Effect of fungal infection on physico-mechanical resistance of WPC made from thermally treated wood/PP
Yıl 2023,
, 90 - 103, 30.06.2023
Seyyed Khalil Hosseinihashemi
,
Farhad Arwinfar
Öz
The effect of fungal decay on the physico-mechanical characteristics of thermally treated wood flour-plastic composites was determined. Firstly, the wood chips (Fagus orientalis L.) were treated thermally for 30 and 120 minutes at various temperatures (120, 150, and 180 °C) under saturated vapour in a steaming vessel and they were ground by Wiley mill machine. Then, polypropylene, thermally treated wood flour, and MAPP as compatibilizer were used by melt compounding and injection molding process. Some physical and mechanical parameters were measured prior to and after fungal (Trametes versicolor) infection for 6 weeks. The flexural strength, flexural modulus, and impact strength of undecayed and decayed WPCs at 180 °C for 120 min and at 150 °C for 30 min increased, respectively, but the water uptake and thickness swelling of WPCs decreased at 180 °C for 120 min. The wood particles of WPCs treated at 180 °C for 120 minutes had the least mass loss. The mechanical property parameters were reduced after fungal infection. Moreover, the results showed that the moisture sorption and thickness swelling for all formulations of unrotted specimens were significantly lower than that of white-rotted specimens.
Teşekkür
The authors wish to thank for the support of the Department of Wood Science and Paper Technology, Karaj Branch, Islamic Azad University.
Kaynakça
- Ali MR, Abdullah UH, Ashaari Z, Hamid NH, Hua LS, (2021), Hydrothermal Modification of Wood: A Review. Polymers, 13(16):2612. DOI: 10.3390/polym13162612
- Altgen M, Willems W, Hosseinpourpia R, Rautkari L, (2018), Hydroxyl accessibility and dimensional changes of Scots pine sapwood affected by alterations in the cell wall ultrastructure during heat-treatment, Polymer Degradation and Stability,152:244-252. DOI: 10.1016/j.polymdegradstab.2018.05.005
- Arwinfar F, Hosseinihashemi SK, Jahan Latibari A, Lashgari A, Ayrilmis N, (2016), Mechanical properties and morphology of wood plastic composites produced with thermally treated beech wood, BioResources, 11(1):1494-1504. DOI: 10.15376/biores.11.1.1494-1504
- ASTM D 618, (1999), Practice for conditioning plastics and electrical insulating materials for testing.
- ASTM D 570, (1998), Standard Test Method for Water Absorption of Plastics.
- ASTM D 790, (2016), Flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, Philadelphia, PA. 1-9.
- ASTM D 256, (1997), Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics.
- Aytin A, Korkut S, Ünsal Ö, Çakıcıer N, (2015), The effects of heat treatment with the ThermoWood® method on the equilibrium moisture content and dimensional stability of wild cherry wood, BioResources, 10(2):2083-2093. DOI: 10.15376/biores.10.2.2083-2093
- Bal BC, (2015), Physical properties of beech wood thermally modified in hot oil and in hot air at various temperatures, Maderas Ciencia y tecnología, 17(4):789-798, DOI: 10.4067/S0718-221X2015005000068
- Can A, Krystofiak T, Lis B, (2021), Shear and adhesion strength of open and closed system heat-treated wood samples, Maderas Ciencia y tecnología, 23(32);1-10, DOI: 10.4067/s0718-221x2021000100432
- Chen F, Han G, Li Q, Gao X, Cheng W, (2017), High-temperature hot air/silane coupling modification of wood fiber and its effect on properties of wood fiber/HDPE composites, Materials, 10(3):286. DOI: 10.3390/ma10030286
- Clemons C, (2008), Raw materials for wood-polymer composites, In: Oksman Niska, K., Sain, M. (Eds.), Wood-Polymer Composites, first ed. CRC Press, Cambridge, UK, pp. 1-22. DOI: 10.1533/9781845694579.1
- Cui X, Matsumura J, (2019), Wood surface changes of heat-treated Cunninghamia lanceolate following natural weathering, Forests, 10(9):791. DOI: 10.3390/f10090791
- Durmaz E, Ucuncu T, Karamanoglu M, Kaymakcı A, (2019), Effects of heat treatment on some characteristics of Scots pine (Pinus sylvestris L.) wood, BioResources, 14(4):9531-9543. DOI: 10.15376/biores.14.4.9531-9543
- Endo KE, Obataya N, Zaniya N, Matsuo M, (2016), Effects of heating humidity on the physical properties of hydrothermally treated spruce wood, Wood Science and Technology, 50(6):1161-1179. DOI: 10.1007/s00226-016-0822-4
- Esteves BM, Pereira HM, (2009), Wood modification by heat treatment: A review. BioResources, 4(1):370-404. DOI: 10.15376/biores.4.1.370-404
- Gardner DJ, Tascioglu C, Wålinder MEP, (2003), Wood composite protection, In wood deterioration and preservation; ACS Publications: Washington, DC, USA, 2003; pp. 399-419. DOI: 10.1021/bk-2003-0845.ch025
- Hill CAS, (2006), Wood Modification: Chemical, Thermal and Other Processes, John Wiley & Sons, Hoboken, N. J., 2006, 239.
- Hosseinihashemi SK, Arwinfar F, Najafi A, Nemli G, Ayrilmis N, (2016), Long-term water absorption behavior of thermoplastic composites produced with thermally treated wood, Measurement, 86:202-208. DOI: 10.1016/j.measurement.2016.02.058
- Hosseinihashemi SK, Arwinfar F, Najafi A, Ozdemir F, Ayrilmis N, Tamjidi A, (2022), Long-term hygroscopic thickness swelling rate of hydrothermally treated beech wood / polypropylene composites, Drvna Industrija, 73(1): 59-68. DOI: 10.5552/drvind.2022.2104
- Jimenez JP, Acda MN, Razal RA, Madamba PS, (2011), Physico-mechanical properties and durability of thermally modified Malapapaya (Polyscias nodosa (Blume) Seem.) Wood, Philippine Journal of Science, 140(1), 13-23.
Jirouš-Rajković V, Miklečić J, (2019), Heat-treated wood as a substrate for coatings, weathering of heat-treated wood, and coating performance on heat-treated wood. Advances in Materials Science and Engineering, 2019, Article ID 8621486, 1-9. DOI: 10.1155/2019/8621486
- Kamdem DP, Pizzi A, Triboulot MC, (2000), Heat-treated timber: potentially toxic by-products presence and extent of wood cell wall degradation, Holz als Roh- und Werkstoff 58(4):253-257. DOI: 10.1007/s001070050420
- Kim G-H, Yun K-E, Kim J-J, (1998), Effect of heat treatment on the decay resistance and bending properties of radiata pine sapwood, Materials and Organisms, 32(2):101-108.
- Korkut DS, Hiziroglu S, Aytin A, (2013), Effect of heat treatment on surface characteristics of wild cherry wood, BioResources, 8(2):1582-1590. DOI:10.15376/biores.8.2.1582-1590
- Kozhin VP, Gorbachev NM, (2011), Hydrothermal treatment and modification of wood: drying, impregnation, in: Botannini LF, (Ed.), Wood: Types, Properties, and Uses, NOVA publisher, New York, pp. 1-49.
- Kubojima Y, Okano T, Ohta M, (2000), Bending strength and toughness of heat-treated wood. Journal of Wood Science, 46(1):8-15. DOI: 10.1007/BF00779547
- Lengowski EC, BonfattiJúnior EA, Nisgoski S, Bolzon de Muñiz GI, Klock U, (2021), Properties of thermally modified teakwood. Maderas Cienciay tecnología, 23(10):1-16. DOI: 10.4067/s0718-221x2021000100410
- Li MY, Cheng SC, Li D, Wang SN, Huang AM, Sun SQ, (2015), Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy, Chinese Chemical Letters, 26(2):221-225.
- Nuopponen M, (2005), FT-IR and UV Raman spectroscopic studies on thermal modification of Scots pine wood and its extractible compounds, Academic Dissertation, Helsinki University of Technology.
Oksman Niska K, Sain M, (2007), Wood-Polymer Composites, Woodhead Publishing Limited, Cambridge, U.K. 366 p.
- Perçin O, (2022), Effects of heat treatment on surface roughness and bonding strength of wood material, Furniture and Wooden Material Research Journal, 5(1):17-28. DOI: 10.33725/mamad.1119735
- Poncsak S, Kocaefe D, Younsi R, (2011), Improvement of heat treatment of jack pine (Pinus banksiana) using ThermoWood technology, European Journal of Wood and Wood Products, 69(2):281-286. DOI: 10.1007/s00107-010-0426-x
- Saliman MAR, Ashaari Z, Bakar ES, Hua LS, Tahir PM, Halip JA, Leemon NF, (2017), Hydrothermal treatment of oil palm wood: Effect of treatment variables on dimensional stability using response surface methodology, Journal of Oil Palm Research, 29(1):130-135. DOI: 10.21894/jopr.2017.2901.14
- Sulaiman O, Awalludin MF, Hashim R, Ibrahim H, Mondal MD, (2012), The effect of relative humidity on the physical and mechanical properties of oil palm trunk and rubberwood. Cellulose Chemistry and Technology, 46(5):401-407.
- Talaei A, Karimi A, (2015), Compression strength, hardness and shear strength of heat treated beech (Fagus orientalis) wood in buffered mediums, In: Proceeding of the 24th IIER International Conference, Barcelona, Spain.
- Theander O, Nelson DA, (1988), Aqueous, high-temperature transformation of carbohydrates relative to utilization of biomass, Advances in Carbohydrate Chemistry and Biochemistry, 46:273-326. DOI: 10.1016/S0065-2318(08)60169-9
- Tjeerdsma BF, Boostra M, Pizzi A, Tekely P, Militz H, (1998), Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz als Roh- und Werkstoff, 56(3):149-153. DOI: 10.1007/s001070050287
- Tjeerdsma BF, Militz H, (2005), Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat treated wood, Holz als Roh- und Werkstoff, 63(2):102-111. DOI: 10.1007/s00107-004-0532-8
- Wikberg H, (2004), Advanced solid state NMR spectroscopic techniques in the study of thermally modified wood, Academic Dissertation, Finland: Laboratory of Polymer Chemistry, Department of Chemistry, University of Helsinki, 40 pp.
- Wikberg H, Maunu S, (2004), Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR, Carbohydrate Polymers, 26(2):221-225. DOI: 10.1016/j.cclet.2014.11.024
- Yalcin M, Sahin HI, (2015), Changes in the chemical structure and decay resistance of heat-treated narrow-leaved Ash wood, Maderas Ciencia y Tecnología, 17(2):435-446. DOI: 10.4067/S0718-221X2015005000040
Mantar enfeksiyonunun ısıl işlem görmüş odun/pp kompozitlerin fiziko-mekanik direncine etkisi
Yıl 2023,
, 90 - 103, 30.06.2023
Seyyed Khalil Hosseinihashemi
,
Farhad Arwinfar
Öz
Mantar çürümesinin ısıl işlem görmüş odun unu-plastik kompozitlerin fiziko-mekanik özellikleri üzerindeki etkisi belirlendi. İlk olarak, odun talaşları (Fagus orientalis L.) buharlı bir kazanda doymuş buhar altında çeşitli sıcaklıklarda (120, 150 ve 180 °C) 30 ve 120 dakika termal işleme tabi tutulmuş ve Wiley değirmen makinesinde öğütülmüştür. Daha sonra polipropilen, ısıl işlem görmüş odun unu ve uyumlaştırıcı olarak MAPP eriyik birleştirme ve enjeksiyon kalıplama işlemi kullanılmıştır. Bazı fiziksel ve mekanik parametreler mantar (Trametes versicolor) enfeksiyonundan önce ve sonra 6 hafta boyunca ölçülmüştür. 180°C'de 120 dakika ve 150°C'de 30 dakika boyunca bozulmamış ve çürümüş WPC'lerin eğilme direnci, elastikiyet modülü ve darbe direnci sırasıyla arttı, ancak WPC'lerin su alma ve kalınlığına şişmesi 180°C'de 120 dakika boyunca azaldı. 180 °C'de 120 dakika muamele edilen WPC'lerin ahşap parçacıkları en az kütle kaybına sahipti. Mekanik özellikler, mantar enfeksiyonundan sonra azaldı. Ayrıca sonuçlar, çürümemiş numunelerin tüm formülasyonları için su alma ve kalınlığına şişmesinin beyaz çürüklük numunelerden önemli ölçüde daha düşük olduğunu göstermiştir.
Kaynakça
- Ali MR, Abdullah UH, Ashaari Z, Hamid NH, Hua LS, (2021), Hydrothermal Modification of Wood: A Review. Polymers, 13(16):2612. DOI: 10.3390/polym13162612
- Altgen M, Willems W, Hosseinpourpia R, Rautkari L, (2018), Hydroxyl accessibility and dimensional changes of Scots pine sapwood affected by alterations in the cell wall ultrastructure during heat-treatment, Polymer Degradation and Stability,152:244-252. DOI: 10.1016/j.polymdegradstab.2018.05.005
- Arwinfar F, Hosseinihashemi SK, Jahan Latibari A, Lashgari A, Ayrilmis N, (2016), Mechanical properties and morphology of wood plastic composites produced with thermally treated beech wood, BioResources, 11(1):1494-1504. DOI: 10.15376/biores.11.1.1494-1504
- ASTM D 618, (1999), Practice for conditioning plastics and electrical insulating materials for testing.
- ASTM D 570, (1998), Standard Test Method for Water Absorption of Plastics.
- ASTM D 790, (2016), Flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, Philadelphia, PA. 1-9.
- ASTM D 256, (1997), Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics.
- Aytin A, Korkut S, Ünsal Ö, Çakıcıer N, (2015), The effects of heat treatment with the ThermoWood® method on the equilibrium moisture content and dimensional stability of wild cherry wood, BioResources, 10(2):2083-2093. DOI: 10.15376/biores.10.2.2083-2093
- Bal BC, (2015), Physical properties of beech wood thermally modified in hot oil and in hot air at various temperatures, Maderas Ciencia y tecnología, 17(4):789-798, DOI: 10.4067/S0718-221X2015005000068
- Can A, Krystofiak T, Lis B, (2021), Shear and adhesion strength of open and closed system heat-treated wood samples, Maderas Ciencia y tecnología, 23(32);1-10, DOI: 10.4067/s0718-221x2021000100432
- Chen F, Han G, Li Q, Gao X, Cheng W, (2017), High-temperature hot air/silane coupling modification of wood fiber and its effect on properties of wood fiber/HDPE composites, Materials, 10(3):286. DOI: 10.3390/ma10030286
- Clemons C, (2008), Raw materials for wood-polymer composites, In: Oksman Niska, K., Sain, M. (Eds.), Wood-Polymer Composites, first ed. CRC Press, Cambridge, UK, pp. 1-22. DOI: 10.1533/9781845694579.1
- Cui X, Matsumura J, (2019), Wood surface changes of heat-treated Cunninghamia lanceolate following natural weathering, Forests, 10(9):791. DOI: 10.3390/f10090791
- Durmaz E, Ucuncu T, Karamanoglu M, Kaymakcı A, (2019), Effects of heat treatment on some characteristics of Scots pine (Pinus sylvestris L.) wood, BioResources, 14(4):9531-9543. DOI: 10.15376/biores.14.4.9531-9543
- Endo KE, Obataya N, Zaniya N, Matsuo M, (2016), Effects of heating humidity on the physical properties of hydrothermally treated spruce wood, Wood Science and Technology, 50(6):1161-1179. DOI: 10.1007/s00226-016-0822-4
- Esteves BM, Pereira HM, (2009), Wood modification by heat treatment: A review. BioResources, 4(1):370-404. DOI: 10.15376/biores.4.1.370-404
- Gardner DJ, Tascioglu C, Wålinder MEP, (2003), Wood composite protection, In wood deterioration and preservation; ACS Publications: Washington, DC, USA, 2003; pp. 399-419. DOI: 10.1021/bk-2003-0845.ch025
- Hill CAS, (2006), Wood Modification: Chemical, Thermal and Other Processes, John Wiley & Sons, Hoboken, N. J., 2006, 239.
- Hosseinihashemi SK, Arwinfar F, Najafi A, Nemli G, Ayrilmis N, (2016), Long-term water absorption behavior of thermoplastic composites produced with thermally treated wood, Measurement, 86:202-208. DOI: 10.1016/j.measurement.2016.02.058
- Hosseinihashemi SK, Arwinfar F, Najafi A, Ozdemir F, Ayrilmis N, Tamjidi A, (2022), Long-term hygroscopic thickness swelling rate of hydrothermally treated beech wood / polypropylene composites, Drvna Industrija, 73(1): 59-68. DOI: 10.5552/drvind.2022.2104
- Jimenez JP, Acda MN, Razal RA, Madamba PS, (2011), Physico-mechanical properties and durability of thermally modified Malapapaya (Polyscias nodosa (Blume) Seem.) Wood, Philippine Journal of Science, 140(1), 13-23.
Jirouš-Rajković V, Miklečić J, (2019), Heat-treated wood as a substrate for coatings, weathering of heat-treated wood, and coating performance on heat-treated wood. Advances in Materials Science and Engineering, 2019, Article ID 8621486, 1-9. DOI: 10.1155/2019/8621486
- Kamdem DP, Pizzi A, Triboulot MC, (2000), Heat-treated timber: potentially toxic by-products presence and extent of wood cell wall degradation, Holz als Roh- und Werkstoff 58(4):253-257. DOI: 10.1007/s001070050420
- Kim G-H, Yun K-E, Kim J-J, (1998), Effect of heat treatment on the decay resistance and bending properties of radiata pine sapwood, Materials and Organisms, 32(2):101-108.
- Korkut DS, Hiziroglu S, Aytin A, (2013), Effect of heat treatment on surface characteristics of wild cherry wood, BioResources, 8(2):1582-1590. DOI:10.15376/biores.8.2.1582-1590
- Kozhin VP, Gorbachev NM, (2011), Hydrothermal treatment and modification of wood: drying, impregnation, in: Botannini LF, (Ed.), Wood: Types, Properties, and Uses, NOVA publisher, New York, pp. 1-49.
- Kubojima Y, Okano T, Ohta M, (2000), Bending strength and toughness of heat-treated wood. Journal of Wood Science, 46(1):8-15. DOI: 10.1007/BF00779547
- Lengowski EC, BonfattiJúnior EA, Nisgoski S, Bolzon de Muñiz GI, Klock U, (2021), Properties of thermally modified teakwood. Maderas Cienciay tecnología, 23(10):1-16. DOI: 10.4067/s0718-221x2021000100410
- Li MY, Cheng SC, Li D, Wang SN, Huang AM, Sun SQ, (2015), Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy, Chinese Chemical Letters, 26(2):221-225.
- Nuopponen M, (2005), FT-IR and UV Raman spectroscopic studies on thermal modification of Scots pine wood and its extractible compounds, Academic Dissertation, Helsinki University of Technology.
Oksman Niska K, Sain M, (2007), Wood-Polymer Composites, Woodhead Publishing Limited, Cambridge, U.K. 366 p.
- Perçin O, (2022), Effects of heat treatment on surface roughness and bonding strength of wood material, Furniture and Wooden Material Research Journal, 5(1):17-28. DOI: 10.33725/mamad.1119735
- Poncsak S, Kocaefe D, Younsi R, (2011), Improvement of heat treatment of jack pine (Pinus banksiana) using ThermoWood technology, European Journal of Wood and Wood Products, 69(2):281-286. DOI: 10.1007/s00107-010-0426-x
- Saliman MAR, Ashaari Z, Bakar ES, Hua LS, Tahir PM, Halip JA, Leemon NF, (2017), Hydrothermal treatment of oil palm wood: Effect of treatment variables on dimensional stability using response surface methodology, Journal of Oil Palm Research, 29(1):130-135. DOI: 10.21894/jopr.2017.2901.14
- Sulaiman O, Awalludin MF, Hashim R, Ibrahim H, Mondal MD, (2012), The effect of relative humidity on the physical and mechanical properties of oil palm trunk and rubberwood. Cellulose Chemistry and Technology, 46(5):401-407.
- Talaei A, Karimi A, (2015), Compression strength, hardness and shear strength of heat treated beech (Fagus orientalis) wood in buffered mediums, In: Proceeding of the 24th IIER International Conference, Barcelona, Spain.
- Theander O, Nelson DA, (1988), Aqueous, high-temperature transformation of carbohydrates relative to utilization of biomass, Advances in Carbohydrate Chemistry and Biochemistry, 46:273-326. DOI: 10.1016/S0065-2318(08)60169-9
- Tjeerdsma BF, Boostra M, Pizzi A, Tekely P, Militz H, (1998), Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz als Roh- und Werkstoff, 56(3):149-153. DOI: 10.1007/s001070050287
- Tjeerdsma BF, Militz H, (2005), Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat treated wood, Holz als Roh- und Werkstoff, 63(2):102-111. DOI: 10.1007/s00107-004-0532-8
- Wikberg H, (2004), Advanced solid state NMR spectroscopic techniques in the study of thermally modified wood, Academic Dissertation, Finland: Laboratory of Polymer Chemistry, Department of Chemistry, University of Helsinki, 40 pp.
- Wikberg H, Maunu S, (2004), Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR, Carbohydrate Polymers, 26(2):221-225. DOI: 10.1016/j.cclet.2014.11.024
- Yalcin M, Sahin HI, (2015), Changes in the chemical structure and decay resistance of heat-treated narrow-leaved Ash wood, Maderas Ciencia y Tecnología, 17(2):435-446. DOI: 10.4067/S0718-221X2015005000040