Araştırma Makalesi
BibTex RIS Kaynak Göster

Kerf-kesme tekniği uygulanmış ahşapların eğilme davranışının deneysel analizi

Yıl 2025, Cilt: 8 Sayı: 1, 17 - 29, 30.06.2025
https://doi.org/10.33725/mamad.1643493

Öz

Tarih boyunca ekolojik faydaları ve hafifliği ile bilinen ahşap, doğru tekniklerle işlendiğinde esneklik kabiliyetini arttırabilmektedir. Bu esneklik, farklı mimari ürün ve mobilyaların üretilmesine ilham yaratmıştır. Bu çalışmanın amacı, kerf kesim tekniği ile esneklik kazandırılmış farklı doğal ahşap numunelerinin esneklik düzeylerini ve bu düzeylerde taşıyabildikleri azami yükü incelemektir. Literatürde, kerf kesim tekniklerinin farklı doğal ve endüstriyel ahşap ürünlerini ne kadar esnekleştirebildiğine dair çalışmalar olsa da kerf tekniğinin sağladığı esneklik ile taşıma kapasitesi arasındaki ilişki incelenmemiştir. Çalışma bu açıdan özgündür. Makalede öncelikle farklı ağaç türlerinin genel fiziksel özellikleri ve eğilme kapasiteleri incelenmiştir. Sonrasında ise iki etaplı bir deneysel çalışma ortaya konmuştur. Bu deneysel çalışmanın ilk aşamasında, farklı kerf kesim tekniklerinin ahşabın esnekliğine etkisi, ikinci aşamada ise üç farklı ahşap tipinin esneklik ve taşıma kapasiteleri araştırılmıştır. Sonuçlara göre, dişbudağın en fazla esnekliğe sahip olduğu, cevizin ise yük taşıma kapasitesi olarak dişbudaktan daha yüksek mukavemet gösterdiği, dolayısıyla daha fazla mukavemet gerektiren tasarımlar için uygun olduğu belirlenmiştir.

Kaynakça

  • Alden, H. A. (1997). Softwoods of North America (Gen. Tech. Rep. FPL–GTR–102). U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. DOI: 10.2737/FPL-GTR-102.
  • As, N. & Büyüksarı, Ü. (2010). Bending of Solid Wood, Journal of the Faculty of Forestry. Istanbul University. 60(1). 29-37. DOI: 10.17099/jffiu.17763.
  • Bianconi, F., & Filippucci, M. (2020). Digital wood design: Innovative techniques of representation in architectural design. Springer.
  • Capone, M., & Lanzara, E. (2019). Parametric kerf bending: Manufacturing double curvature surfaces for wooden furniture design. In F. Bianconi & M. Filippucci (Eds.), Digital wood design: Innovative techniques of representation in architectural design (pp. 415-439). Springer. DOI: 10.1007/978-3-030-03676-8_15.
  • Doğu, A. D. (2016). The importance of wood identification, Journal of Restoration and Conservation Studies, (16), 59-71. 10.2488/jwrs.62.240.
  • Farmer, R. H. (1972). Handbook of Hardwoods (2nd ed.). Building research establishment, princes risborough laboratory. London: Her Majesty’s Stationery Office.
  • Florkowsk, M., Kuniewski, M. & Mikrut, P. (2024). Effects of mechanical transversal bending of power cable on partial discharges and dielectric-loss evolution. IEEE Transactions on Dielectrics and Electrical Insulation, 31(6), 3277-3284. DOI: 10.1109/TDEI.2024.3382642
  • Greenberg, E., & Körner, A. (2014). Subtractive manufacturing for variable-stiffness plywood composite structures. In the International Conference on Sustainable Design and Manufacturing.
  • Hao, X. & Chen, S. (2024). Mechanical properties of glass plate during anticlastic cold bending. challenging glass conference proceedings. 9. Louter, Bos & Belis (Eds.) International Conference on the Architectural and Structural Application of Glass Challenging Glass Conference 9 – 19 & 20 June 2024 – TU Delft – The Netherlands. DOI: 10.47982/cgc.9.613.
  • Kırkpınar, G., Akgün, Y. & Pedergnana, J. M., (2024). Ahşap malzemede kerf kesim tekniği üzerine bir değerlendirme, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 7 (1), 54-69, DOI: 10.33725/mamad.1473063.
  • Kretschmann, D. (2010). Wood handbook: Wood as an engineering material. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
  • Kukachka, B. F. (1970). Properties of imported tropical woods (Res. Pap. FPL 125). U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
  • Kwon, E., Park, H. & Yang, J. (2024). Hot bending–quenching characteristics of heat treatable A6063 aluminum tubes, Metals, 14. 1380. DOI: 10.3390/met14121380.
  • Lee, C., Hwang, J. & Oh, S. (2021). Effect of combined radio-frequency/vacuum-press drying on the strength properties of Japanese larch board, Drying Technology. 40(14). 1-8. DOI: 10.1080/07373937.2021.1967972
  • Mao, J., Yuan, J., Guo, Z., Tian, P., Zhang, J. & Zhang, Q. (2024). Enhancing bending performance of ultrathin flexible glass through chemical strengthening, International Journal of Applied Glass Science. 15(3). 267-275. DOI: 10.1111/ijag.16659.
  • Shahid, Z., Hubbard, J. E., Kalantar, N., & Muliana, A. (2021). An investigation of the dynamic response of architectural kerf structures, Austria: Springer-Verlag GmbH. 233, 157-181. 10.1007/s00707-021-03108-z.
  • Shi, J., Li, Z., Chen, H., Wu, Z., Ji, J., Xia, C., & Zhong, T. (2024). Tunable bending characteristics of bamboo by regulating moisture content for bamboo curved component manufacturing, Industrial Crops and Products. DOI: 10.1016/j.indcrop.2024.119365.
  • Teuffel, P., et al. (2009). Computational morphogenesis using environmental simulation tools. In Valencia Symposium of the International Association for Shell and Spatial Structures: Evolution and Trends in Design, Analysis, and Construction of Shell and Spatial Structures: Proceedings. Editorial Universitat Politècnica de València.
  • Timberpolis. (2003). Timberpolis wood species. Retrieved January 12, 2024, from https://www.timberpolis.net/wood-species.
  • Whinney, C. (2019). Wood steam: Discover the unique craft of steam bending. London: Kyle Books. Zarrinmehr, S., Akleman, E., Ettehad, M., Kalantar, N., & Borhani, A. (2017). Kerfing with generalized 2D meander patterns: Conversion of planar rigid panels into locally flexible panels with stiffness control. In G. Çagdas, M. Özkar, L. F. Gül, & E. Gürer (Eds.), Future trajectories of computation in design. 276-293. Istanbul, Turkey: Publisher.
  • Zhang, Y., Cui, Y., Wang, S., Zhao, X., Wang, F. & Wu, G. (2020). Effect of Microwave Treatment on Bending Properties of carbon nanotube/Wood Plastic Composites by Selective Laser Sintering, Materials Letters. 267. DOI: 10.1016/j.matlet.2020.127547

Experimental analysis of the bending behavior of woods with kerf-cutting technique

Yıl 2025, Cilt: 8 Sayı: 1, 17 - 29, 30.06.2025
https://doi.org/10.33725/mamad.1643493

Öz

Throughout history, wood has been recognized for its ecological benefits and lightness. Its flexibility can be significantly enhanced when processed with proper techniques, inspiring various architectural products and furniture. This study aims to investigate the bending capacity of different natural wood samples made flexible using the kerf-cutting technique and the maximum load they can bear at their maximum bending capacity. Although there are studies on how kerf-cutting techniques can increase the flexibility of various wood products, the relationship between the bending capacity provided by the kerf technique and load-bearing capacity has not been examined, making this study original. The paper first examines the general physical properties and bending capacities of different wood types. Then, a two-stage experimental study is presented. The first step discusses the effects of different kerf-cutting techniques on wood flexibility. In the second step, the bending and load-bearing capacities of three different types of wood are investigated. Results indicate that ash has the highest flexibility, while walnut demonstrates greater load-bearing strength than ash, making it suitable for designs requiring higher strength.

Kaynakça

  • Alden, H. A. (1997). Softwoods of North America (Gen. Tech. Rep. FPL–GTR–102). U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. DOI: 10.2737/FPL-GTR-102.
  • As, N. & Büyüksarı, Ü. (2010). Bending of Solid Wood, Journal of the Faculty of Forestry. Istanbul University. 60(1). 29-37. DOI: 10.17099/jffiu.17763.
  • Bianconi, F., & Filippucci, M. (2020). Digital wood design: Innovative techniques of representation in architectural design. Springer.
  • Capone, M., & Lanzara, E. (2019). Parametric kerf bending: Manufacturing double curvature surfaces for wooden furniture design. In F. Bianconi & M. Filippucci (Eds.), Digital wood design: Innovative techniques of representation in architectural design (pp. 415-439). Springer. DOI: 10.1007/978-3-030-03676-8_15.
  • Doğu, A. D. (2016). The importance of wood identification, Journal of Restoration and Conservation Studies, (16), 59-71. 10.2488/jwrs.62.240.
  • Farmer, R. H. (1972). Handbook of Hardwoods (2nd ed.). Building research establishment, princes risborough laboratory. London: Her Majesty’s Stationery Office.
  • Florkowsk, M., Kuniewski, M. & Mikrut, P. (2024). Effects of mechanical transversal bending of power cable on partial discharges and dielectric-loss evolution. IEEE Transactions on Dielectrics and Electrical Insulation, 31(6), 3277-3284. DOI: 10.1109/TDEI.2024.3382642
  • Greenberg, E., & Körner, A. (2014). Subtractive manufacturing for variable-stiffness plywood composite structures. In the International Conference on Sustainable Design and Manufacturing.
  • Hao, X. & Chen, S. (2024). Mechanical properties of glass plate during anticlastic cold bending. challenging glass conference proceedings. 9. Louter, Bos & Belis (Eds.) International Conference on the Architectural and Structural Application of Glass Challenging Glass Conference 9 – 19 & 20 June 2024 – TU Delft – The Netherlands. DOI: 10.47982/cgc.9.613.
  • Kırkpınar, G., Akgün, Y. & Pedergnana, J. M., (2024). Ahşap malzemede kerf kesim tekniği üzerine bir değerlendirme, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 7 (1), 54-69, DOI: 10.33725/mamad.1473063.
  • Kretschmann, D. (2010). Wood handbook: Wood as an engineering material. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
  • Kukachka, B. F. (1970). Properties of imported tropical woods (Res. Pap. FPL 125). U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
  • Kwon, E., Park, H. & Yang, J. (2024). Hot bending–quenching characteristics of heat treatable A6063 aluminum tubes, Metals, 14. 1380. DOI: 10.3390/met14121380.
  • Lee, C., Hwang, J. & Oh, S. (2021). Effect of combined radio-frequency/vacuum-press drying on the strength properties of Japanese larch board, Drying Technology. 40(14). 1-8. DOI: 10.1080/07373937.2021.1967972
  • Mao, J., Yuan, J., Guo, Z., Tian, P., Zhang, J. & Zhang, Q. (2024). Enhancing bending performance of ultrathin flexible glass through chemical strengthening, International Journal of Applied Glass Science. 15(3). 267-275. DOI: 10.1111/ijag.16659.
  • Shahid, Z., Hubbard, J. E., Kalantar, N., & Muliana, A. (2021). An investigation of the dynamic response of architectural kerf structures, Austria: Springer-Verlag GmbH. 233, 157-181. 10.1007/s00707-021-03108-z.
  • Shi, J., Li, Z., Chen, H., Wu, Z., Ji, J., Xia, C., & Zhong, T. (2024). Tunable bending characteristics of bamboo by regulating moisture content for bamboo curved component manufacturing, Industrial Crops and Products. DOI: 10.1016/j.indcrop.2024.119365.
  • Teuffel, P., et al. (2009). Computational morphogenesis using environmental simulation tools. In Valencia Symposium of the International Association for Shell and Spatial Structures: Evolution and Trends in Design, Analysis, and Construction of Shell and Spatial Structures: Proceedings. Editorial Universitat Politècnica de València.
  • Timberpolis. (2003). Timberpolis wood species. Retrieved January 12, 2024, from https://www.timberpolis.net/wood-species.
  • Whinney, C. (2019). Wood steam: Discover the unique craft of steam bending. London: Kyle Books. Zarrinmehr, S., Akleman, E., Ettehad, M., Kalantar, N., & Borhani, A. (2017). Kerfing with generalized 2D meander patterns: Conversion of planar rigid panels into locally flexible panels with stiffness control. In G. Çagdas, M. Özkar, L. F. Gül, & E. Gürer (Eds.), Future trajectories of computation in design. 276-293. Istanbul, Turkey: Publisher.
  • Zhang, Y., Cui, Y., Wang, S., Zhao, X., Wang, F. & Wu, G. (2020). Effect of Microwave Treatment on Bending Properties of carbon nanotube/Wood Plastic Composites by Selective Laser Sintering, Materials Letters. 267. DOI: 10.1016/j.matlet.2020.127547
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ahşap Fiziği ve Mekaniği, Ahşap Yapılar ve Konstrüksiyonları
Bölüm Araştırma Makalesi
Yazarlar

Gökçe Kırkpınar 0009-0005-7630-5331

Yenal Akgün 0000-0001-5595-9153

Matthieu Joseph Pedergnana Bu kişi benim 0000-0001-7343-4166

Gönderilme Tarihi 20 Şubat 2025
Kabul Tarihi 20 Nisan 2025
Erken Görünüm Tarihi 4 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Kırkpınar, G., Akgün, Y., & Pedergnana, M. J. (2025). Experimental analysis of the bending behavior of woods with kerf-cutting technique. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 8(1), 17-29. https://doi.org/10.33725/mamad.1643493

Uluslararası Dergidir

33353  32217  18332 18333   3221918334 18335   18336   18339   18434    32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400  

34808
  
https://atif.sobiad.com/index.jsp