Araştırma Makalesi
BibTex RIS Kaynak Göster

Magnezyum oksit nanopartikül ile güçlendirilen HDPE/ahşap unu nanokompozitlerin bazı fiziksel özellilerinin belirlenmesi

Yıl 2019, , 103 - 109, 29.12.2019
https://doi.org/10.33725/mamad.656696

Öz

Bu çalışmanın amacı ahşap plastik nanokompozitlerin
kalınlığına şişme ve su alma özellikleri üzerine magnezyum oksit nano
partiküllerin etkisinin belirlenmesidir. Bu amaç doğrultusunda, ahşap plastik
nanokompozit numuneleri sarıçam ahşap unu, yüksek yoğunluklu polietilen (HDPE)
ve değişen oranlarda (% 0, 1, 2, 3, 4 ve 5)  magnezyum oksit (MgO) nanopartiküllerinin
geleneksel düz presleme tekniği kullanılarak laboratuar koşullarında
üretilmiştir. Üretilen ahşap plastik nanokompozit levhalar klima odalarında 4
hafta bekletilerek test için uygun rutubet değerine ulaşması beklenmiştir. Elde
edilen verilere göre ahşap plastik nanokompozit üretiminde kullanılan magnezyum
oksit oranının artmasına bağlı olarak kalınlığına şişme ve su alma yüzdelerinin
azaldığı tespit edilmiştir. Bu durumun temelinde artan magnezyum oksit
miktarına bağlı olarak polimer nanokompozit içerisinde su tutan alanların
azalması ile açıklanabilmektedir. Elde edilen veriler ışığında ahşap plastik
nanokompozit üretiminde % 4 oranında magnezyum oksit nanopartikül kullanımının
en uygun koşulları sağladığı düşünülmektedir.

Kaynakça

  • Ayrılmış. N., Kaymakcı. A., (2011), Evaluation of chestnut shell in manufacture of environmentally wood- based panel, The International Symposium, Recent Advances in Nanocellulose Preparation and Wood Utilization, Pp: 25- 30. Korea.
  • Ayrilmis. N., Akbulut. T., Elmas. G., Kaymakci. A., (2012a), High performance lingo cellulosic/thermoplastic composite from rice husk and aluminum polyethylene of used beverage carton, 7 th Annual International Conference on Environment Athens, Greece.
  • Ayrilmis. N., Kaymakci. A., (2012b), Fast growing biomass as reinforcing filler in thermo plastic composites: Paulownia elongata wood, Industrial Crops and Products, 43 (2013), 457– 464.
  • Ayrilmiş. N..Kaymakci. A. (2012c), Reduction of formaldehyde emission from light MDF panels by adding chestnut shell flour, Holzforschung. 66(4), 443–446.
  • Balatinecz. J.J., Woodhams. R.T., (1993), Wood-plastic composites, Doing more with less, Journal of Forestry, 91(11), 22-26.
  • Brandt. C., Fridley. K., (2003), Effect of load rate on flexural properties of wood plastic composites, Wood and Fiber Science, 35 (1), 259–268.
  • Kaymakcı. A., Güleç. T., Karakuş. K., Kayış. S., Mengeloğlu. F., (2009), Pamuk karpeli ve yüksek yoğunluklu polietilenin polimer kompozit üretiminde değerlendirilmesi, Bartın Orman Fakültesi Dergisi, I. Ulusal Batı Karadeniz Ormancılık Kongresi Bildiriler Kitabı, Özel Sayı, ISSN: 1302-0943, Cilt: 1, Sayfa: 268-272.
  • Kaymakcı. A., Ayrılmış. N., Akbulut. T., (2011), Doğal liflerle takviye edilmiş çevre dostu yeni nesil biyopolimer kompozitlerin teknolojisi ve hayatımızdaki yeri, I. Ulusal Ege Kompozit Malzemeler Sempozyumu, S: 477- 496, Kuşadası/İzmir.
  • Mengeloglu. F. and Karakuş, K., (2008), Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites, Turkish Journal of Agriculture and Forestry, 32, 537-546.
  • Renneckar. S., Zink-Sharp. A.G., Ward, T.C., Glasser, W.G., (2004), Compositional analysis of thermoplastic wood composites by TGA, Journal of Applied Polymer Science, 93: 1484–1492.
  • Rojanarungtawee. S. (1998), Composite of Wood Fiber and Mixed Recycled Thermoplastics, School of Packaging, MSc Thesis, Michigan State University.
  • Rowell RM., Sanadi AR., Caulfield DF., Jacobson RE., (1997), Utilization of natural fibers in plastic composites: problems and opportunities, In: Leão AL. Carvalho FX. Frollini E. editors, Lignocellulosic-Plastic Composites, Sao Paulo: USP. UNESP. p 23-51.
  • Sadeghian, N., Golzar, M. (2008), PVT Measurement system for wood plastic composite melt in an extrusion process, Journal of Reinforced Plastics and Composites, 27: 739–750.
  • Sheshmani, S.,Ashori, A., Hamzeh, Y. (2010), Physical properties of polyethylene–wood fiber–clay nanocomposites, Journal of Applied Polymer Science, 118(6), 3255-3259.
  • Stark. N.M. and Rowlands. R.E. (2003), Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites, Wood and Fiber Science, 35(2),167-174.
  • Suinanç. Ö. F. (2007), Odun plastik kompozitlerinin üretimi, özellikleri ve kullanım yerleri üzerine araştırmalar, Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Odun Mekaniği ve Teknolojisi ABD, İstanbul.
  • Thepwiwatjit. N., (2000), Composite of wood fiber and recycled hdpe bottles from house hold use, school of packaging, PhD Thesis, Michigan State University.
  • Wolcott. M.P., Englund. K., (1991), A technology review for wood plastic composites, Proc, 33rd Inter, Particle board Composite Materials Symp, Wasthington State University.
  • Yadav, S. M.,Yusoh, K. B. (2015), Mechanical and physical properties of wood plastic composites made of polypropylene, wood flour and nanoclay, International Journal of Agriculture, Forestry and Plantation, 1: 52-58.

Determination of some physical properties of HDPE/wood flour nanocomposites reinforced with magnesium oxide nanoparticle

Yıl 2019, , 103 - 109, 29.12.2019
https://doi.org/10.33725/mamad.656696

Öz

This study
was to investigate effect of magnesium oxide nano particles on thickness
swelling and water absorption properties of wood plastic nanocomposites. For
this purpose, wood plastic nanocomposites (WPNs) were prepared from yellow pine
wood flour (30 wt%), high density polyethylene (HDPE) and magnesium oxide (MgO,
0, 1, 2, 3, 4, or 5 wt%) nano powder using a conventional flat-pressing process
under laboratory conditions. The resulting wood plastic nanocomposites panels
were conditioned for 4 week in the climate room for cooling. Thickness swelling
and water absorption properties of flat pressed wood plastic nanocomposites
significantly improved with increasing content of the MgO nano particle. This
is due to the decreased amount of water retention in the polymer nanocomposites
due to the increased MgO nano particle content. Based on the findings obtained
from the present study, it could be said that the optimum content of MgO nano
particle in the WPN for general applications was 4 wt%. 

Kaynakça

  • Ayrılmış. N., Kaymakcı. A., (2011), Evaluation of chestnut shell in manufacture of environmentally wood- based panel, The International Symposium, Recent Advances in Nanocellulose Preparation and Wood Utilization, Pp: 25- 30. Korea.
  • Ayrilmis. N., Akbulut. T., Elmas. G., Kaymakci. A., (2012a), High performance lingo cellulosic/thermoplastic composite from rice husk and aluminum polyethylene of used beverage carton, 7 th Annual International Conference on Environment Athens, Greece.
  • Ayrilmis. N., Kaymakci. A., (2012b), Fast growing biomass as reinforcing filler in thermo plastic composites: Paulownia elongata wood, Industrial Crops and Products, 43 (2013), 457– 464.
  • Ayrilmiş. N..Kaymakci. A. (2012c), Reduction of formaldehyde emission from light MDF panels by adding chestnut shell flour, Holzforschung. 66(4), 443–446.
  • Balatinecz. J.J., Woodhams. R.T., (1993), Wood-plastic composites, Doing more with less, Journal of Forestry, 91(11), 22-26.
  • Brandt. C., Fridley. K., (2003), Effect of load rate on flexural properties of wood plastic composites, Wood and Fiber Science, 35 (1), 259–268.
  • Kaymakcı. A., Güleç. T., Karakuş. K., Kayış. S., Mengeloğlu. F., (2009), Pamuk karpeli ve yüksek yoğunluklu polietilenin polimer kompozit üretiminde değerlendirilmesi, Bartın Orman Fakültesi Dergisi, I. Ulusal Batı Karadeniz Ormancılık Kongresi Bildiriler Kitabı, Özel Sayı, ISSN: 1302-0943, Cilt: 1, Sayfa: 268-272.
  • Kaymakcı. A., Ayrılmış. N., Akbulut. T., (2011), Doğal liflerle takviye edilmiş çevre dostu yeni nesil biyopolimer kompozitlerin teknolojisi ve hayatımızdaki yeri, I. Ulusal Ege Kompozit Malzemeler Sempozyumu, S: 477- 496, Kuşadası/İzmir.
  • Mengeloglu. F. and Karakuş, K., (2008), Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites, Turkish Journal of Agriculture and Forestry, 32, 537-546.
  • Renneckar. S., Zink-Sharp. A.G., Ward, T.C., Glasser, W.G., (2004), Compositional analysis of thermoplastic wood composites by TGA, Journal of Applied Polymer Science, 93: 1484–1492.
  • Rojanarungtawee. S. (1998), Composite of Wood Fiber and Mixed Recycled Thermoplastics, School of Packaging, MSc Thesis, Michigan State University.
  • Rowell RM., Sanadi AR., Caulfield DF., Jacobson RE., (1997), Utilization of natural fibers in plastic composites: problems and opportunities, In: Leão AL. Carvalho FX. Frollini E. editors, Lignocellulosic-Plastic Composites, Sao Paulo: USP. UNESP. p 23-51.
  • Sadeghian, N., Golzar, M. (2008), PVT Measurement system for wood plastic composite melt in an extrusion process, Journal of Reinforced Plastics and Composites, 27: 739–750.
  • Sheshmani, S.,Ashori, A., Hamzeh, Y. (2010), Physical properties of polyethylene–wood fiber–clay nanocomposites, Journal of Applied Polymer Science, 118(6), 3255-3259.
  • Stark. N.M. and Rowlands. R.E. (2003), Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites, Wood and Fiber Science, 35(2),167-174.
  • Suinanç. Ö. F. (2007), Odun plastik kompozitlerinin üretimi, özellikleri ve kullanım yerleri üzerine araştırmalar, Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Odun Mekaniği ve Teknolojisi ABD, İstanbul.
  • Thepwiwatjit. N., (2000), Composite of wood fiber and recycled hdpe bottles from house hold use, school of packaging, PhD Thesis, Michigan State University.
  • Wolcott. M.P., Englund. K., (1991), A technology review for wood plastic composites, Proc, 33rd Inter, Particle board Composite Materials Symp, Wasthington State University.
  • Yadav, S. M.,Yusoh, K. B. (2015), Mechanical and physical properties of wood plastic composites made of polypropylene, wood flour and nanoclay, International Journal of Agriculture, Forestry and Plantation, 1: 52-58.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kereste, Hamur ve Kağıt
Bölüm Araştırma Makaleleri
Yazarlar

Alperen Kaymakçı 0000-0002-8009-7775

Yayımlanma Tarihi 29 Aralık 2019
Gönderilme Tarihi 7 Aralık 2019
Kabul Tarihi 26 Aralık 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Kaymakçı, A. (2019). Magnezyum oksit nanopartikül ile güçlendirilen HDPE/ahşap unu nanokompozitlerin bazı fiziksel özellilerinin belirlenmesi. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 2(2), 103-109. https://doi.org/10.33725/mamad.656696

Uluslararası Dergidir

32217    18332 18333   3221918334 18335   18336   18339   18434   32216 32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400