Araştırma Makalesi
BibTex RIS Kaynak Göster

An evaluation of the kerf-cutting technique in wood

Yıl 2024, , 54 - 69, 30.06.2024
https://doi.org/10.33725/mamad.1473063

Öz

Wood has always been a source of inspiration for architects, interior designers, and furniture designers due to its lightness and environmental advantages compared to conventional building materials. Through the application of proper cutting and production techniques, wood can be transformed into a flexible structure. One such method is kerf-cutting. This technique is based on making cuts on a panel to form a specific pattern or shape, allowing a rigid material to become flexible. In this way, architectural elements and furniture products with flexible and shape-changing properties can be designed without the need for complex fabrication methods and advanced materials. This study examines the use of kerf-cutting in wood products and classifies them based on cutting technologies, production techniques, cutting types, and pattern types. Emphasizing the importance of the kerf-cutting technique in the field of woodworking and the increasing interest in recent years, this study offers an innovative production method for designers and manufacturers. This technique has the potential to expand the usage areas of wood products by contributing to the development of flexible and aesthetically unique designs.

Kaynakça

  • Aguilera, A., & Martin, P. (2001). Machining qualification of solid wood of fagus silvatica L. and Piceaexcelsa L.: Cutting forces, power requirements, and surface roughness. Holz als Roh-und Werkstoff, 59(6): 483-488. DOI: 10.1007/s001070100243.
  • Barabas, S. A. & Florescu, A. (2019). Optimization method of abrasive water jet cutting of welded overlay materials. Metals 9. 1046. DOI: 10.3390/met9101046. Belforte, D. A., & Jafferson, J. M. (2016). Laser cutting. In Reference Module in Materials Science and Materials Engineering. DOI: 10.1016/B978-0-12-803581-8.01853-1.
  • Bianconi, F. & Filippucci, M. (2020). Digital Wood Design Innovative Techniques of Representation in Architectural Design. Springer Press. ISBN 978-3-030-03675-1.
  • Black, I. & Chua, K.L. (1997). Laser cutting of thick ceramic tile. Journal of Optics & Laser Technology. 29(4): 193–205. DOI: 10.1016/S0030-3992(97)00005-4.
  • Breaz, R. E., Bologa, O., & Racz, S. G. (2017). Selecting between CNC milling, robot milling, and DMLS processes using a combined AHP and fuzzy approach. Procedia Computer Science, 122, 796-803. doi: DOI: 10.1016/j.procs.2017.11.439.
  • Caiazzo, F., Curico,F., Daurelio,G. & Minutolo, F.M.C., (2005). Laser cutting of different polymetric plastics (PE, PP, and PC) by a CO2 laser beam. Journal of Materials Processing Technology. 159: 279–285. DOI:10.1016/j.jmatprotec.2004.02.019.
  • Capone, M. & Lanzara, E. (2019a). Parametric Kerf Bending: Manufacturing double curvature surfaces for wooden furniture design. Digital Wood Design Innovative Techniques of Representation in Architectural Design. Springer. 415-439. DOI:10.1007/978-3-030-03676-8_15.
  • Capone, M. & Lanzara, E. (2019b). Kerf Bending Tests: Design for Manufacturing Doubly Ruled Surfaces. Springer International Publishing AG. 1117-1130. DOI: 10.1007/978-3-319-93749-6_92.
  • Chen, R., Turman, C., Jiang, M., Kalantar, N., Moreno, M. & Muliana, A. (2020). Mechanics of kerf patterns for creating freeform structures. Springer Nature. Springer-Verlag GmbH Austria: 231. 3499-3524. DOI: 10.1007/s00707-020-02713-8.
  • Den Bulcke, J. V., Acker, J.V. & De Smet, J. (2009). An experimental set-up for real-time continuous moisture measurements of plywood exposed to outdoor climate. Building and Environment. 44 (12). 2368-2377. DOI: 10.1016/j.buildenv.2009.03.021.
  • Dukta Flexible Wood (2018a). https://dukta.com/en/about-us/dukta. Erişim Tarihi: 14.02.2024.
  • Eltawahnia, H. A., Rossinib, N. S., Dassistib, M., Alrashedc, K., Aldahamc, T. Benyounisd, K. Y. & Olabie, A. G. (2013). Evaluation and optimization of Laser Cutting Parameters for Plywood Materials. Optics and Lasers in Engineering. 51(9) 1029-1043. DOI: 10.1016/j.optlaseng.2013.02.019.
  • Guo, X., Deng, M., Hu, Y., Wang, Y, & Ye, T. (2021). Morphology, mechanism and kerf variation during CO2 laser cutting pine wood. Journal of Manufacturing Processes. 68: 13–22. DOI:10.1016/j.jmapro.2021.05.036.
  • Güzelci, O.Z., Alaçam, S. & Bacınoğlu, Z. (2016). Enhancing flexibility of 2D planar materials by applying cut patterns for hands-on study models. SIGraDi, XX Congress of the Ibero American Society of Digital Graphics. Buenos Aires, Argentina. DOI: 10.5151/despro-sigradi2016-382.
  • Kalantar, N. & Borhani, A. (2018). Informing deformable formworks-parameterizing deformation behavior of a non-stretchable membrane via kerfing. CAADRIA 2018: Learning, Prototyping and Adapting. 339-348. DOI: 10.52842/conf.caadria.2018.2.339.
  • Khan, P.A.A., Cherif, Kudapa, S., Barnekov, V., & Mukherjee, K. (1991). High speed, high energy automated machining of hardwoods by using a carbon dioxide laser: ALPS. Laser Institute of America. 1722. 238-252. DOI:10.2351/1.5058446.
  • Menges, A., Schwinn, T. & Krieg, O. D. (2016). Advancing wood architecture: A computational approach. London: Routledge Taylor& Francis Group. ISBN: 9781317392330.
  • Muñoz, P. (2011). La flexibilidad en la generacion de la forma. Ediciones de la forma Press, Argentina.
  • Perez-Ubeda, R., Gutiérrez, S. & Stanisic, R.Z. (2018). A Study on robot arm machining: advance and future challenges. 29th DAAAM International Symposium on Intelligent Manufacturing and Automation. 932-940. DOI: 10.2507/29th.daaam.proceedings.134.
  • Peterson, J., Madson, G. & Moody, RC. (1981). Tensile strength of one, two, and three-ply glulam members of 2 by 6 douglas-fir. forest products journal. 31(1):42-48.
  • Pires, M.C. (1989). Plywood inlays through CO2 laser cutting. CO2 Laser and Applications. SPIE Proceedings. 1042: 97-102.
  • Shahid, Z., Hubbard, J. E., Kalantar, N. & Muliana, A. (2021). An Investigation of the dynamic response of architectural kerf structures. Austria: Springer-Verlag GmbH. 233.157-181. DOI:10.1007/s00707-021-03108-z .
  • Sharma, A., & Yadava, V. (2017). Experimental analysis of Nd-YAG laser cutting of sheet materials – A review. Optics & Laser Technology, 98 (Supplement C), 264-280. doi: DOI: 10.1016/j.optlastec.2017.08.002.
  • Skoblar, A., Andjelic, N., Zigulic, R. (2016). Determination of critical rotational speed of circular saws from natural frequencies of annular plate with analogous dimensions. International Journal for Quality Research, 10(1). 177-192. DOI: 10.18421/IJQR10.01-09.
  • Smorfitt, D. B., Herbohn, J. L., & Harrison, S. (1999). Factors in the acquisition and utilization of portable sawmills in Queensland. Australian Forestry. 62(1). 45-50. Doi: DOI:10.1080/00049158.1999.10674762.
  • Song, Y., Lv, Z., Bai, J., Niu, S., Wu, Z., Qin, L., Chen, Y., 1, Liang, L., Lei, Y., Jia, P., Shan, X. & Wang, L. (2022). Processes of the Reliability and Degradation Mechanism of High-Power Semiconductor Lasers. MDPI. 12(6). 2-26. DOI: 10.3390/cryst12060765
  • Thomasnet (2018). About CNC milling. https://www.thomasnet.com/about/cnc-milling-51276103.html, Erişim tarihi 01.02.2024.
  • Tsai, C., Chen, H. (2003). Laser cutting of thick ceramic substrates by controlled fracture technique. Journal of Materials Processing Technology. 136: 166–173. DOI:10.1016/S0924-0136(03)00134-1.
  • URL-1. Gregg Fleishman: Architecture for the new millennium, https://greggfleishman.com/, Erişim Tarihi: 10.02.2024.
  • URL-2. Achim Menges, http://www.achimmenges.net, Erişim Tarihi: 14.02.2024.
  • URL-3. Dango armchair by Polish designer Agnieszka Kowal, https://plainmagazine.com/dango-armchair-polish-designer-agnieszka-kowal/, Erişim Tarihi: 14.02.2024.
  • URL-4. Dukta Flexible Wood, https://dukta.com/, Erişim Tarihi: 12.02.2024.
  • URL-5. Spring Wood by Carolien Laro, https://www.dezeen.com/2011/01/05/spring-wood-by-carolien-laro/, Erişim Tarihi: 10.02.2024.
  • URL-6. Kenichi Sato Interactive Furniture, https://www.tokyoartbeat.com/en/events/-/2012%2F4809, Erişim Tarihi: 14.02.2024.
  • URL-7. Latkin Fetter, https://tr.pinterest.com/pin/709809591249310685/, Erişim Tarihi: 14.02.2024.
  • URL-8. Randy Weersing, https://www.core77.com/posts/22480/randy-weersings-zig-zag-chair-three-pieces-of-plywood-and-many-many-cuts-22480, Erişim Tarihi: 13.02.2024.
  • URL-9. Gramazio & Kohler Architects, https://www.gramaziokohler.com/web/d/installationen/227.html, Erişim Tarihi: 14.02.2024.
  • URL-10. Seth Rolland Custom Furniture Design, https://sethrolland.com/, Erişim Tarihi: 14.02.2024.
  • URL-11. Dewi Bekker, Quinten Peuling & Wisse, https://www.contemporist.com/clutch-is-made-from-wood-and-leather/, Erişim Tarihi: 15.02.2024.
  • Uslan, I. (2005). CO2 laser cutting: Kerf width variation during cutting. Proceedings of IMechE. Part B. Journal of Engineering Manufacture. 219: 572–577. DOI: 10.1243/095440505x32508.
  • Vay, O., De Borst, K., Hansmann, C., Teischinger, A. & Muller, U. (2015) Thermal conductivity of wood at angles to the principal anatomical directions. Wood Sci Technol. 49: 577–89. DOI:10.1007/s00226-015-0716-x.
  • Zarrinmehr, S., Akleman, E., Ettehad, M., Kalantar, N., & Borhani, A. (2017). Kerfing with generalized 2D meander-patterns: Conversion of Planar Rigid Panels into Locally- Flexible Panels with Stiffness Control. In G. Çagdas, M. Özkar, L. F. Gül, & E. Gürer (Eds.), Future Trajectories of Computation in Design (pp. 276-293). Istanbul, Turkey.
  • Zhang, H., Wang, J., Zhang, G., Gan, Z., Pan, Z., Hongliang Cui & Zhenqi Zhu (2005). Machining with flexible manipulator: Toward improving robotic machining performance. in proceedings. 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE. 1127–1132. DOI: 10.1109/AIM.2005.1511161.

Ahşap malzemede kerf kesim tekniği üzerine bir değerlendirme

Yıl 2024, , 54 - 69, 30.06.2024
https://doi.org/10.33725/mamad.1473063

Öz

Ahşap, geleneksel endüstriyel yapı malzemelerine kıyasla sağladığı hafiflik ve çevresel avantajlar ile mimarlar, iç mimarlar ve mobilya tasarımcıları için her zaman ilham kaynağı olmuştur. Ahşap, uygun kalınlıklarda doğru kesim ve üretim teknikleri uygulandığında esnek bir yapıya dönüştürülebilmektedir. Bu esnekliği kazandırma yöntemlerinden birisi de kerf kesim tekniğidir. Kerf kesim tekniği, bir panel üzerinde belirli bir desen veya şekil oluşturmak için kesimler yaparak sert bir malzemeyi esnek hale getirmeye dayanır. Bu sayede karmaşık fabrikasyon yöntemlerine ve ileri teknoloji malzemelere ihtiyaç duymadan, esnek ve şekil değiştirme özelliğine sahip mimari elemanlar ve mobilya ürünleri tasarlanabilir. Bu çalışmada, kerf kesim tekniğinin ahşap ürünlerdeki kullanım alanları incelenerek kesim teknolojileri, üretim teknikleri, kesim tipleri ve desen türleri üzerinden bir sınıflandırma yapılmaktadır. Kerf kesim tekniğinin ahşap işleri alanında önemini ve son yıllarda artan ilgiyi vurgulayan bu çalışma, tasarımcılar ve üreticiler için yenilikçi bir üretim yöntemi sunmaktadır. Bu teknik, esnek ve estetik açıdan özgün tasarımların geliştirilmesine katkıda bulunarak ahşap ürünlerin kullanım alanlarını genişletme potansiyeline sahiptir.

Destekleyen Kurum

Finansal destek alınmamıştır.

Kaynakça

  • Aguilera, A., & Martin, P. (2001). Machining qualification of solid wood of fagus silvatica L. and Piceaexcelsa L.: Cutting forces, power requirements, and surface roughness. Holz als Roh-und Werkstoff, 59(6): 483-488. DOI: 10.1007/s001070100243.
  • Barabas, S. A. & Florescu, A. (2019). Optimization method of abrasive water jet cutting of welded overlay materials. Metals 9. 1046. DOI: 10.3390/met9101046. Belforte, D. A., & Jafferson, J. M. (2016). Laser cutting. In Reference Module in Materials Science and Materials Engineering. DOI: 10.1016/B978-0-12-803581-8.01853-1.
  • Bianconi, F. & Filippucci, M. (2020). Digital Wood Design Innovative Techniques of Representation in Architectural Design. Springer Press. ISBN 978-3-030-03675-1.
  • Black, I. & Chua, K.L. (1997). Laser cutting of thick ceramic tile. Journal of Optics & Laser Technology. 29(4): 193–205. DOI: 10.1016/S0030-3992(97)00005-4.
  • Breaz, R. E., Bologa, O., & Racz, S. G. (2017). Selecting between CNC milling, robot milling, and DMLS processes using a combined AHP and fuzzy approach. Procedia Computer Science, 122, 796-803. doi: DOI: 10.1016/j.procs.2017.11.439.
  • Caiazzo, F., Curico,F., Daurelio,G. & Minutolo, F.M.C., (2005). Laser cutting of different polymetric plastics (PE, PP, and PC) by a CO2 laser beam. Journal of Materials Processing Technology. 159: 279–285. DOI:10.1016/j.jmatprotec.2004.02.019.
  • Capone, M. & Lanzara, E. (2019a). Parametric Kerf Bending: Manufacturing double curvature surfaces for wooden furniture design. Digital Wood Design Innovative Techniques of Representation in Architectural Design. Springer. 415-439. DOI:10.1007/978-3-030-03676-8_15.
  • Capone, M. & Lanzara, E. (2019b). Kerf Bending Tests: Design for Manufacturing Doubly Ruled Surfaces. Springer International Publishing AG. 1117-1130. DOI: 10.1007/978-3-319-93749-6_92.
  • Chen, R., Turman, C., Jiang, M., Kalantar, N., Moreno, M. & Muliana, A. (2020). Mechanics of kerf patterns for creating freeform structures. Springer Nature. Springer-Verlag GmbH Austria: 231. 3499-3524. DOI: 10.1007/s00707-020-02713-8.
  • Den Bulcke, J. V., Acker, J.V. & De Smet, J. (2009). An experimental set-up for real-time continuous moisture measurements of plywood exposed to outdoor climate. Building and Environment. 44 (12). 2368-2377. DOI: 10.1016/j.buildenv.2009.03.021.
  • Dukta Flexible Wood (2018a). https://dukta.com/en/about-us/dukta. Erişim Tarihi: 14.02.2024.
  • Eltawahnia, H. A., Rossinib, N. S., Dassistib, M., Alrashedc, K., Aldahamc, T. Benyounisd, K. Y. & Olabie, A. G. (2013). Evaluation and optimization of Laser Cutting Parameters for Plywood Materials. Optics and Lasers in Engineering. 51(9) 1029-1043. DOI: 10.1016/j.optlaseng.2013.02.019.
  • Guo, X., Deng, M., Hu, Y., Wang, Y, & Ye, T. (2021). Morphology, mechanism and kerf variation during CO2 laser cutting pine wood. Journal of Manufacturing Processes. 68: 13–22. DOI:10.1016/j.jmapro.2021.05.036.
  • Güzelci, O.Z., Alaçam, S. & Bacınoğlu, Z. (2016). Enhancing flexibility of 2D planar materials by applying cut patterns for hands-on study models. SIGraDi, XX Congress of the Ibero American Society of Digital Graphics. Buenos Aires, Argentina. DOI: 10.5151/despro-sigradi2016-382.
  • Kalantar, N. & Borhani, A. (2018). Informing deformable formworks-parameterizing deformation behavior of a non-stretchable membrane via kerfing. CAADRIA 2018: Learning, Prototyping and Adapting. 339-348. DOI: 10.52842/conf.caadria.2018.2.339.
  • Khan, P.A.A., Cherif, Kudapa, S., Barnekov, V., & Mukherjee, K. (1991). High speed, high energy automated machining of hardwoods by using a carbon dioxide laser: ALPS. Laser Institute of America. 1722. 238-252. DOI:10.2351/1.5058446.
  • Menges, A., Schwinn, T. & Krieg, O. D. (2016). Advancing wood architecture: A computational approach. London: Routledge Taylor& Francis Group. ISBN: 9781317392330.
  • Muñoz, P. (2011). La flexibilidad en la generacion de la forma. Ediciones de la forma Press, Argentina.
  • Perez-Ubeda, R., Gutiérrez, S. & Stanisic, R.Z. (2018). A Study on robot arm machining: advance and future challenges. 29th DAAAM International Symposium on Intelligent Manufacturing and Automation. 932-940. DOI: 10.2507/29th.daaam.proceedings.134.
  • Peterson, J., Madson, G. & Moody, RC. (1981). Tensile strength of one, two, and three-ply glulam members of 2 by 6 douglas-fir. forest products journal. 31(1):42-48.
  • Pires, M.C. (1989). Plywood inlays through CO2 laser cutting. CO2 Laser and Applications. SPIE Proceedings. 1042: 97-102.
  • Shahid, Z., Hubbard, J. E., Kalantar, N. & Muliana, A. (2021). An Investigation of the dynamic response of architectural kerf structures. Austria: Springer-Verlag GmbH. 233.157-181. DOI:10.1007/s00707-021-03108-z .
  • Sharma, A., & Yadava, V. (2017). Experimental analysis of Nd-YAG laser cutting of sheet materials – A review. Optics & Laser Technology, 98 (Supplement C), 264-280. doi: DOI: 10.1016/j.optlastec.2017.08.002.
  • Skoblar, A., Andjelic, N., Zigulic, R. (2016). Determination of critical rotational speed of circular saws from natural frequencies of annular plate with analogous dimensions. International Journal for Quality Research, 10(1). 177-192. DOI: 10.18421/IJQR10.01-09.
  • Smorfitt, D. B., Herbohn, J. L., & Harrison, S. (1999). Factors in the acquisition and utilization of portable sawmills in Queensland. Australian Forestry. 62(1). 45-50. Doi: DOI:10.1080/00049158.1999.10674762.
  • Song, Y., Lv, Z., Bai, J., Niu, S., Wu, Z., Qin, L., Chen, Y., 1, Liang, L., Lei, Y., Jia, P., Shan, X. & Wang, L. (2022). Processes of the Reliability and Degradation Mechanism of High-Power Semiconductor Lasers. MDPI. 12(6). 2-26. DOI: 10.3390/cryst12060765
  • Thomasnet (2018). About CNC milling. https://www.thomasnet.com/about/cnc-milling-51276103.html, Erişim tarihi 01.02.2024.
  • Tsai, C., Chen, H. (2003). Laser cutting of thick ceramic substrates by controlled fracture technique. Journal of Materials Processing Technology. 136: 166–173. DOI:10.1016/S0924-0136(03)00134-1.
  • URL-1. Gregg Fleishman: Architecture for the new millennium, https://greggfleishman.com/, Erişim Tarihi: 10.02.2024.
  • URL-2. Achim Menges, http://www.achimmenges.net, Erişim Tarihi: 14.02.2024.
  • URL-3. Dango armchair by Polish designer Agnieszka Kowal, https://plainmagazine.com/dango-armchair-polish-designer-agnieszka-kowal/, Erişim Tarihi: 14.02.2024.
  • URL-4. Dukta Flexible Wood, https://dukta.com/, Erişim Tarihi: 12.02.2024.
  • URL-5. Spring Wood by Carolien Laro, https://www.dezeen.com/2011/01/05/spring-wood-by-carolien-laro/, Erişim Tarihi: 10.02.2024.
  • URL-6. Kenichi Sato Interactive Furniture, https://www.tokyoartbeat.com/en/events/-/2012%2F4809, Erişim Tarihi: 14.02.2024.
  • URL-7. Latkin Fetter, https://tr.pinterest.com/pin/709809591249310685/, Erişim Tarihi: 14.02.2024.
  • URL-8. Randy Weersing, https://www.core77.com/posts/22480/randy-weersings-zig-zag-chair-three-pieces-of-plywood-and-many-many-cuts-22480, Erişim Tarihi: 13.02.2024.
  • URL-9. Gramazio & Kohler Architects, https://www.gramaziokohler.com/web/d/installationen/227.html, Erişim Tarihi: 14.02.2024.
  • URL-10. Seth Rolland Custom Furniture Design, https://sethrolland.com/, Erişim Tarihi: 14.02.2024.
  • URL-11. Dewi Bekker, Quinten Peuling & Wisse, https://www.contemporist.com/clutch-is-made-from-wood-and-leather/, Erişim Tarihi: 15.02.2024.
  • Uslan, I. (2005). CO2 laser cutting: Kerf width variation during cutting. Proceedings of IMechE. Part B. Journal of Engineering Manufacture. 219: 572–577. DOI: 10.1243/095440505x32508.
  • Vay, O., De Borst, K., Hansmann, C., Teischinger, A. & Muller, U. (2015) Thermal conductivity of wood at angles to the principal anatomical directions. Wood Sci Technol. 49: 577–89. DOI:10.1007/s00226-015-0716-x.
  • Zarrinmehr, S., Akleman, E., Ettehad, M., Kalantar, N., & Borhani, A. (2017). Kerfing with generalized 2D meander-patterns: Conversion of Planar Rigid Panels into Locally- Flexible Panels with Stiffness Control. In G. Çagdas, M. Özkar, L. F. Gül, & E. Gürer (Eds.), Future Trajectories of Computation in Design (pp. 276-293). Istanbul, Turkey.
  • Zhang, H., Wang, J., Zhang, G., Gan, Z., Pan, Z., Hongliang Cui & Zhenqi Zhu (2005). Machining with flexible manipulator: Toward improving robotic machining performance. in proceedings. 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE. 1127–1132. DOI: 10.1109/AIM.2005.1511161.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ahşap Yapılar ve Konstrüksiyonları
Bölüm Araştırma Makaleleri
Yazarlar

Gökçe Kırkpınar 0009-0005-7630-5331

Yenal Akgün 0000-0001-5595-9153

Matthieu Joseph Pedergnana Bu kişi benim 0000-0001-7343-4166

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 24 Nisan 2024
Kabul Tarihi 21 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kırkpınar, G., Akgün, Y., & Pedergnana, M. J. (2024). Ahşap malzemede kerf kesim tekniği üzerine bir değerlendirme. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 7(1), 54-69. https://doi.org/10.33725/mamad.1473063

Uluslararası Dergidir

32217    18332 18333   3221918334 18335   18336   18339   18434   32216 32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400