Araştırma Makalesi
BibTex RIS Kaynak Göster

Improving durability and mechanical resistance of wood/plastic composites through boric acid treatment

Yıl 2025, Cilt: 8 Sayı: 1, 172 - 187, 30.06.2025
https://doi.org/10.33725/mamad.1710675

Öz

In this study, the effects of boric acid (BA) treatment on the mechanical properties and decay resistance of poplar wood flour/polypropylene composites (WPCs) were investigated. Three composite groups were prepared: untreated WPC (UT-WPC), BA-treated WPC with in-process powder addition (BA-T-WPC), and BA-pretreated WPC using aqueous BA solution (BA-PT-WPC). Mechanical properties including flexural strength and modulus, tensile strength and modulus, hardness, and impact strength were evaluated before and after exposure to fungal decay (Trametes versicolor). The results showed that boric acid treatment improved several mechanical properties of undecayed WPC. Specifically, BA-T-WPC exhibited the highest flexural strength (50.77 MPa) and modulus (3473 MPa), while BA-PT-WPC demonstrated superior tensile modulus (4563 MPa) and impact strength (49.40 J/m). Decay exposure decreased all mechanical properties across all groups, although BA-treated samples retained slightly higher performance compared to the untreated control. These findings suggest that boric acid can effectively enhance the mechanical behavior and decay resistance of WPCs through both direct and pretreatment methods.

Kaynakça

  • Adhikary, K.B., Park, C.B., Islam, M.R., Rizvi, & G.M. (2011). Effects of lubricant content on extrusion processing and mechanical properties of wood flour-high-density polyethylene composites, Journal of Thermoplastic Composite Materials, 24(2),155-171. DOI: 10.1177/%200892705710388590
  • Ashori, A. (2008). Wood-plastic composites as promising green-composites for automotive industries, Bioresource Technology, 99 (11), 4661-4667. DOI: 10.1016/j.biortech.2007.09.043
  • ASTM D 618. (1999). Practice for conditioning plastics and electrical insulating materials for testing, ASTM International, West Conshohocken, Philadelphia.
  • ASTM D 570. (1998). Standard Test Method for Water Absorption of Plastics, ASTM International, West Conshohocken, Philadelphia.
  • ASTM D 790. (2016), Flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, Philadelphia, PA. 1-9.
  • ASTM D 256. (1997), Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics, ASTM International, West Conshohocken, Philadelphia.
  • Ayrilmis, N., Benthien, J.T., Thoemen, H., White, & R.H. (2012). Effects of fire retardants on physical, mechanical and fire properties of flat-pressed WPCs, Europian Journal of Wood and Wood Products, 70, 215-224. DOI: 10.1007/s00107-011-0541-3
  • Ayrilmis, N., Akbulut, T., Dundar, T., White, R.H., Mengeloglu, F., Buyuksari, U., Candan, Z., & Avci, E. (2012). Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites, Construction and Building Materials, 33, 63-69. DOI: 10.1016/j.conbuildmat.2012.01.013
  • Ayrilmis, N., Benthien, J.T., Thoemen, H., White, & R.H. (2011). Properties of flat-pressed wood plastic composites containing fire retardants, Journal of Applied Polymer Science, 122(5), 3201-3210. DOI: 10.1002/app.34346
  • Badritala, A., Hosseini Hashemi, S.K., Kord, B., Zabihzadeh, S.M., & Safdari, V. (2013). Morphology and mechanical properties of zinc borate-pretreated poplar wood flour/plastic composite, BioResources, 8(1), 913-922. DOI: 10.15376/biores.8.1.913-922 Bal, B.C. (2022). Lineer düşük yoğunluklu polietilen (LDYPE) ve odun unu ile üretilen kompozit malzemenin bazı teknolojik özellikleri üzerine bir araştırma, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 5(1), 40-49. DOI: 10.33725/mamad.1126534
  • Bal, B.C., Altuntaş, E., & Narlıoğlı, N. (2023). Some selected properties of composite material produced from plastic furniture waste and wood flour, Furniture and Wooden Material Research Journal, 6(2), 233-244. DOI: 10.33725/mamad.138421423
  • Baysal, E., Yalinkilic, M.K., Altinok, M., Sonmez, A., Peker, H., & Çolak, M. (2007). Some physical, wood polymer biological, mechanical, and fire properties of composite (WPC) pretreated with boric acid and borax mixture, Construction and Building Materials, 21(9), 1879-1885. DOI: 10.1016/j.conbuildmat.2006.05.026
  • Cavdar, A.D., Tomak, E.D., & Mengeloglu, F. (2018). Long-term leaching effect on decay resistance of wood-plastic composites treated with boron compounds, Journal of Polymers and the Environment, 26, 756-764. DOI: 10.1007/s10924-017-0992-7
  • Chaharmahali, M., Mirbagheri, J., Tajvidi, M., Kazemi, N.S., & Mirbagheri, Y. (2010). Mechanical and physical properties of wood-plastic composite panels, Journal of Reinforced Plastics Composites, 29(2), 310-319. DOI: 10.1177/0731684408093877
  • Chapple, S., & Anandjiwala, R. (2010). Flammability of natural fiber-reinforced composites and strategies for fire retardancy: A Review, Journal of Thermoplastic Composite Materials, 23(6), 871-893. DOI: 10.1177/0892705709356338
  • Chen, P.Y.S., Puttmann, M.E., Williams, L.H., & Stokke, D.D. (1997). Treatment of hardwood lumber with borate preservation, Forest Products Journal, 47(6), 63-68.
  • Clemons, C.M. (2002). Wood-plastic composites in the United States: The interfacing of two industries, Forest Products Journal, 52(6), 10-18.
  • Devi, R.R., & Maji, T.K. (2007). Effect of glycidyl methacrylate on the physical properties of wood-polymer composites, Polymer Composites, 28(1), 1-5, DOI: 10.1002/pc.20265
  • Drysdale, J.A. (1994). Boron treatments for the preservation of wood—a review of efficacy data for fungi and termites, The International Research Group on Wood Preservation, Document IRG/WP, 8 pp.
  • Fruno, T., Uehara, T., & Joda, S. (1993). Combinations of wood and silicate. 3. Some properties of wood mineral composites using the water glass–boron compound system, Mokuzai Gakkaishi, 39(5), 561-570.
  • Gurunathan, T., Mohanty, S., & Nayak, S.K., (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives, Composites Part A: Applied Science and Manufacturing, 77, 1-25. DOI: 10.1016/j.compositesa.2015.06.007
  • Hornsby, P.R., Hinrichsen, E., & Tarverdi, K. (1997). Preparation and properties of polyethylene composites reinforced with wheat and flax straw fibre: Part II Analysis of composite microstructure and mechanical properties, Journal of Materials Science, 32(4), 1009-1015. DOI: 10.1023/A:1018578322498
  • Hosseini Hashemi, S.K., Jahan Latibari, A., Khademi-Eslam, H., & Faraji Alamuti, R. (2010). Effect of boric acid treatment on decay resistance and mechanical properties of poplar wood, BioResources, 5(2), 690-698. DOI: 10.15376/biores.5.2.690-698
  • Hosseinihashemi, S.K., & Arwinfar, F. (2023). Effect of fungal infection on physico-mechanical resistance of WPC made from thermally treated wood/PP, Furniture and Wooden Material Research Journal, 6(1), 90-103. DOI: 10.33725/mamad.1300208
  • Kartal, S.N., Hwang, W.J., & Imamura, Y. (2007). Water absorption of boron-treated and heat-modified wood, Journal of Wood Science, 53, 454-457. DOI: 10.1007/s10086-007-0877
  • Kurt, R., & Mengeloglu, F. (2011). Utilization of boron compounds as synergists with ammonium polyphosphate for flame retardant wood-polymer composites, Turkish Journal of Agriculture and Forestry, 35(2), 155-163. DOI: 10.3906/tar-0910-508
  • Matuana, L.M., Park, C.B., & Balatinecz, J.J. (1998). Cell morphology and property relationships of microcellular foamed PVC/wood-fiber composites. Polymer Engineering & Science, 38(11), 1862-1872. DOI: 10.1002/pen.10356
  • Mouritz, A.P., & Gibson, A.G. (2006). Flame retardant composites. In fire properties of polymer composite materials, 237-286. Gladwell GML, (ed.), Springer: London, UK.
  • Murphy, R.J. (1990). Historical perspective in Europa. In: Hamel M, (ed.) Proceedings of the First International Conference on Wood Protection With Diffusible Preservatives, Nashville, Tennessee, 28-30 Nov. Pp 9-13.
  • Murphy, R.J., Barnes, M., & Gary, S.M. (1995). Decay and soil depletion studies with polymer–boron preservatives, Forest Products Journal, 45(9), 77-81.
  • Nicholas, D.D., Jin, L, Preston, & A.F. (1990). Immediate research needs for diffusible boron preservatives, In: Hamel M, (Ed.), Proceeding of First International Conference on Wood Protection with Diffusible Preservatives, November 28-30, Nashville, Tennessee. pp 121-126.
  • Örçen, G., & Bayram, D. (2024). Effects of boric acid on laminated composites: An experimental study, Polymers, 16(15). 2133. DOI: 10.3390/polym16152133
  • Schneider, M.H., Phillips, J.G., & Lande, S. (2000). Physical and mechanical properties of wood polymer composites, Journal of Forest Engineering, 11(1), 83-89.
  • Stark, N.M., & Berger, M.J. (1997). Effect of species and particle size on properties of wood flour filled polypropylene composites. In Proc. Functional Fillers for Thermoplastics and Thermosets, Interteck Conferences, SanDiego, CA. December 8-10, pp. 1-16.
  • Ünal, H., Yetgin, S.H., & Köse, S. (2023). Determination of mechanical performance of boric acid filled polypropylene based polymer composites, Jornal of Scientific Reports-A, 055, 185-192. DOI: 10.59313/jsr-a.1354200
  • Winandy, J.E., & Rowell, R.M. (1984). The chemistry of wood strength, In: Rowell RM, (ed.). The Chemistry of Solid Wood, Advances in the Chemistry Series 207, American Chemical Society, 211-255.
  • Yalinkilic, M.K., Baysal, E., & Demirci, Z. (1997). Fire resistance of Calabrian pine (Pinus brutia Ten.) wood treated with some boron compounds and/or water repellents, Turkish Journal Agriculture and Forestry, 21(5), 423-431. DOI: 10.55730/1300-011x.2796
  • Zhang, J., Koubaa, A., Xing, D., Godard, F., Li, P., Tao, Y., Wang, X-M., & Wang, H. (2021) Fire retardancy, water absorption, and viscoelasticity of borated wood—polycarbonate biocomposites, Polymers, 13(14), 2234. DOI: 10.3390/polym13142234

Ahşap/plastik kompozitlerin dayanıklılığı ve mekanik direncinin borik asit uygulamasıyla artırılması

Yıl 2025, Cilt: 8 Sayı: 1, 172 - 187, 30.06.2025
https://doi.org/10.33725/mamad.1710675

Öz

Bu çalışmada, borik asit (BA) işleminin kavak odun unu/polipropilen kompozitlerinin (WPC'ler) mekanik özellikleri ve çürümeye karşı direnci üzerindeki etkileri araştırılmıştır. Üç kompozit grubu hazırlanmıştır: işlenmemiş WPC (UT-WPC), işlem sırasında toz halinde BA ilave edilerek hazırlanmış WPC (BA-T-WPC) ve sulu BA çözeltisiyle ön işlem uygulanmış WPC (BA-PT-WPC). Eğilme direnci, eğilme modülü, çekme direnci,çekme modülü, sertlik, ve darbe direnci gibi mekanik özellikler Trametes versicolor mantarıyla çürütme öncesi ve sonrası değerlendirilmiştir. Sonuçlar, borik asit işleminin çürümemiş WPC'nin bazı mekanik özelliklerini geliştirdiğini göstermiştir. Özellikle, BA-T-WPC en yüksek eğilme direnci (50.77 MPa) ve modülünü (3473 MPa) sergilerken, BA-PT-WPC en yüksek çekme modülü (4563 MPa) ve darbe dayanımı (49.40 J/m) göstermiştir. Çürümeye maruz kalma tüm gruplarda mekanik özellikleri azaltmış olsa da, BA ile muamele edilmiş örnekler, işlem görmemiş kontrol grubuna kıyasla biraz daha yüksek performans göstermiştir. Bu bulgular, borik asidin hem doğrudan hem de ön işlem yoluyla WPC'lerin mekanik davranışını ve çürümeye karşı direncini etkili bir şekilde artırabileceğini göstermektedir.

Kaynakça

  • Adhikary, K.B., Park, C.B., Islam, M.R., Rizvi, & G.M. (2011). Effects of lubricant content on extrusion processing and mechanical properties of wood flour-high-density polyethylene composites, Journal of Thermoplastic Composite Materials, 24(2),155-171. DOI: 10.1177/%200892705710388590
  • Ashori, A. (2008). Wood-plastic composites as promising green-composites for automotive industries, Bioresource Technology, 99 (11), 4661-4667. DOI: 10.1016/j.biortech.2007.09.043
  • ASTM D 618. (1999). Practice for conditioning plastics and electrical insulating materials for testing, ASTM International, West Conshohocken, Philadelphia.
  • ASTM D 570. (1998). Standard Test Method for Water Absorption of Plastics, ASTM International, West Conshohocken, Philadelphia.
  • ASTM D 790. (2016), Flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, Philadelphia, PA. 1-9.
  • ASTM D 256. (1997), Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics, ASTM International, West Conshohocken, Philadelphia.
  • Ayrilmis, N., Benthien, J.T., Thoemen, H., White, & R.H. (2012). Effects of fire retardants on physical, mechanical and fire properties of flat-pressed WPCs, Europian Journal of Wood and Wood Products, 70, 215-224. DOI: 10.1007/s00107-011-0541-3
  • Ayrilmis, N., Akbulut, T., Dundar, T., White, R.H., Mengeloglu, F., Buyuksari, U., Candan, Z., & Avci, E. (2012). Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites, Construction and Building Materials, 33, 63-69. DOI: 10.1016/j.conbuildmat.2012.01.013
  • Ayrilmis, N., Benthien, J.T., Thoemen, H., White, & R.H. (2011). Properties of flat-pressed wood plastic composites containing fire retardants, Journal of Applied Polymer Science, 122(5), 3201-3210. DOI: 10.1002/app.34346
  • Badritala, A., Hosseini Hashemi, S.K., Kord, B., Zabihzadeh, S.M., & Safdari, V. (2013). Morphology and mechanical properties of zinc borate-pretreated poplar wood flour/plastic composite, BioResources, 8(1), 913-922. DOI: 10.15376/biores.8.1.913-922 Bal, B.C. (2022). Lineer düşük yoğunluklu polietilen (LDYPE) ve odun unu ile üretilen kompozit malzemenin bazı teknolojik özellikleri üzerine bir araştırma, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 5(1), 40-49. DOI: 10.33725/mamad.1126534
  • Bal, B.C., Altuntaş, E., & Narlıoğlı, N. (2023). Some selected properties of composite material produced from plastic furniture waste and wood flour, Furniture and Wooden Material Research Journal, 6(2), 233-244. DOI: 10.33725/mamad.138421423
  • Baysal, E., Yalinkilic, M.K., Altinok, M., Sonmez, A., Peker, H., & Çolak, M. (2007). Some physical, wood polymer biological, mechanical, and fire properties of composite (WPC) pretreated with boric acid and borax mixture, Construction and Building Materials, 21(9), 1879-1885. DOI: 10.1016/j.conbuildmat.2006.05.026
  • Cavdar, A.D., Tomak, E.D., & Mengeloglu, F. (2018). Long-term leaching effect on decay resistance of wood-plastic composites treated with boron compounds, Journal of Polymers and the Environment, 26, 756-764. DOI: 10.1007/s10924-017-0992-7
  • Chaharmahali, M., Mirbagheri, J., Tajvidi, M., Kazemi, N.S., & Mirbagheri, Y. (2010). Mechanical and physical properties of wood-plastic composite panels, Journal of Reinforced Plastics Composites, 29(2), 310-319. DOI: 10.1177/0731684408093877
  • Chapple, S., & Anandjiwala, R. (2010). Flammability of natural fiber-reinforced composites and strategies for fire retardancy: A Review, Journal of Thermoplastic Composite Materials, 23(6), 871-893. DOI: 10.1177/0892705709356338
  • Chen, P.Y.S., Puttmann, M.E., Williams, L.H., & Stokke, D.D. (1997). Treatment of hardwood lumber with borate preservation, Forest Products Journal, 47(6), 63-68.
  • Clemons, C.M. (2002). Wood-plastic composites in the United States: The interfacing of two industries, Forest Products Journal, 52(6), 10-18.
  • Devi, R.R., & Maji, T.K. (2007). Effect of glycidyl methacrylate on the physical properties of wood-polymer composites, Polymer Composites, 28(1), 1-5, DOI: 10.1002/pc.20265
  • Drysdale, J.A. (1994). Boron treatments for the preservation of wood—a review of efficacy data for fungi and termites, The International Research Group on Wood Preservation, Document IRG/WP, 8 pp.
  • Fruno, T., Uehara, T., & Joda, S. (1993). Combinations of wood and silicate. 3. Some properties of wood mineral composites using the water glass–boron compound system, Mokuzai Gakkaishi, 39(5), 561-570.
  • Gurunathan, T., Mohanty, S., & Nayak, S.K., (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives, Composites Part A: Applied Science and Manufacturing, 77, 1-25. DOI: 10.1016/j.compositesa.2015.06.007
  • Hornsby, P.R., Hinrichsen, E., & Tarverdi, K. (1997). Preparation and properties of polyethylene composites reinforced with wheat and flax straw fibre: Part II Analysis of composite microstructure and mechanical properties, Journal of Materials Science, 32(4), 1009-1015. DOI: 10.1023/A:1018578322498
  • Hosseini Hashemi, S.K., Jahan Latibari, A., Khademi-Eslam, H., & Faraji Alamuti, R. (2010). Effect of boric acid treatment on decay resistance and mechanical properties of poplar wood, BioResources, 5(2), 690-698. DOI: 10.15376/biores.5.2.690-698
  • Hosseinihashemi, S.K., & Arwinfar, F. (2023). Effect of fungal infection on physico-mechanical resistance of WPC made from thermally treated wood/PP, Furniture and Wooden Material Research Journal, 6(1), 90-103. DOI: 10.33725/mamad.1300208
  • Kartal, S.N., Hwang, W.J., & Imamura, Y. (2007). Water absorption of boron-treated and heat-modified wood, Journal of Wood Science, 53, 454-457. DOI: 10.1007/s10086-007-0877
  • Kurt, R., & Mengeloglu, F. (2011). Utilization of boron compounds as synergists with ammonium polyphosphate for flame retardant wood-polymer composites, Turkish Journal of Agriculture and Forestry, 35(2), 155-163. DOI: 10.3906/tar-0910-508
  • Matuana, L.M., Park, C.B., & Balatinecz, J.J. (1998). Cell morphology and property relationships of microcellular foamed PVC/wood-fiber composites. Polymer Engineering & Science, 38(11), 1862-1872. DOI: 10.1002/pen.10356
  • Mouritz, A.P., & Gibson, A.G. (2006). Flame retardant composites. In fire properties of polymer composite materials, 237-286. Gladwell GML, (ed.), Springer: London, UK.
  • Murphy, R.J. (1990). Historical perspective in Europa. In: Hamel M, (ed.) Proceedings of the First International Conference on Wood Protection With Diffusible Preservatives, Nashville, Tennessee, 28-30 Nov. Pp 9-13.
  • Murphy, R.J., Barnes, M., & Gary, S.M. (1995). Decay and soil depletion studies with polymer–boron preservatives, Forest Products Journal, 45(9), 77-81.
  • Nicholas, D.D., Jin, L, Preston, & A.F. (1990). Immediate research needs for diffusible boron preservatives, In: Hamel M, (Ed.), Proceeding of First International Conference on Wood Protection with Diffusible Preservatives, November 28-30, Nashville, Tennessee. pp 121-126.
  • Örçen, G., & Bayram, D. (2024). Effects of boric acid on laminated composites: An experimental study, Polymers, 16(15). 2133. DOI: 10.3390/polym16152133
  • Schneider, M.H., Phillips, J.G., & Lande, S. (2000). Physical and mechanical properties of wood polymer composites, Journal of Forest Engineering, 11(1), 83-89.
  • Stark, N.M., & Berger, M.J. (1997). Effect of species and particle size on properties of wood flour filled polypropylene composites. In Proc. Functional Fillers for Thermoplastics and Thermosets, Interteck Conferences, SanDiego, CA. December 8-10, pp. 1-16.
  • Ünal, H., Yetgin, S.H., & Köse, S. (2023). Determination of mechanical performance of boric acid filled polypropylene based polymer composites, Jornal of Scientific Reports-A, 055, 185-192. DOI: 10.59313/jsr-a.1354200
  • Winandy, J.E., & Rowell, R.M. (1984). The chemistry of wood strength, In: Rowell RM, (ed.). The Chemistry of Solid Wood, Advances in the Chemistry Series 207, American Chemical Society, 211-255.
  • Yalinkilic, M.K., Baysal, E., & Demirci, Z. (1997). Fire resistance of Calabrian pine (Pinus brutia Ten.) wood treated with some boron compounds and/or water repellents, Turkish Journal Agriculture and Forestry, 21(5), 423-431. DOI: 10.55730/1300-011x.2796
  • Zhang, J., Koubaa, A., Xing, D., Godard, F., Li, P., Tao, Y., Wang, X-M., & Wang, H. (2021) Fire retardancy, water absorption, and viscoelasticity of borated wood—polycarbonate biocomposites, Polymers, 13(14), 2234. DOI: 10.3390/polym13142234
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ahşap Esaslı Kompozitler
Bölüm Araştırma Makalesi
Yazarlar

Seyyed Khalil Hosseinihashemi 0000-0001-6236-0376

Alireza Badritala Bu kişi benim 0009-0002-4224-1606

Maliheh Akhtari Bu kişi benim 0000-0001-6374-8196

Gönderilme Tarihi 31 Mayıs 2025
Kabul Tarihi 29 Haziran 2025
Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Hosseinihashemi, S. K., Badritala, A., & Akhtari, M. (2025). Improving durability and mechanical resistance of wood/plastic composites through boric acid treatment. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 8(1), 172-187. https://doi.org/10.33725/mamad.1710675

Uluslararası Dergidir

33353  32217  18332 18333   3221918334 18335   18336   18339   18434    32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400  

34808