Araştırma Makalesi
BibTex RIS Kaynak Göster

3B yazıcıda farklı baskı yönlerinde üretilen PLA ve PLA Wood cıvataların mekanik özelliklerinin incelenmesi

Yıl 2025, Cilt: 8 Sayı: 2, 220 - 235, 16.12.2025
https://doi.org/10.33725/mamad.1734199

Öz

Bu çalışmada, ticari Poliamid 6.6 (PA 6.6) cıvata ile eriyik yığma modelleme (EYM) yöntemiyle üretilen saf (katkısız) PLA (polilaktik asit) ve PLA-Wood (odun unu katkılı PLA) cıvataların tork dayanımları ve kırılma yüzeyleri incelenmiştir. 3B yazıcıda farklı baskı yönlerinde (0°, 45°, 90°) M8x1.25x70 boyutlarında cıvatalar üretilmiştir. Malzemelerin çekme, eğme, sertlik ve yüzey pürüzlülüğü özellikleri karşılaştırılmıştır. Çekme testinde, saf PLA malzemesi PLA-Wood’a göre yaklaşık %45; eğilme testinde ise %52 daha yüksek dayanım göstermiştir. Yüzey pürüzlülüğü açısından PLA-Wood, saf PLA’ya göre %29 daha pürüzlü yüzey sunmuştur. Tork testlerinde saf PLA, PLA-Wood’a kıyasla %79 daha yüksek tork dayanımı sergilemiştir. Ticari PA 6.6 cıvata ise yalnızca saf PLA’nın 0° yönelimli numunesinden daha düşük performans göstermiştir. Bu bulgular, baskı yöneliminin ve malzeme seçiminin 3B yazdırılmış bağlantı elemanlarının performansı üzerinde belirleyici olduğunu ve 0° yönelimin genel olarak en avantajlı sonuçları sağladığını ortaya koymaktadır. Elde edilen veriler, hafif yapısal uygulamalarda ve montaj-tamirat işlerinde referans niteliğindedir.

Kaynakça

  • ASTM D638., (2022). Standard test method for tensile properties of plastics. In ASTM International. Retrieved from https://store.astm.org/d0638-22.html
  • ASTM D790., (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical ınsulating materials. ASTM International. Retrieved from https://store.astm.org/d0790-17.html
  • ASTM D2240., (2021). Standard test method for rubber property/durometer hardness. ASTM International. Retrieved from https://store.astm.org/d2240-15r21.html
  • Anaç, N. Koçar. O., (2024). Malik, V., Tiwary, V., and Padmakumar, A. (2024). Investigation of the effect of bonding parameters on the adhesive bonding strength of parts produced by FDM-3D Method, Malik, V., Tiwary, V., and Padmakumar, A. (Ed.), Post-Processing of Parts and Components Fabricated by Fused Deposition Modeling: Techniques and Advancements (1st edition, ss. 123-142). Routledge Taylor & Framcis Group, DOI: 10.1201/9781032665351
  • Avcı, B., Çavdar, A.D., and Mengeloğlu, F., (2022). Odun polimer kompozitlerin doğal ve yapay (suni) yaşlandırma sonrası özelliklerinde meydana gelen değişiklikler, Ormancılık Araştırma Dergisi, 9(Özel Sayı), 264–270, DOI: 10.17568/ogmoad.1091198
  • Ayrilmis, N., Kariz, M., Kwon, J. H., and Kitek Kuzman, M. (2019). Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials, The International Journal of Advanced Manufacturing Technology, 102(5), 2195–2200, DOI: 10.1007/s00170-019-03299-9
  • Bharat, N., Jain, R., and Bose, P. S. C. (2024). A comprehensive overview on additive manufacturing processes: materials, applications, and challenges, In V. S. Sharma, U. S. Dixit, A. Gupta, R. Verma, and V. Sharma (Eds.), Machining and Additive Manufacturing (pp. 95–105).
  • Bintara, R., Pradana, Y., Aminnudin, A., and Suryanto, H. (2023). The orientation and high-quality effect of deposit layer to surface roughness on FDM 3D Printed Part. Key Engineering Materials, 940, 95–99, DOI: 10.4028/p-29nh6i
  • Buj-Corral, I., Domínguez-Fernández, A., and Durán-Llucià, R. (2019). Influence of print orientation on surface roughness in fused deposition modeling (FDM) Processes. Materials, 12(23), DOI: 10.3390/ma12233834
  • Chen, S., Khan, S. B., Li, N., and Xiao, C. (2025). In-depth analysis of sintering, exposure time, and layer height (um) in LRS 3D printed devices with DLP, Journal of Manufacturing Processes, 133, 576–591, DOI: 10.1016/J.JMAPRO.2024.11.060
  • De Castro Magalhães, F., and Campos Rubio, Juan Carlos. (2025). Enhancing mechanical properties and structural behaviour of PLA/wood composites through annealing at 50°C and 100°C, Journal of Composite Materials, 00219983251329111, DOI: 10.1177/00219983251329111
  • Dembri, I., Belaadi, A., Lekrine, A., Jawaid, M., Ismail, A. S., and Ghernaout, D., (2024). Effect of alkaline treatment on the thermo-physicochemical and mechanical properties of biochar powder/Washingtonia robusta fibers/PLA hybrid biocomposites, Journal of Materials Research and Technology, 33, 9735–9751, DOI: 10.1016/J.JMRT.2024.12.018
  • Doğru, A., Kaçak, M., and Seydibeyoǧlu, M., (2024). Examination of mechanical properties of fasteners produced with PET and PLA Materials in extrusion-based additive manufacturing method. International Journal of 3D Printing Technologies and Digital Industry, 8, 407–415, DOI: 10.46519/ij3dptdi.1549143
  • Domingo-Espin, M., Puigoriol-Forcada, J. M., Garcia-Granada, A. A., Llumà, J., Borros, S., and Reyes, G. (2015). Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts, Materials & Design, 83, 670–677, DOI: 10.1016/J.MATDES.2015.06.074
  • Drazan, T., Chadima, V., Jasik, K., Sarzyński, B., Krchova, M., and Dobrocky, D., (2025). Analysıs of 3D printed metric nuts manufactured by the MEX method from ASA material. MM Science Journal, 2025, DOI: 10.17973/MMSJ.2025_06_2025063
  • Durmaz, S. (2022). Mermer atıklarının düz presleme yöntemiyle üretilen odun plastik kompozitlerinde değerlendirilmesi, Bartın Orman Fakültesi Dergisi, 24(2), 220–227, DOI: 10.24011/barofd.1084516
  • Efe, H., and İmirzi, H. Ö. (2007). Mobilya üretiminde kullanılan çeşitli bağlantı elemanlarının mekanik davranış özellikleri, Politeknik Dergisi, 10(1), 93–103.
  • Er, A. O., and Aydınlı, O. M. (2023). Ergiyik filament ile imalat yönteminde kullanılan PLA ve çelik katkılı PLA filament malzemelerin mekanik ve fiziksel özelliklerinin incelenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 1285–1302, DOI: 10.17341/gazimmfd.1276420
  • Fountas, N. A., Zaoutsos, S., Chaidas, D., Kechagias, J. D., and Vaxevanidis, N. M. (2023). Statistical modelling and optimization of mechanical properties for PLA and PLA/Wood FDM materials, Materials Today: Proceedings, 93, 824–830, DOI: 10.1016/J.MATPR.2023.08.276
  • Garg, A., Bhattacharya, A., and Batish, A. (2017). Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength, The International Journal of Advanced Manufacturing Technology, 89(5), 2175–2191, DOI: 10.1007/s00170-016-9257-1
  • Górski, F., Kuczko, W., and Wichniarek, R. (2013). Influence of process parameters on dimensional accuracy of parts manufactured using fused deposition modelling technology. Advances in Science and Technology Research Journal, 7, 27–35, DOI: 10.5604/20804075.1062340
  • Gurrala, P. K., and and Regalla, S. P. (2014). Part strength evolution with bonding between filaments in fused deposition modelling, Virtual and Physical Prototyping, 9(3), 141–149, DOI: 10.1080/17452759.2014.913400
  • Harshitha, V., and Rao, S. S. (2019). Design and analysis of ISO standard bolt and nut in FDM 3D printer using PLA and ABS materials, Materials Today: Proceedings, 19, 583–588, DOI: 10.1016/J.MATPR.2019.07.737
  • Jadhav, A., and Jadhav, V. S. (2022). A review on 3D printing: An additive manufacturing technology. Materials Today: Proceedings, 62, 2094–2099, DOI: 10.1016/J.MATPR.2022.02.558
  • Jasiński, W., Szymanowski, K., Nasiłowska, B., Barlak, M., Betlej, I., Prokopiuk, A., and Borysiuk, P. (2025). 3D Printing Wood–PLA composites: The impact of wood particle size. Polymers, 17(9), 1165, 1-16, DOI: 10.3390/polym17091165
  • Jiang, J., Gu, H., Li, B., and Zhang, J. (2021). Preparation and Properties of Straw/PLA Wood Plastic Composites for 3D Printing. IOP Conference Series: Earth and Environmental Science, 692(3), 32004, DOI: 10.1088/1755-1315/692/3/032004
  • Kechagias, J. D., Zaoutsos, S. P., Chaidas, D., and Vidakis, N. (2022). Multi-parameter optimization of PLA/Coconut wood compound for fused filament fabrication using robust design. The International Journal of Advanced Manufacturing Technology, 119(7), 4317–4328, DOI: 10.1007/s00170-022-08679-2
  • Lekrine, A., Belaadi, A., Dembri, I., Jawaid, M., Ismail, A. S., Abdullah, M. M. S., Ghernaout, D. (2024). Thermomechanical and structural analysis of green hybrid composites based on polylactic acid/biochar/treated W. filifera palm fibers. Journal of Materials Research and Technology, 30, 9656–9667, DOI: 10.1016/J.JMRT.2024.06.033
  • Narlıoğlu, N., (2021). 3B yazıcı kullanılarak odun-PLA kompozit filamentinden mobilya bağlantı elemanlarının yazdırılması ve katman kalınlıklarının mekanik özelliklere etkisinin incelenmesi, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 4(2), 183–192, DOI: 10.33725/mamad.1026248
  • Narlıoğlu, N., Salan, T., and Alma, M. H. (2021). Properties of 3D-printed wood sawdust-reinforced PLA composites, BioResources, 16(3), 5467–5480, DOI: 10.15376/biores.16.3.5467-5480
  • Peltola, H., Pääkkönen, E., Jetsu, P., and Heinemann, S., (2014). Wood based PLA and PP composites: Effect of fibre type and matrix polymer on fibre morphology, dispersion and composite properties, Composites Part A: Applied Science and Manufacturing, 61, 13–22, DOI: 10.1016/J.COMPOSITESA.2014.02.002
  • Pozo Morales, A., Güemes, A., Fernandez-Lopez, A., Carcelen Valero, V., and De La Rosa Llano, S. (2017). Bamboo–Polylactic Acid (PLA) Composite Material for Structural Applications, Materials, 10(11), DOI: 10.3390/ma10111286
  • Singh, R. (2013). Some investigations for small‐sized product fabrication with FDM for plastic components. Rapid Prototyping Journal, 19(1), 58–63. DOI: 10.1108/13552541311292745
  • Sood, A. K., Ohdar, R. K., and Mahapatra, S. S. (2012). Experimental investigation and empirical modelling of FDM process for compressive strength improvement. Journal of Advanced Research, 3(1), 81–90. 10.1016/J.JARE.2011.05.001
  • Stoof, D., Pickering, K., and Zhang, Y. (2017). Fused Deposition Modelling of Natural Fibre/Polylactic Acid Composites, Journal of Composites Science, 1(1), DOI: 10.3390/jcs1010008
  • Ulkir, O., and Akgun, G. (2024). Prediction of flexural strength with fuzzy logic approach for fused deposition modeling of polyethylene terephthalate glycol components, Journal of Materials Engineering and Performance, 33(9), 4367–4376, DOI: 10.1007/s11665-024-09291-z
  • URL-1 (2025) PLA Wood Filament, from https://www.filameon.com/urun/pla-wood Last access 30.06. 2025 URL-2 (2025) PLA Filament, from https://www.filameon.com/urun/pla Last access 03.07. 2025
  • Vinayagamoorthy, R., Konda, V., Tonge, P., Koteshwar, T. N., and Premkumar, M., (2019). Surface roughness analysis and optimization during drilling on chemically treated natural fiber composite, Materials Today: Proceedings, 16, 567–573, DOI: 10.1016/J.MATPR.2019.05.129
  • Wang, X., Jiang, M., Zhou, Z., Gou, J., and Hui, D., (2017). 3D printing of polymer matrix composites: A review and prospective, Composites Part B: Engineering, 110, 442–458, DOI: 10.1016/J.COMPOSITESB.2016.11.034
  • Yang, M., Xu, Y., Xin, X., Zeng, C., Li, Y., Lin, C., Leng, J. (2025). 4D Printed Cardiac Occlusion Device with Efficient Anticoagulation, Proendothelialization, and Precise Localization, Advanced Functional Materials, 2412533, DOI: 10.1002/adfm.202412533
  • Zandi, M. D., Jerez-Mesa, R., Lluma-Fuentes, J., Roa, J. J., and Travieso-Rodriguez, J. A. (2020). Experimental analysis of manufacturing parameters’ effect on the flexural properties of wood-PLA composite parts built through FFF, The International Journal of Advanced Manufacturing Technology, 106(9), 3985–3998, DOI: 10.1007/s00170-019-04907-4
  • Zolfaghari, A., Behravesh, A. H., and Shahi, P., (2013). Comparison of mechanical properties of wood–plastic composites reinforced with continuous and noncontinuous glass fibers, Journal of Thermoplastic Composite Materials, 28(6), 791–805, DOI: 10.1177/0892705713503676
  • Zuo, X., Zhou, Y., Hao, K., Liu, C., Yu, R., Huang, A., Yang, Y. (2024). 3D printed all-natural hydrogels: flame-retardant materials toward attaining green sustainability. Advanced Science, 11(3), DOI: 10.1002/advs.202306360

Investigation of the Mechanical Properties of PLA and PLA Wood Bolts Fabricated via 3D Printing with Different Print Orientations

Yıl 2025, Cilt: 8 Sayı: 2, 220 - 235, 16.12.2025
https://doi.org/10.33725/mamad.1734199

Öz

This study investigates the torque resistance and fracture surfaces of pure PLA (polylactic acid) and PLA-Wood (wood flour added polylactic acid) bolts manufactured via Fused Deposition Modeling (FDM), compared to commercial Polyamide 6.6 (PA 6.6) bolts. M8×1.25×70 bolts were 3D-printed at varying orientations (0°, 45°, 90°) to evaluate the effects of printing direction on mechanical properties. The hardness, surface roughness, tensile strength, and flexural strength of pure PLA and PLA-Wood were analyzed. Results indicate that 0° print orientation yielded the highest mechanical strength, while significant degradation occurred at 45° and 90°. Surface roughness was minimized at 0° and peaked at 45°. PLA-Wood demonstrated inferior performance to pure PLA, and the torque resistance of PA 6.6 bolts was substantially lower than that of 0°-oriented pure PLA bolts. These findings provide critical insights for material selection and design in lightweight structural applications, assembly, and repair processes.

Kaynakça

  • ASTM D638., (2022). Standard test method for tensile properties of plastics. In ASTM International. Retrieved from https://store.astm.org/d0638-22.html
  • ASTM D790., (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical ınsulating materials. ASTM International. Retrieved from https://store.astm.org/d0790-17.html
  • ASTM D2240., (2021). Standard test method for rubber property/durometer hardness. ASTM International. Retrieved from https://store.astm.org/d2240-15r21.html
  • Anaç, N. Koçar. O., (2024). Malik, V., Tiwary, V., and Padmakumar, A. (2024). Investigation of the effect of bonding parameters on the adhesive bonding strength of parts produced by FDM-3D Method, Malik, V., Tiwary, V., and Padmakumar, A. (Ed.), Post-Processing of Parts and Components Fabricated by Fused Deposition Modeling: Techniques and Advancements (1st edition, ss. 123-142). Routledge Taylor & Framcis Group, DOI: 10.1201/9781032665351
  • Avcı, B., Çavdar, A.D., and Mengeloğlu, F., (2022). Odun polimer kompozitlerin doğal ve yapay (suni) yaşlandırma sonrası özelliklerinde meydana gelen değişiklikler, Ormancılık Araştırma Dergisi, 9(Özel Sayı), 264–270, DOI: 10.17568/ogmoad.1091198
  • Ayrilmis, N., Kariz, M., Kwon, J. H., and Kitek Kuzman, M. (2019). Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials, The International Journal of Advanced Manufacturing Technology, 102(5), 2195–2200, DOI: 10.1007/s00170-019-03299-9
  • Bharat, N., Jain, R., and Bose, P. S. C. (2024). A comprehensive overview on additive manufacturing processes: materials, applications, and challenges, In V. S. Sharma, U. S. Dixit, A. Gupta, R. Verma, and V. Sharma (Eds.), Machining and Additive Manufacturing (pp. 95–105).
  • Bintara, R., Pradana, Y., Aminnudin, A., and Suryanto, H. (2023). The orientation and high-quality effect of deposit layer to surface roughness on FDM 3D Printed Part. Key Engineering Materials, 940, 95–99, DOI: 10.4028/p-29nh6i
  • Buj-Corral, I., Domínguez-Fernández, A., and Durán-Llucià, R. (2019). Influence of print orientation on surface roughness in fused deposition modeling (FDM) Processes. Materials, 12(23), DOI: 10.3390/ma12233834
  • Chen, S., Khan, S. B., Li, N., and Xiao, C. (2025). In-depth analysis of sintering, exposure time, and layer height (um) in LRS 3D printed devices with DLP, Journal of Manufacturing Processes, 133, 576–591, DOI: 10.1016/J.JMAPRO.2024.11.060
  • De Castro Magalhães, F., and Campos Rubio, Juan Carlos. (2025). Enhancing mechanical properties and structural behaviour of PLA/wood composites through annealing at 50°C and 100°C, Journal of Composite Materials, 00219983251329111, DOI: 10.1177/00219983251329111
  • Dembri, I., Belaadi, A., Lekrine, A., Jawaid, M., Ismail, A. S., and Ghernaout, D., (2024). Effect of alkaline treatment on the thermo-physicochemical and mechanical properties of biochar powder/Washingtonia robusta fibers/PLA hybrid biocomposites, Journal of Materials Research and Technology, 33, 9735–9751, DOI: 10.1016/J.JMRT.2024.12.018
  • Doğru, A., Kaçak, M., and Seydibeyoǧlu, M., (2024). Examination of mechanical properties of fasteners produced with PET and PLA Materials in extrusion-based additive manufacturing method. International Journal of 3D Printing Technologies and Digital Industry, 8, 407–415, DOI: 10.46519/ij3dptdi.1549143
  • Domingo-Espin, M., Puigoriol-Forcada, J. M., Garcia-Granada, A. A., Llumà, J., Borros, S., and Reyes, G. (2015). Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts, Materials & Design, 83, 670–677, DOI: 10.1016/J.MATDES.2015.06.074
  • Drazan, T., Chadima, V., Jasik, K., Sarzyński, B., Krchova, M., and Dobrocky, D., (2025). Analysıs of 3D printed metric nuts manufactured by the MEX method from ASA material. MM Science Journal, 2025, DOI: 10.17973/MMSJ.2025_06_2025063
  • Durmaz, S. (2022). Mermer atıklarının düz presleme yöntemiyle üretilen odun plastik kompozitlerinde değerlendirilmesi, Bartın Orman Fakültesi Dergisi, 24(2), 220–227, DOI: 10.24011/barofd.1084516
  • Efe, H., and İmirzi, H. Ö. (2007). Mobilya üretiminde kullanılan çeşitli bağlantı elemanlarının mekanik davranış özellikleri, Politeknik Dergisi, 10(1), 93–103.
  • Er, A. O., and Aydınlı, O. M. (2023). Ergiyik filament ile imalat yönteminde kullanılan PLA ve çelik katkılı PLA filament malzemelerin mekanik ve fiziksel özelliklerinin incelenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 1285–1302, DOI: 10.17341/gazimmfd.1276420
  • Fountas, N. A., Zaoutsos, S., Chaidas, D., Kechagias, J. D., and Vaxevanidis, N. M. (2023). Statistical modelling and optimization of mechanical properties for PLA and PLA/Wood FDM materials, Materials Today: Proceedings, 93, 824–830, DOI: 10.1016/J.MATPR.2023.08.276
  • Garg, A., Bhattacharya, A., and Batish, A. (2017). Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength, The International Journal of Advanced Manufacturing Technology, 89(5), 2175–2191, DOI: 10.1007/s00170-016-9257-1
  • Górski, F., Kuczko, W., and Wichniarek, R. (2013). Influence of process parameters on dimensional accuracy of parts manufactured using fused deposition modelling technology. Advances in Science and Technology Research Journal, 7, 27–35, DOI: 10.5604/20804075.1062340
  • Gurrala, P. K., and and Regalla, S. P. (2014). Part strength evolution with bonding between filaments in fused deposition modelling, Virtual and Physical Prototyping, 9(3), 141–149, DOI: 10.1080/17452759.2014.913400
  • Harshitha, V., and Rao, S. S. (2019). Design and analysis of ISO standard bolt and nut in FDM 3D printer using PLA and ABS materials, Materials Today: Proceedings, 19, 583–588, DOI: 10.1016/J.MATPR.2019.07.737
  • Jadhav, A., and Jadhav, V. S. (2022). A review on 3D printing: An additive manufacturing technology. Materials Today: Proceedings, 62, 2094–2099, DOI: 10.1016/J.MATPR.2022.02.558
  • Jasiński, W., Szymanowski, K., Nasiłowska, B., Barlak, M., Betlej, I., Prokopiuk, A., and Borysiuk, P. (2025). 3D Printing Wood–PLA composites: The impact of wood particle size. Polymers, 17(9), 1165, 1-16, DOI: 10.3390/polym17091165
  • Jiang, J., Gu, H., Li, B., and Zhang, J. (2021). Preparation and Properties of Straw/PLA Wood Plastic Composites for 3D Printing. IOP Conference Series: Earth and Environmental Science, 692(3), 32004, DOI: 10.1088/1755-1315/692/3/032004
  • Kechagias, J. D., Zaoutsos, S. P., Chaidas, D., and Vidakis, N. (2022). Multi-parameter optimization of PLA/Coconut wood compound for fused filament fabrication using robust design. The International Journal of Advanced Manufacturing Technology, 119(7), 4317–4328, DOI: 10.1007/s00170-022-08679-2
  • Lekrine, A., Belaadi, A., Dembri, I., Jawaid, M., Ismail, A. S., Abdullah, M. M. S., Ghernaout, D. (2024). Thermomechanical and structural analysis of green hybrid composites based on polylactic acid/biochar/treated W. filifera palm fibers. Journal of Materials Research and Technology, 30, 9656–9667, DOI: 10.1016/J.JMRT.2024.06.033
  • Narlıoğlu, N., (2021). 3B yazıcı kullanılarak odun-PLA kompozit filamentinden mobilya bağlantı elemanlarının yazdırılması ve katman kalınlıklarının mekanik özelliklere etkisinin incelenmesi, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 4(2), 183–192, DOI: 10.33725/mamad.1026248
  • Narlıoğlu, N., Salan, T., and Alma, M. H. (2021). Properties of 3D-printed wood sawdust-reinforced PLA composites, BioResources, 16(3), 5467–5480, DOI: 10.15376/biores.16.3.5467-5480
  • Peltola, H., Pääkkönen, E., Jetsu, P., and Heinemann, S., (2014). Wood based PLA and PP composites: Effect of fibre type and matrix polymer on fibre morphology, dispersion and composite properties, Composites Part A: Applied Science and Manufacturing, 61, 13–22, DOI: 10.1016/J.COMPOSITESA.2014.02.002
  • Pozo Morales, A., Güemes, A., Fernandez-Lopez, A., Carcelen Valero, V., and De La Rosa Llano, S. (2017). Bamboo–Polylactic Acid (PLA) Composite Material for Structural Applications, Materials, 10(11), DOI: 10.3390/ma10111286
  • Singh, R. (2013). Some investigations for small‐sized product fabrication with FDM for plastic components. Rapid Prototyping Journal, 19(1), 58–63. DOI: 10.1108/13552541311292745
  • Sood, A. K., Ohdar, R. K., and Mahapatra, S. S. (2012). Experimental investigation and empirical modelling of FDM process for compressive strength improvement. Journal of Advanced Research, 3(1), 81–90. 10.1016/J.JARE.2011.05.001
  • Stoof, D., Pickering, K., and Zhang, Y. (2017). Fused Deposition Modelling of Natural Fibre/Polylactic Acid Composites, Journal of Composites Science, 1(1), DOI: 10.3390/jcs1010008
  • Ulkir, O., and Akgun, G. (2024). Prediction of flexural strength with fuzzy logic approach for fused deposition modeling of polyethylene terephthalate glycol components, Journal of Materials Engineering and Performance, 33(9), 4367–4376, DOI: 10.1007/s11665-024-09291-z
  • URL-1 (2025) PLA Wood Filament, from https://www.filameon.com/urun/pla-wood Last access 30.06. 2025 URL-2 (2025) PLA Filament, from https://www.filameon.com/urun/pla Last access 03.07. 2025
  • Vinayagamoorthy, R., Konda, V., Tonge, P., Koteshwar, T. N., and Premkumar, M., (2019). Surface roughness analysis and optimization during drilling on chemically treated natural fiber composite, Materials Today: Proceedings, 16, 567–573, DOI: 10.1016/J.MATPR.2019.05.129
  • Wang, X., Jiang, M., Zhou, Z., Gou, J., and Hui, D., (2017). 3D printing of polymer matrix composites: A review and prospective, Composites Part B: Engineering, 110, 442–458, DOI: 10.1016/J.COMPOSITESB.2016.11.034
  • Yang, M., Xu, Y., Xin, X., Zeng, C., Li, Y., Lin, C., Leng, J. (2025). 4D Printed Cardiac Occlusion Device with Efficient Anticoagulation, Proendothelialization, and Precise Localization, Advanced Functional Materials, 2412533, DOI: 10.1002/adfm.202412533
  • Zandi, M. D., Jerez-Mesa, R., Lluma-Fuentes, J., Roa, J. J., and Travieso-Rodriguez, J. A. (2020). Experimental analysis of manufacturing parameters’ effect on the flexural properties of wood-PLA composite parts built through FFF, The International Journal of Advanced Manufacturing Technology, 106(9), 3985–3998, DOI: 10.1007/s00170-019-04907-4
  • Zolfaghari, A., Behravesh, A. H., and Shahi, P., (2013). Comparison of mechanical properties of wood–plastic composites reinforced with continuous and noncontinuous glass fibers, Journal of Thermoplastic Composite Materials, 28(6), 791–805, DOI: 10.1177/0892705713503676
  • Zuo, X., Zhou, Y., Hao, K., Liu, C., Yu, R., Huang, A., Yang, Y. (2024). 3D printed all-natural hydrogels: flame-retardant materials toward attaining green sustainability. Advanced Science, 11(3), DOI: 10.1002/advs.202306360
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Araştırma Makalesi
Yazarlar

Abdulsamed Arik 0009-0005-4863-1172

Nergizhan Anaç 0000-0001-6738-9741

Vahap Neccaroğlu 0009-0003-7194-7621

Oğuz Koçar 0000-0002-1928-4301

Ali Ulaş Gümüşlüoğlu 0009-0007-3117-6438

Hikmet Sefa Dönmez 0009-0005-7049-8638

Gönderilme Tarihi 3 Temmuz 2025
Kabul Tarihi 2 Eylül 2025
Erken Görünüm Tarihi 12 Kasım 2025
Yayımlanma Tarihi 16 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Arik, A., Anaç, N., Neccaroğlu, V., … Koçar, O. (2025). 3B yazıcıda farklı baskı yönlerinde üretilen PLA ve PLA Wood cıvataların mekanik özelliklerinin incelenmesi. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 8(2), 220-235. https://doi.org/10.33725/mamad.1734199

Amaç ve Kapsam

Mobilya ve Ahşap Malzeme Araştırmaları Dergisi (MAMAD), mobilya konusunu ön planda tutarak Dergi Park üzerinde yayın hayatına başlayan ilk akademik dergidir. Bu nedenle, bu alanda çalışma yapan araştırmacılara, mobilya ve ahşap malzeme ile ilgili olan tüm okuyuculara hizmet sunmayı amaçlamaktadır.  

Açık erişim ve Uluslararası hakemli dergidir.

Mobilya ve Ahşap Malzeme Araştırmaları Dergisi; mobilya mekaniği, mobilya üst yüzey işlemleri, mobilya üretiminde kalite kontrol, mobilya ithalat ve ihracatı, bilgisayar destekli mobilya tasarımı, bilgisayar destekli mobilya üretimi konularında hazırlanan çalışmalara yer verecektir. Ayrıca, masif ahşap malzeme, ahşap esaslı kompozit malzemeler, odun plastik kompozit malzemeler, ahşap malzemenin işlenmesi, ahşap malzemenin güçlendirilmesi, ahşap malzemenin korunması, ahşap malzemenin modifikasyonu, ahşap malzemenin fiziksel, kimyasal, mekanik ve diğer teknolojik özelliklerini içeren araştırmalarda dergi kapsamındadır. Kâğıt  ve kağıt hamuru üzerine yapılan çalışmalar derginin kapsamı dışındadır. Dergi, araştırma ve derleme türündeki olan makaleleri yayınlamaktadır. Diğer türlerde hazırlanan makaleleri kabul etmemektedir.



Makale,dergi ana sayfasından veya buradan indirilecek MAMAD şablon dosya 2025 'e göre hazırlanmalı ve  copyright transfer form 2025  imzalanarak sisteme yüklenmelidir. 

Makalenin sorumlu yazarı aşağıdaki kuralları uygulamalıdır. 

 1.    Her yazarın ORCID ID verilmelidir.

2.    Makale başlıkları (Türkçe ve İngilizce başlık), sayfada ortalı, 14 punto ve koyu yazılmalıdır (Bold).

3.    Yazar İsimleri 12 Punto ve sadece ilk harfler büyük, normal yazılmalıdır (Bold değil).

4.    Makale ilk sayfasında “Öz” ve “Abstract” konumu doğru ve bu kelimeler koyu yazılmalıdır (Bold)

5.    Öz ve Abstract en az 150 ve en fazla 180 kelime olarak yazılmalıdır.

6.    Anahtar kelimeler en az 3 en fazla 5 kelime verilmelidir.

7.    Makale maksimum  sayfa sayısı 16'dır.

8.    Makale ilk sayfasının alt bilgi kısmında yazar bilgileri ve atıf bilgisi verilmelidir.

9.    İlk sayfa alt bilgide satırlar alt çizgi ile ayrılmalıdır. (Örnek)

10.    Giriş kısmına, makalenin ikinci sayfasından başlanmalıdır. Giriş kısmının son paragrafında çalışmanın amacı net olarak verilmelidir (Bu çalışmanın amacı...........dır). 

11.    Başlık numaralandırması doğru olarak verilmelidir.

12.    Yazı stili "Times new roman" ve büyüklüğü "12 punto" yapılmalıdır (Makale başlıkları hariç). Çizelge içeriği, sığdırmak için 8 puntoya kadar küçültülebilir.

13.    İtalik yazılması gereken ifadeler italik yapılmalıdır.

14.    Paragraf başı girinti miktarları 0,5 cm ve paragraflar arası 6 nk yapılmalıdır.

15.    Makalenin tüm bölümlerinde satır aralığı 1 olmalıdır.

16.    Sayfa kenar boşlukları üstten ve alttan 3, diğer kenarlardan 2.5 yapılmalıdır.

17.    Metin içinde yapılan atıflar doğru verilmelidir (Ali, Ayşe, Can,..1999 yanlış) (Ali ve ark., 1999 doğru) (Ali vd., 1999 yanlış).

18.    Metin içinde aynı parantez içinde verilen atıflar arası noktalı virgül “;” kullanılmalıdır.

19.    Formüller ve numaraları doğru verilmelidir. Formüller resim formatında verilmemelidir.

20.    Şekil ve çizelge numaraları sırası doğru verilmelidir.

21.    Şekil ve Çizelge başlıklarında Şekil 1 ve Çizelge 1 kelimeleri koyu (bold) verilmelidir.

22.    Şekil ve Çizelge başlıkları soldan içerde verilmemelidir (paragraf girintisi 0).

23.    Her şekil ve çizelgeye atıf yapılmalıdır.

24.    Şekil ve çizelgeler ortalı konumda olmalıdır.

25.    Şekillerde başlık alta ve çizelgelerde başlık üste yazılmalıdır.

26.    Sonuçlar kısmı maddeler halinde verilmelidir.

27.    Gerekli ise, teşekkür kısmı ve varsa proje numarası verilmelidir.

28.    Metin içerisinde ve çizelge içeriğindeki rakamlarda ondalık ayırıcı nokta olarak verilmelidir.

29.    Kaynaklarda “and” ifadesi ve “ve” ifadesi kullanılmalıdır (Örnek: Babiak, M., and Kúdela, J. Bal B.C., ve Efe F.T.)

30.    Kaynaklar listesinde, yazar isimleri nokta ve virgül ile (Bal B.C.,), yıl parantez içinde (1999). parantezden sonra “.” ifadesi ile, sayı numarasından sonra parantezi takiben virgül “2(3), 25-35” sayfa numaraları arası tire (-) ifadesi ile, her bir kaynak satırı arasında 6 nk boşluk ile yazılmalıdır. Dergi, kitap ve tez isimleri italik yazılmalıdır. Kaynak bildiri ise tamamı dik yazılmalıdır. Kaynak çalışmanın ilk harfi hariç küçük harf olarak verilmelidir. Dergi isimleri tam veya kıda adı verilebilir.  Atıf yapılan makalenin varsa DOI numarası verilmelidir.

31. Metin ve çizelgeler içindeki rakamların ayıracı nokta olmalıdır. (12.23 doğru, 12,23 yanlış)


Örnek kaynak gösterimi:

Bal, B. C., (2012). Genç odun ve olgun odunun lif morfolojisindeki farklılıklar üzerine bir araştırma, Düzce Üniversitesi Ormancılık Dergisi, 8(2), 29-35, DOI:....

Çavuş, V., ve Ayata, Ü., (2018). Manolya ağacı, akçaağaç ve tespih ağacı odunlarında vida tutma direnci üzerine bir araştırma. MAMAD, 1(2), 94-102, DOI:.... 10.33725/mamad.496615.

Bal, B.C., ve Kaba, O., (2019). Kahramanmaraş ilindeki ahşap oyma atölyelerinin üretim miktarları üzerine bir araştırma. III. International Mediterranean Forest and Environment Symposium (IMFES2019), 3-5.Ekim.2019, Bildiriler kitabı S:520-524, Kahramanmaraş/ Türkiye.

Omatça, İ., (2006). Ahşabın, oyuncak üretiminde kullanımı ve önemi, Dumlupınar Üniversitesi, Simav Teknik Eğitim Fakültesi, Mobilya ve Dekorasyon Eğitimi Bölümü, Lisans tezi.


ASTM 1761, (2012). Standart test methods for mechanical fasteners in wood,. ASTM International, West Conshohocken, Philadelphia.
Bal, B.C., and Bektaş, İ., (2012). The physical properties of heartwood and sapwood of Eucalyptus grandis, ProLigno, 8 (4), 35-43.
Bal, B.C., ve Altuntaş, E., (2013). Masif ağaç malzeme ve tabakalı kaplama kerestenin vida tutma direnci üzerine karşılaştırmalı bir çalışma, Düzce University journal of forestry, 9(2),14-22.
Bozkurt, Y., Göker, Y., ve Erdin, N., (1993). Emprenye tekniği, İstanbul Üniversitesi, Orman Fakültesi Yayınları, No 425, İstanbul,1993.
Çolak, S., Aydın, İ., ve Çolakoǧlu, G., (2003). Okaliptüs (E. camaldulensis) ağacının farklı yüksekliklerinden alınan tomruklardan üretilmiş kontrplakların bazı mekanik özellikleri, Doğu Akdeniz Ormancılık Araştırma Dergisi, 9, 95–111.
Çolak, G., (2024). Ahşap-plastik kompozitlerin endüstriyel üretim sürecine ilişkin yaşam döngüsü çevresel sürdürülebilirlik analizi, Bilecik Şeyh Edebali University, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Bilecik, Türkiye.
DeCristoforo, R.J., (1988). The complete book of stationary power tool techniques. Sterling Publishing Co., Inc. Two Park Avenue, New York, N. Y. 388p
Gaff, M., Vokaty, V., Babiak, M., and Bal. B.C., (2016). Coefficient of wood bendability as a function of selected factors, Construction and Building Materials, 126 (2016), 630-640, DOI: 10.1016/j.conbuildmat.2016.09.085
Rammer, D. R., (2010). Fastenings,wood handbook: wood as an engineering material, USDA Forest Service, Forest Products Laboratory, General Technical Report FPL-GTR-190, Madison, WI (ss. 1–2).
TS 2478, (1976). Odunun statik eğilmede elastiklik modülünün tayini. türk standartları enstitüsü, Ankara.
URL-1, (2020). George III period satinwood work table, 1stDIBS, http://www.onlinegalleries.com/art-and-antiques (last access: 19.02.2020)
Yıldırım, M. N, Karaman, A., and Akınay, A., (2016). Finite element method application of wooden furniture, International conference on research in education science, 19 - 22 Mayıs 2016, ss.1258-1270, Muğla/Türkiye,




PUBLICATION ETHICS and PUBLICATION MALPRACTICE STATEMENT

The publication process at Furniture and Wooden Material Research Journal is the basis of the objective and respectful improvement and dissemination of information. Therefore, the procedures in this process improve the quality of the studies. Peer-reviewed studies support and materialize the scientific method. At this point, all parties included in the publication process (authors, readers and researchers, publisher, reviewers, and editors) must comply with the standards of ethical considerations. Furniture and Wooden Material Research Journal expects all parties to hold the following ethical responsibilities.
The following ethical duties, responsibilities, and best practices are based on the Committee on Publication Ethics (COPE) guide and policies.

ETHICAL RESPONSIBILITIES OF EDITORS

Editors of the Furniture and Wooden Material Research Journal are accountable for everything published. This means the editors should
• strive to meet the needs of readers and authors.
• strive to improve their journal constantly;
• have processes in place to ensure the quality of the material they publish;
• champion freedom of expression;
• maintain the integrity of the academic record;
• preclude business needs from compromising intellectual and ethical standards;
• be willing to publish corrections, clarifications, retractions, and apologies when needed.

CODE OF CONDUCT AND BEST PRACTICE GUIDELINES FOR JOURNAL EDITORS
Best practice for editors would include
• actively seeking the views of authors, readers, reviewers, and editorial board members about ways of improving their journal’s processes
• encouraging and being aware of research into peer review and publishing and reassessing their journal’s processes in the light of new findings
• working to persuade their publisher to provide appropriate resources and guidance from experts (e.g. designers, lawyers)
• supporting initiatives designed to reduce research and publication misconduct
• supporting initiatives to educate researchers about publication ethics
• assessing the effects of their journal policies on author and reviewer behavior and revising policies, as required, to encourage responsible behavior and discourage misconduct
• ensuring that any press releases issued by their journal reflect the message of the reported article and put it into context

RELATIONS WITH AUTHORS
• Editors’ decisions to accept or reject a paper for publication should be based on the paper’s importance,
• originality, clarity, and the study’s validity and relevance to the journal's remit.
• Editors should not reverse decisions to accept submissions unless serious problems are identified with the submission.
• New editors should not overturn decisions to publish submissions made by the previous editor unless serious problems are identified.
• A description of peer review processes should be published, and editors should be ready to justify any important deviation from the described processes.
• Journals should have a declared mechanism for authors to appeal against editorial decisions.
• Editors should publish guidance to authors on everything that is expected of them. This guidance should be regularly updated and should refer or link to this code.
• Editors should guide criteria for authorship and/or who should be listed as a contributor following the standards within the relevant field.

ETHICAL RESPONSIBILITIES OF AUTHORS
• The submitted manuscript should not be submitted to multiple journals for simultaneous consideration.
• The submitted work should be original and not have been published elsewhere in any form or language unless the new work concerns expanding previous work.
• Results should be presented clearly and honestly without fabrication, falsification, or inappropriate data manipulation.
• No data, text, or theories by others are presented as if they were the author’s own. Proper acknowledgments to other works must be given; quotation marks are used for verbatim copying of material, and permissions must be secured for copyrighted material.
• The submitting corresponding author is responsible for ensuring all the other coauthors approve the manuscript article's publication.
• All authors have agreed to allow the corresponding author to serve as the correspondent with the editorial office to review the edited manuscript and proof.
• Plagiarism in any form constitutes a serious violation of publication ethics and is unacceptable. The journal has a strict policy against plagiarism and misconduct.
• All submitted manuscripts are checked for plagiarism using professional plagiarism-checking software (iThenticate).
• When necessary, articles will be retracted according to COPE retraction guidelines.

ETHICAL RESPONSIBILITIES OF REVIEWERS
• Reviewers assist the editorial board in making editorial decisions. Reviews should be conducted objectively, and observations should be formulated clearly with supporting arguments so that authors can use them to improve the paper.
• Reviewers should not consider manuscripts with conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any authors, companies, or institutions connected to the papers.
• Reporting possible research misconduct.
• Suggest alternative reviewers if they cannot review the manuscript for any reason.
• Treating the manuscript as a confidential document.
• Ensuring that the manuscript is of high quality and original research.
• Reviewers should identify relevant published work that the authors have not cited. The relevant citation should accompany references to the ideas of others.
• The reviewer should not force Authors to cite the reviewer's published articles.

THE ETHICS APPROVAL(S)
All original research papers involving humans, animals, plants, biological material, protected or non-public datasets, collections, or sites must include a written statement under an Ethics Approval section, including the following:
• The name of the ethics committee(s) or institutional review board(s) involved.
• The number or ID of the ethics approval(s).
• A statement that human participants have provided informed consent before participating in the research.
• Research involving animals must adhere to ethical standards concerning animal welfare. All original research papers involving animals must:
• Follow international, national, and institutional guidelines for the humane treatment of animals.

• Editors of the Furniture and Wooden Material Research Journal are accountable for everything published in the journal. This means the editors should
strive to meet the needs of readers and authors.
• strive to improve their journal constantly;
• have processes in place to ensure the quality of the material they publish;
• champion freedom of expression;
• maintain the integrity of the academic record;
• preclude business needs from compromising intellectual and ethical standards;
• be willing to publish corrections, clarifications, retractions, and apologies when needed.

Confidentiality
The editor and any editorial staff must not disclose any information about a submitted manuscript to anyone other than the corresponding author, reviewers, potential reviewers, other editorial advisers, and the publisher, as appropriate.

Disclosure and conflicts of interest
Unpublished materials disclosed in a submitted paper will not be used by the editor or the editorial board members for research purposes without the author's explicit written consent.

Fundamental errors in published works
When an author discovers a significant error or inaccuracy in his/her own published work, the author must notify the journal editor or publisher promptly and cooperate with the editor to retract or correct the paper in the form of an erratum.


PUBLICATION POLICY

1. Copyright Transfer principles: All authors must sign the form. It is mandatory to have the signature of the corresponding author on the form. In case the signatures of the other author/authors cannot be reached due to inaccessibility, the correspondence author accepts the responsibility of the related author/authors. The submitted article must not be published elsewhere or under review in any journal for publication. All authors mentioned in the article have seen and approved the submitted article. The journal is not responsible for problems such as the order of names that may occur between authors. The article has been prepared in accordance with the spelling rules specified by the journal. As the author(s) of the article, we accept that we have waived the article's copyright, transferred this right to the Furniture and Wooden Material Research Journal, and authorized Furniture and Wooden Material Research Journal to publish the article. Article author(s) accept that all texts, figures, graphics, photographs, and charts given in the article belong to the authors of the article and that any information received from other researchers is made by citing the source within the framework of ethical rules, and that the author(s) of the article is responsible for any issue that constitutes an ethical crime.

2. Furniture and Wooden Material Research Journal has agreed to comply with the COPE Code of Conduct provisions for Journal Editors. All journal-related activities are to be carried out according to these rules.

3. The journal publishes two annual issues and does not publish special issues or additional issues.

4. Furniture and Wooden Material Research Journal is an international, peer-reviewed, and open-access journal that does not charge an article processing fee, evaluation fee, printing fee, or any other fee for articles.

6. Personal information such as names, e-mail addresses, and telephone numbers entered in the management system of Furniture and Wood Materials Research Journal will only be used for the scientific purposes of this journal, in accordance with the Privacy Statement.

7. All articles published in Furniture and Wooden Material Research Journal are archived and stored in pdf format through TÜBİTAK-ULAKBİM, Life Sciences Database.

8. Furniture and Wooden Materials Research Journal does not accept advertisements.

9. Furniture and Wooden Material Research Journal evaluates with a double-blind peer review process.

10. The articles sent to the Furniture and Wooden Material Research Journal are first evaluated by the editor-in-chief. Articles not suitable for the scope of the journal are rejected at this stage.

11. If the articles suit the journal's scope, a referee review is started if there is no significant deficiency. The refereeing invitation period is 1 week, and the referee evaluation period is 2 weeks. The authors are given a minimum of 1 week and a maximum of 4 weeks to make the necessary corrections to the article in line with the opinions of the referees. A minimum of 1 day and a maximum of 7 days is given for the final control phase.

12. If the articles sent to the Furniture and Wooden Material Research Journal have passed the preliminary evaluation stage and have been sent to the referees, they cannot withdraw the article.

13. Each article sent to the journal is reviewed by two referees. If both referees give a positive opinion, the article is accepted. If both referees agree on the negative opinion, the article is rejected. If one of the referees gives a positive opinion and the other a negative opinion, the opinion of a third referee is sought. A decision is made about the articles sent to the journal at the end of three months at the latest.
14. The articles sent to the journal are examined with the iThenticate program for plagiarism.



Dergi hiç bir işlem için ücret talep etmemektedir.

Baş editör

Ahşap İşleme, Ahşap Yapılar ve Konstrüksiyonları, Ahşap Fiziği ve Mekaniği, Ahşap Esaslı Kompozitler, Orman Endüstri Mühendisliği

Editör Kurulu Üyeleri

Kutahya dumlupinar university, Wood products industrial engineering
Mühendislik, Orman Endüstri Mühendisliği, Ahşap İşleme, Ahşap Yapılar ve Konstrüksiyonları, Orman Biyokütlesi ve Biyoürünleri, Orman Entomolojisi ve Orman Koruma
Orman Endüstri Mühendisliği (Diğer), Malzeme Bilimi ve Teknolojileri
Orman Endüstri Mühendisliği (Diğer), Ahşap Yapılar ve Konstrüksiyonları, Orman Biyokütlesi ve Biyoürünleri, Ahşap Esaslı Kompozitler
Ahşap İşleme, Ahşap Yapılar ve Konstrüksiyonları, Ahşap Fiziği ve Mekaniği, Ahşap Esaslı Kompozitler
Ahşap Yapılar ve Konstrüksiyonları, Ahşap Fiziği ve Mekaniği, Ahşap Esaslı Kompozitler

I am a senior researcher at Department of Wood Industry, Faculty of Applied Sciences, Universiti Teknologi MARA Pahang Branch.

Ahşap Yapılar ve Konstrüksiyonları, Ahşap Fiziği ve Mekaniği, Ahşap Esaslı Kompozitler
Orman Endüstri Mühendisliği (Diğer), Ahşap Fiziği ve Mekaniği, Ahşap Esaslı Kompozitler
Ahşap İşleme, Odun Koruma Teknolojisi
Ahşap Fiziği ve Mekaniği, Ahşap Esaslı Kompozitler

Dil Editörü

İngiliz ve İrlanda Dili, Edebiyatı ve Kültürü

Uluslararası Dergidir

33353  32217  18332 18333   3221918334 18335   18336   18339   18434    32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400  

34808