density, Wood Science and Technology, 39(5), 339–350.
  • Budakçı, M., Pelit, H., Sönmez, A., Korkmaz, M., (2016), The effects of densification and heat post-treatment on hardness and morphological properties of wood materials, BioResources, 11(3), 7822–7838. DOI:10.15376/biores.11.3.7822-7838
  • Budakçı, M., Şenol, S., Korkmaz, M., (2022), Thermo-Vibro-Mechanic® (TVM) wood densification method: Mechanical properties, BioResources 17(1), 1606-1626. DOI: 10.15376/biores.17.1.1606-1626.
  • Homan, W., Tjeerdsma, B., Beckers, E., Jorissen, A., (2000), Structural and other properties of modified wood, World Conference on Timber Engineering, 5.
  • ISO 468 (2009), Surface roughness-parameters, their values and general rules for specifying requirements, International Organization for Standardization, Geneva, Switzerland.
  • ISO 3274 (2005), Geometrical Product Specifications (GPS)-Surface texture: Profile method- Nominal characteristics of contact (stylus) instruments, International Organization for Standardization, Geneva, Switzerland.
  • ISO 4287 (1997), Geometrical product specifications surface texture profile method terms, definitions and surface texture parameters, International Organization for Standardization, Geneva, Switzerland.
  • Jakob, M., Czabany, I., Veigel, S., Müller, U., Gindl Altmutter, W., (2022), Comparing the suitability of domestic spruce, beech, and poplar wood for high-strength densified wood, European Journal of Wood and Wood Product, 80, 859–876, DOI: 10.1007/s00107-022-01828-0
  • Kamke, F. A., (2006), Densified radiata pine for structural composites, Maderas. Ciencia y Tecnología, 8(2), 83–92.
  • Kilic, M., Hiziroglu, S. and Burdurlu, E. (2006), Effect of machining on surface roughness of wood. Building and Environment, 41(8), 1074–1078. DOI:10.1016/j.buildenv.2005.05. 008
  • Korkut, S., Kocaefe, D., (2009), Isıl işlemin odun özellikleri üzerine etkisi. Düzce Üniversitesi Ormancılık Dergisi, 5(2), 11–34.
  • Kutnar, A., Šernek, M., (2007), Densification of wood. Gozdarstva in Lesarstva, 82, 53–62.
  • Laine, K., Antikainen, T., Rautkari, L., Hughes, M., (2013), Analysing density profile characteristics of surface densified solid wood using computational approach. International Wood Products Journal, 4(3), 144–149. DOI:10.1179/2042645313Y. 0000000031
  • Laine, K., (2014), Improving the properties of wood by surface densification. In Aalto University publication series Doctoral Dissertations 133/2014, 53(9), Aalto University publication series.
  • Laskowska, A., (2017), The influence of process parameters on the density profile and hardness of surface-densified birch wood (Betula pendula Roth). BioResources, 12(3), 6011–6023. DOI:10.15376/biores.12.3.6011-6023
  • Luan, Y., Liu, L., Ma, Y., Yang, Y., Jiang, M., Semple, K., Dai, C., Fei, B., Fang, C.,(2023), An integrated hydrothermal process of bamboo flattening, densification and drying: Mechanical properties and strengthening mechanisms. Materials & Design, 226, 111610, 1-11, DOI:10.1016/j.matdes.2023.111610
  • Luan,Y., Fang,CH, Ma, YF., Fei, BH, (2022), Wood mechanical densification: a review on processing, Materials and Manufacturing Processes, 37(4), 359-371, DOI: 10.1080/10426914.2021.2016816
  • Malkocoglu, A. (2007), Machining properties and surface roughness of various wood species planed in different conditions. Building and Environment, 42(7), 2562–2567. doi:10.1016/j.buildenv.2006.08.028
  • Malkocoglu, A., Özdemir, T., (2006), The machining properties of some hardwoods and softwoods naturally grown in Eastern Black Sea Region of Turkey, Journal of Materials Processing Technology, 173(3), 315–320, DOI: 10.1016/j.jmatprotec.2005.09.031
  • Özen, R. Sönmez A., (1990), Ahşap yüzeyler için hazırlanan verniklerin fiziksel, kimyasal ve mekanik etkilere karşı dayanaklıkları, Doğa Türk Tarım ve Ormancılık Dergisi, 1428-1436
  • Pelit, H., Sönmez, A., Budakçı, M., (2014), Effects of ThermoWood® process combined with thermo-mechanical densification on some physical properties of Scots pine (Pinus sylvestris L.), BioResources, 9(3), 4552-4567, DOI:10.15376/biores.9.3.4552-4567
  • Pelit, H., Arısüt, U., (2023), Roughness, wettability, and morphological properties of impregnated and densified wood materials, BioResources 18(1), 429-446. DOI:10.15376/biores.18.1.429-446
  • Rautkari, L., (2012), Surface modification of solid wood using different techniques. Department of Forest Products Technology, Aalto University, PhD Thesis, Finland.
  • Rautkari, Lauri, Properzi, M., Pichelin, F., Hughes, M., (2009), Surface modification of wood using friction, Wood Science and Technology, 43(3–4), 291–299. DOI:10.1007/s00226-008-0227-0
  • Sofuoglu, S.D., (2022), Ağaç malzemede Termo-Mekanik ypğunlaştırmanın parlaklık ve sertliğe etkisi, Türk Mühendislik Araştırma ve Eğitimi Dergisi, 1(1), 15-19.
  • Sofuoglu S.D., Tosun, M., Atilgan, A., (2022), Determination of the machining characteristics of Uludağ fir (Abies nordmanniana Mattf.) densified by compressing, Wood Material Science & Engineering, DOI: 10.1080/17480272.2022.2080586
  • Sofuoglu, S.D., Yeşil, H., (2016), Ahşap sertlik değerlerinin farklı metotlar kullanılarak karşılaştırılması, in Proc. IMCOFE International Multidisciplinary Congress of Eurasia, Jul. 2016, 480–485.
  • Şenol, S., (2018), Termo- Vibro - Mekanik ( TVM ) İşlem görmüş bazı ağaç malzemelerin fiziksel, mekanik ve teknolojik özelliklerinin belirlenmesi, Düzce Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi, Düzce.
  • Şenol, S., Budakçı, M., (2016), Mekanik odun modifikasyon metotları, Mugla Journal of Science and Technology, 2(2), 53–53. DOI:10.22531/muglajsci.283619
  • Tosun, M., Sofuoglu, S.D., (2021), Ağaç malzemenin sıkıştırılarak yoğunlaştırılması konusunda yapılan çalışmalar, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 4 (1), 91-102, DOI: 10.33725/mamad.911947
  • Tosun, M., Sofuoglu, S.D., (2023), Determination of processing characteristics of wood materials densified by compressing, Maderas-Cienc Tecnol, 25. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/5821.
  • TS EN ISO 2813 (2014), Boyalar ve vernikler - Metalik olmayan boya filmlerinin 20, 60 ve 85 açılarda parlaklık tayini, Türk Standartları Enstitüsü (TSE), Ankara
  • Zhong, Z.W., Hiziroglu, S., Chan, C.T.M., (2013), Measurement of the surface roughness of wood based materials used in furniture manufacture, Measurement, 46(4), 1482–1487. DOI:10.1016/j.measurement.2012.11.041

Use of spinning roller in cylindrical densification; change in hardness, brightness, and surface roughness in solid wood (Larch) after densification

Yıl 2023, , 14 - 25, 30.06.2023
https://doi.org/10.33725/mamad.1260723

Öz

Wooden materials have been widely used in all areas from the past to the present, as they have many positive properties. Improving its properties enables the usage areas to become widespread and this natural material to be preferred more. One of the studies carried out in order to improve the properties of wood material is the densification process. Densification processes are used to improve the physical and mechanical properties of wood material. Densification of wood material can be carried out using various methods. In this study, the intensification of the cylindrical turned larch (Pinus nigra Arnold) tree species was carried out on a lathe using a spinning roller designed and manufactured for this purpose. Densification processes were carried out at 0.081, 0.121 and 0.202 mm/rev feed rates, at 200 and 400 rev/min, at 0.5 and 1 mm densification depths. Hardness, gloss and roughness measurements were carried out on solid wood materials in the form of cylinders, which were not densified and their surfaces were densified under various densification conditions. An increase in hardness and brightness values and a decrease in roughness values (Ra and Rz) occurred under all condensation conditions. The highest hardness and gloss values were obtained at 1 mm densification depth, 200 rpm rotational speed and 0.121 mm/revolution feed rate. The lowest Rz value was obtained at 1 mm densification depth, 400 rpm rotational speed and 0.081 mm/revolution feed rate.

Kaynakça

  • Blomberg, J., Persson, B., (2004), Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process, Journal of Wood Science, 50(4), 307–314.
  • Blomberg, J., Persson, B., Blomberg, A., (2005), Effects of semi-isostatic densification of wood on the variation in strength properties with density, Wood Science and Technology, 39(5), 339–350.
  • Budakçı, M., Pelit, H., Sönmez, A., Korkmaz, M., (2016), The effects of densification and heat post-treatment on hardness and morphological properties of wood materials, BioResources, 11(3), 7822–7838. DOI:10.15376/biores.11.3.7822-7838
  • Budakçı, M., Şenol, S., Korkmaz, M., (2022), Thermo-Vibro-Mechanic® (TVM) wood densification method: Mechanical properties, BioResources 17(1), 1606-1626. DOI: 10.15376/biores.17.1.1606-1626.
  • Homan, W., Tjeerdsma, B., Beckers, E., Jorissen, A., (2000), Structural and other properties of modified wood, World Conference on Timber Engineering, 5.
  • ISO 468 (2009), Surface roughness-parameters, their values and general rules for specifying requirements, International Organization for Standardization, Geneva, Switzerland.
  • ISO 3274 (2005), Geometrical Product Specifications (GPS)-Surface texture: Profile method- Nominal characteristics of contact (stylus) instruments, International Organization for Standardization, Geneva, Switzerland.
  • ISO 4287 (1997), Geometrical product specifications surface texture profile method terms, definitions and surface texture parameters, International Organization for Standardization, Geneva, Switzerland.
  • Jakob, M., Czabany, I., Veigel, S., Müller, U., Gindl Altmutter, W., (2022), Comparing the suitability of domestic spruce, beech, and poplar wood for high-strength densified wood, European Journal of Wood and Wood Product, 80, 859–876, DOI: 10.1007/s00107-022-01828-0
  • Kamke, F. A., (2006), Densified radiata pine for structural composites, Maderas. Ciencia y Tecnología, 8(2), 83–92.
  • Kilic, M., Hiziroglu, S. and Burdurlu, E. (2006), Effect of machining on surface roughness of wood. Building and Environment, 41(8), 1074–1078. DOI:10.1016/j.buildenv.2005.05. 008
  • Korkut, S., Kocaefe, D., (2009), Isıl işlemin odun özellikleri üzerine etkisi. Düzce Üniversitesi Ormancılık Dergisi, 5(2), 11–34.
  • Kutnar, A., Šernek, M., (2007), Densification of wood. Gozdarstva in Lesarstva, 82, 53–62.
  • Laine, K., Antikainen, T., Rautkari, L., Hughes, M., (2013), Analysing density profile characteristics of surface densified solid wood using computational approach. International Wood Products Journal, 4(3), 144–149. DOI:10.1179/2042645313Y. 0000000031
  • Laine, K., (2014), Improving the properties of wood by surface densification. In Aalto University publication series Doctoral Dissertations 133/2014, 53(9), Aalto University publication series.
  • Laskowska, A., (2017), The influence of process parameters on the density profile and hardness of surface-densified birch wood (Betula pendula Roth). BioResources, 12(3), 6011–6023. DOI:10.15376/biores.12.3.6011-6023
  • Luan, Y., Liu, L., Ma, Y., Yang, Y., Jiang, M., Semple, K., Dai, C., Fei, B., Fang, C.,(2023), An integrated hydrothermal process of bamboo flattening, densification and drying: Mechanical properties and strengthening mechanisms. Materials & Design, 226, 111610, 1-11, DOI:10.1016/j.matdes.2023.111610
  • Luan,Y., Fang,CH, Ma, YF., Fei, BH, (2022), Wood mechanical densification: a review on processing, Materials and Manufacturing Processes, 37(4), 359-371, DOI: 10.1080/10426914.2021.2016816
  • Malkocoglu, A. (2007), Machining properties and surface roughness of various wood species planed in different conditions. Building and Environment, 42(7), 2562–2567. doi:10.1016/j.buildenv.2006.08.028
  • Malkocoglu, A., Özdemir, T., (2006), The machining properties of some hardwoods and softwoods naturally grown in Eastern Black Sea Region of Turkey, Journal of Materials Processing Technology, 173(3), 315–320, DOI: 10.1016/j.jmatprotec.2005.09.031
  • Özen, R. Sönmez A., (1990), Ahşap yüzeyler için hazırlanan verniklerin fiziksel, kimyasal ve mekanik etkilere karşı dayanaklıkları, Doğa Türk Tarım ve Ormancılık Dergisi, 1428-1436
  • Pelit, H., Sönmez, A., Budakçı, M., (2014), Effects of ThermoWood® process combined with thermo-mechanical densification on some physical properties of Scots pine (Pinus sylvestris L.), BioResources, 9(3), 4552-4567, DOI:10.15376/biores.9.3.4552-4567
  • Pelit, H., Arısüt, U., (2023), Roughness, wettability, and morphological properties of impregnated and densified wood materials, BioResources 18(1), 429-446. DOI:10.15376/biores.18.1.429-446
  • Rautkari, L., (2012), Surface modification of solid wood using different techniques. Department of Forest Products Technology, Aalto University, PhD Thesis, Finland.
  • Rautkari, Lauri, Properzi, M., Pichelin, F., Hughes, M., (2009), Surface modification of wood using friction, Wood Science and Technology, 43(3–4), 291–299. DOI:10.1007/s00226-008-0227-0
  • Sofuoglu, S.D., (2022), Ağaç malzemede Termo-Mekanik ypğunlaştırmanın parlaklık ve sertliğe etkisi, Türk Mühendislik Araştırma ve Eğitimi Dergisi, 1(1), 15-19.
  • Sofuoglu S.D., Tosun, M., Atilgan, A., (2022), Determination of the machining characteristics of Uludağ fir (Abies nordmanniana Mattf.) densified by compressing, Wood Material Science & Engineering, DOI: 10.1080/17480272.2022.2080586
  • Sofuoglu, S.D., Yeşil, H., (2016), Ahşap sertlik değerlerinin farklı metotlar kullanılarak karşılaştırılması, in Proc. IMCOFE International Multidisciplinary Congress of Eurasia, Jul. 2016, 480–485.
  • Şenol, S., (2018), Termo- Vibro - Mekanik ( TVM ) İşlem görmüş bazı ağaç malzemelerin fiziksel, mekanik ve teknolojik özelliklerinin belirlenmesi, Düzce Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi, Düzce.
  • Şenol, S., Budakçı, M., (2016), Mekanik odun modifikasyon metotları, Mugla Journal of Science and Technology, 2(2), 53–53. DOI:10.22531/muglajsci.283619
  • Tosun, M., Sofuoglu, S.D., (2021), Ağaç malzemenin sıkıştırılarak yoğunlaştırılması konusunda yapılan çalışmalar, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 4 (1), 91-102, DOI: 10.33725/mamad.911947
  • Tosun, M., Sofuoglu, S.D., (2023), Determination of processing characteristics of wood materials densified by compressing, Maderas-Cienc Tecnol, 25. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/5821.
  • TS EN ISO 2813 (2014), Boyalar ve vernikler - Metalik olmayan boya filmlerinin 20, 60 ve 85 açılarda parlaklık tayini, Türk Standartları Enstitüsü (TSE), Ankara
  • Zhong, Z.W., Hiziroglu, S., Chan, C.T.M., (2013), Measurement of the surface roughness of wood based materials used in furniture manufacture, Measurement, 46(4), 1482–1487. DOI:10.1016/j.measurement.2012.11.041
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Orman Endüstri Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Zafer Kaya 0000-0002-5489-3997

Sait Dündar Sofuoğlu 0000-0002-1847-6985

Erken Görünüm Tarihi 25 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 6 Mart 2023
Kabul Tarihi 16 Nisan 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Kaya, Z., & Sofuoğlu, S. D. (2023). Silindirik yoğunlaştırmada sıvama makarası kullanımı; masif ağaçta (Karaçam) yoğunlaştırılma sonrası sertlik, parlaklık ve yüzey pürüzlülüğü değişimi. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 6(1), 14-25. https://doi.org/10.33725/mamad.1260723

Uluslararası Dergidir

32217    18332 18333   3221918334 18335   18336   18339   18434   32216 32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400