Araştırma Makalesi
BibTex RIS Kaynak Göster

Gürgen (Carpinus betulus L.) odunu zımpara tozunun termoplastik kompozit üretiminde değerlendirilmesi

Yıl 2021, , 9 - 18, 28.06.2021
https://doi.org/10.33725/mamad.927157

Öz

Bu çalışmada, gürgen (Carpinus betulus L.) odunu zımpara tozu ile yüksek yoğunluklu polietilen (YYPE), çift burgulu ekstruderde karıştırıldıktan sonra kompozit malzemeler elde edilmiştir. Elde edilen kompozitlerin mekanik özelliklerini belirlemek için çekme, eğilme ve sertlik direnci testleri yapılmıştır. Bunlara ek olarak, kompozitlerin termal özelliklerini belirlemek için Diferansiyel Taramalı Kalorimetre (DSC) analizleri ve Limit Oksijen İndeksi (LOI) testleri yapılmıştır. Mekanik test sonuçlarına göre çekme direnci değeri en yüksek kompozit örneği %20 zımpara tozu ilaveli örnekte 27.92 MPa belirlenmiştir. Ayrıca en düşük çekme direnci değeri, %5 zımpara tozu ilaveli kompozit örneğinde 26.17 MPa olarak belirlenmiştir. Eğilme direnci testi sonuçlarına göre en yüksek eğilme direnci değeri, %20 zımpara tozu ilaveli kompozit örneğinde, 40.72 MPa olarak belirlenmiştir. Ayrıca en düşük eğilme direnci 34.82 MPa ve 34.74 MPa değerleri ile sırasıyla saf polimer ve %5 zımpara tozu ilaveli örneklerde tespit edilmiştir. DSC analizi sonuçlarına göre polimer matrise zımpara tozu ilave edilmesi sonucu kristalite değerlerinde azalış görülmüştür. LOI testi sonucuna göre kompozit karışımındaki zımpara tozu oranındaki artışla beraber kompozitlerin yanmaları için ihtiyaç duydukları oksijen miktarında artış görülmüştür.

Teşekkür

Bu çalışmanın yapılmasında laboratuvar desteğinden dolayı Prof. Dr. M. Hakkı ALMA’ ya teşekkür ederim.

Kaynakça

  • Ahmad, I., Mei, T. M. (2009), Mechanical and morphological studies of rubber wood sawdust-filled UPR composite based on recycled PET, Polymer-Plastics Technology and Engineering, 48(12), 1262-1268. DOI: 10.1080/03602550903204105
  • Anonim, (2021), İstanbul ticaret odası ağaç ve orman ürünlerinin fire ve randıman oranları, https://www.ito.org.tr/tr/hizmetler/fire-ve-randiman-oranlari, Erişim: 04.04.2021
  • ASTM D2240, (2015), Standard Test Method for Rubber Property—Durometer Hardness, ASTM International, West Conshohocken, PA.
  • ASTM D2863, (2000), Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index), ASTM International, West Conshohocken, PA.
  • ASTM D638, (2014), Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA.
  • ASTM D790, (2017), Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA.
  • Banat, R., Fares, M. M. (2015), Thermo-gravimetric stability of high density polyethylene composite filled with olive shell flour. American Journal of Polymer Science, 5(3), 65-74. DOI: 10.5923/j.ajps.20150503.02
  • Chafidz, A., Rizal, M., Faisal, R. M., Kaavessina, M., Hartanto, D., AlZahrani, S. M. (2018), Processing and properties of high density polyethylene/date palm fiber composites prepared by a laboratory mixing extruder, Journal of Mechanical Engineering and Sciences, 12(3), 3771-3785. DOI: 10.15282/jmes.12.3.2018.2.0333
  • Chavooshi, A., Madhoushi, M., Navi, M., Abareshi, M. Y. (2014), MDF dust/PP composites reinforced with nanoclay: Morphology, long-term physical properties and withdrawal strength of fasteners in dry and saturated conditions, Construction and Building Materials, 52, 324-330. DOI: 10.1016/j.conbuildmat.2013.11.045
  • Chotirat, L., Chaochanchaikul, K., Sombatsompop, N. (2007), On adhesion mechanisms and interfacial strength in acrylonitrile–butadiene–styrene/wood sawdust composites, International journal of adhesion and adhesives, 27(8), 669-678. DOI: 10.1016/j.ijadhadh.2007.02.001
  • Cui, Y. H., Tao, J., Noruziaan, B., Cheung, M., Lee, S. (2010), DSC Analysis and Mechanical Properties of Wood—Plastic Composites, Journal of Reinforced Plastics and Composites, 29(2), 278-289. DOI: 10.1177/0731684408097766
  • Dai, D., Fan, M. (2015), Preparation of bio-composite from wood sawdust and gypsum, Industrial Crops and Products, 74, 417-424. DOI: 10.1016/j.indcrop.2015.05.036
  • EL-Meniawi, M. A. H. (2020), The Influence of Wood Flour on Properties of Polypropylene/Wood-Flour Composites, Bulletin of the Faculty of Engineering, Mansoura University, 42(2), 20-25. DOI: 10.21608/bfemu.2020.88889
  • Faruk, O., Bledzki, A. K., Matuana, L. M. (2007), Microcellular foamed wood‐plastic composites by different processes: A review, Macromolecular Materials and Engineering, 292(2), 113-127. DOI: 10.1002/mame.200600406
  • Fujimoto, K., Takano, T., Okumura, S. (2011), Difference inmass concentration of airborne dust during circular sawing offive wood-based materials, Journal of Wood Science, 57(2), 149-154. DOI: 10.1007/s10086-010-1145-y.
  • Horta, J. F., Simões, F. J., Mateus, A. (2017), Study of wood-plastic composites with reused high density polyethylene and wood sawdust, Procedia Manufacturing, 12 (2017), 221-229. DOI: 10.1016/j.promfg.2017.08.026
  • Ibrahim, M. A., Hirayama, T., Khalafallah, D. (2019), An investigation into the tribological properties of wood flour reinforced polypropylene composites, Materials Research Express, 7(1), 015313. DOI: 10.1088/2053-1591/ab600c
  • Idrus, M. M., Hamdan, S., Rahman, M. R., Islam, M. S. (2011), Treated tropical wood sawdust-polypropylene polymer composite: mechanical and morphological study, Journal of Biomaterials and Nanobiotechnology, 2(04), 435. DOI: 10.4236/jbnb.2011.24053
  • Jaya, H., Noriman, N. Z., AbdulKadir, H. K., Dahham, O. S., Muhammad, N., Latip, N. A., Aini, A. K. (2018), The effects of wood sawdust loading on tensile and physical properties of up/pf/wsd composites, In IOP Conference Series: Materials Science and Engineering (Vol. 454, No. 1, p. 012193). IOP Publishing. DOI: 10.1088/1757-899X/454/1/012193
  • Kajaks, J, Kalnins K, Naburgs R. (2018), Wood plastic composites (WPC) based on high-density polyethylene and birch wood plywood production residues, International Wood Products Journal, 9(1), 15-21, DOI: 10.1080/20426445.2017.1410997
  • Kajaks, J, Kalnins K, Uzulis S, Matvejs J. 2014. Physical and mechanical properties of composites based on polypropylene and timber industry waste. Central European Journal of Engineering. 4(4), 385–390. DOI: 10.2478/s13531-013-0172-z
  • Kajaks, J, Zagorska A, Mezinskis A. (2015), Some exploitation properties of wood plastic composites (WPC) based on high density polyethylene and timber industry waste, Materials Science (Medžiagotya), 21(3), 396–399. DOI: 10.5755/j01.ms.21.3.7283
  • Kamel, M. (2010), Investigating the mechanical and physical properties of wood plastic composites (WPC) [PhD Thesis]. Cairo: The American University in Cairo.
  • Kuka, E, Cirule D, Kajaks J, Andersone I, Andersons B. (2016), Wood Plastics Composites made with thermally modified birch wood residues, International Wood Products Journal, 7(4), 225–230. DOI: 10.1080/20426445.2016. 1214439
  • Maldas, D., Kokta, B. V., Raj, R. G., Daneault, C. (1988), Improvement of the mechanical properties of sawdust wood fibre—polystyrene composites by chemical treatment, Polymer, 29(7), 1255-1265. DOI: 10.1016/0032-3861(88)90053-5
  • Narlıoğlu, N., Çetin, N. S., Alma, M. H. (2018), Karaçam testere talaşının polipropilen kompozitlerin mekanik özelliklerine etkisi, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 1(1), 38-45.
  • Nwabunma, D, Kun T. (2007), Polyolefin composites. New Jersey: 3M Company, Wiley-Inter science A. J. Wiley & Sons INC publications; p. 3–82. 87–123, 150–201. DOI: 10.1002/9780470199039.ch1
  • Rahman, M. R., Hamdan, S., Ngaini, Z. B., Jayamani, E., Kakar, A., Bakri, M. K. B., Yusof, F. A. B. M. (2019), Cellulose fiber-reinforced thermosetting composites: impact of cyanoethyl modification on mechanical, thermal and morphological properties, Polymer Bulletin, 76(8), 4295-4311. DOI: 10.1007/s00289-018-2598-1
  • Rahman, M. R., Ting, J. S. H., Hamdan, S., Hasan, M., Salleh, S. F., and Rahman, M. M. (2018), Impact of delignification on mechanical, morphological, and thermal properties of wood sawdust reinforced unsaturated polyester composites, Journal of Vinyl and Additive Technology, 24(2), 185-191. DOI: 10.1002/vnl.21545
  • Rogoziński, T., Wilkowski, J., Górski, J., Szymanowski, K., Podziewski, P., Czarniak, P. (2017), Fine particles content in dust created in CNC milling of selected wood composites, Wood and Fiber Science, 49(4), 461-469.
  • Samani, M. R., Toghraie, D. (2019), Removal of hexavalent chromium from water using polyaniline/wood sawdust/poly ethylene glycol composite: an experimental study, Journal of Environmental Health Science and Engineering, 17(1), DOI: 53-62. 10.1007/s40201-018-00325-y
  • Sombatsompop, N., Chaochanchaikul, K. (2004), Effect of moisture content on mechanical properties, thermal and structural stability and extrudate texture of poly (vinyl chloride)/wood sawdust composites, Polymer International, 53(9), 1210-1218. DOI: 10.1002/pi.1535
  • Spiridon, I., Paduraru, O. M., Rudowski, M., Kozlowski, M. Darie, R. N. (2012), Assessment of changes due to accelerated weathering of low-density polyethylene/feather composites, Industrial & Engineering Chemistry Research, 51(21), 7279-7286. DOI: 10.1021/ie300738d
  • Turgut, P. (2007), Cement composites with limestone dust and different grades of wood sawdust, Building and Environment, 42(11), 3801-3807. DOI: 10.1016/j.buildenv.2006.11.008
  • Yu, M., Mao, H., Huang, R., Ge, Z., Tian, P., Sun, L., Wu, Q., Sun, K. (2018), Mechanical and Thermal Properties of R-High Density Polyethylene Composites Reinforced with Wheat Straw Particleboard Dust and Basalt Fiber, International Journal of Polymer Science, vol. 2018, Article ID 5101937, 10 pages. DOI:10.1155/2018/5101937.

Evaluation of hornbeam (Carpinus betulus L.) wood sanding dust in thermoplastic composite production

Yıl 2021, , 9 - 18, 28.06.2021
https://doi.org/10.33725/mamad.927157

Öz

In this study, composite materials were obtained after mixing hornbeam (Carpinus betulus L.) wood sanding dust and high-density polyethylene (HDPE) in a twin-screw extruder. Tensile, bending and hardness tests were carried out to determine the mechanical properties of the composites. In addition to these, Differential Scanning Calorimeter (DSC) analysis and Limit Oxygen Index (LOI) tests were performed to determine the thermal properties of composites. According to the mechanical test results, the highest tensile strength value was determined 27.92 MPa in the 20% wood sanding dust added sample. In addition, the lowest tensile strength value was determined as 26.17 MPa in the 5% sanding dust added composite sample. According to the bending strength test results, the highest bending strength value was determined as 40.72 MPa in the 20% sanding dust added composite sample. In addition, the lowest bending strength was determined as 34.82 MPa and 34.74 MPa values, respectively, in neat polymer and 5% wood sanding dust added samples. According to the results of DSC analysis, a decrease in the crystallinity values was observed as a result of adding wood sanding dust into the polymer matrix. According to the results of the LOI test, with the increase in the wood sanding dust ratio in the composite mixture, the amount of oxygen required for the combustion of the composites increased.

Kaynakça

  • Ahmad, I., Mei, T. M. (2009), Mechanical and morphological studies of rubber wood sawdust-filled UPR composite based on recycled PET, Polymer-Plastics Technology and Engineering, 48(12), 1262-1268. DOI: 10.1080/03602550903204105
  • Anonim, (2021), İstanbul ticaret odası ağaç ve orman ürünlerinin fire ve randıman oranları, https://www.ito.org.tr/tr/hizmetler/fire-ve-randiman-oranlari, Erişim: 04.04.2021
  • ASTM D2240, (2015), Standard Test Method for Rubber Property—Durometer Hardness, ASTM International, West Conshohocken, PA.
  • ASTM D2863, (2000), Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index), ASTM International, West Conshohocken, PA.
  • ASTM D638, (2014), Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA.
  • ASTM D790, (2017), Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA.
  • Banat, R., Fares, M. M. (2015), Thermo-gravimetric stability of high density polyethylene composite filled with olive shell flour. American Journal of Polymer Science, 5(3), 65-74. DOI: 10.5923/j.ajps.20150503.02
  • Chafidz, A., Rizal, M., Faisal, R. M., Kaavessina, M., Hartanto, D., AlZahrani, S. M. (2018), Processing and properties of high density polyethylene/date palm fiber composites prepared by a laboratory mixing extruder, Journal of Mechanical Engineering and Sciences, 12(3), 3771-3785. DOI: 10.15282/jmes.12.3.2018.2.0333
  • Chavooshi, A., Madhoushi, M., Navi, M., Abareshi, M. Y. (2014), MDF dust/PP composites reinforced with nanoclay: Morphology, long-term physical properties and withdrawal strength of fasteners in dry and saturated conditions, Construction and Building Materials, 52, 324-330. DOI: 10.1016/j.conbuildmat.2013.11.045
  • Chotirat, L., Chaochanchaikul, K., Sombatsompop, N. (2007), On adhesion mechanisms and interfacial strength in acrylonitrile–butadiene–styrene/wood sawdust composites, International journal of adhesion and adhesives, 27(8), 669-678. DOI: 10.1016/j.ijadhadh.2007.02.001
  • Cui, Y. H., Tao, J., Noruziaan, B., Cheung, M., Lee, S. (2010), DSC Analysis and Mechanical Properties of Wood—Plastic Composites, Journal of Reinforced Plastics and Composites, 29(2), 278-289. DOI: 10.1177/0731684408097766
  • Dai, D., Fan, M. (2015), Preparation of bio-composite from wood sawdust and gypsum, Industrial Crops and Products, 74, 417-424. DOI: 10.1016/j.indcrop.2015.05.036
  • EL-Meniawi, M. A. H. (2020), The Influence of Wood Flour on Properties of Polypropylene/Wood-Flour Composites, Bulletin of the Faculty of Engineering, Mansoura University, 42(2), 20-25. DOI: 10.21608/bfemu.2020.88889
  • Faruk, O., Bledzki, A. K., Matuana, L. M. (2007), Microcellular foamed wood‐plastic composites by different processes: A review, Macromolecular Materials and Engineering, 292(2), 113-127. DOI: 10.1002/mame.200600406
  • Fujimoto, K., Takano, T., Okumura, S. (2011), Difference inmass concentration of airborne dust during circular sawing offive wood-based materials, Journal of Wood Science, 57(2), 149-154. DOI: 10.1007/s10086-010-1145-y.
  • Horta, J. F., Simões, F. J., Mateus, A. (2017), Study of wood-plastic composites with reused high density polyethylene and wood sawdust, Procedia Manufacturing, 12 (2017), 221-229. DOI: 10.1016/j.promfg.2017.08.026
  • Ibrahim, M. A., Hirayama, T., Khalafallah, D. (2019), An investigation into the tribological properties of wood flour reinforced polypropylene composites, Materials Research Express, 7(1), 015313. DOI: 10.1088/2053-1591/ab600c
  • Idrus, M. M., Hamdan, S., Rahman, M. R., Islam, M. S. (2011), Treated tropical wood sawdust-polypropylene polymer composite: mechanical and morphological study, Journal of Biomaterials and Nanobiotechnology, 2(04), 435. DOI: 10.4236/jbnb.2011.24053
  • Jaya, H., Noriman, N. Z., AbdulKadir, H. K., Dahham, O. S., Muhammad, N., Latip, N. A., Aini, A. K. (2018), The effects of wood sawdust loading on tensile and physical properties of up/pf/wsd composites, In IOP Conference Series: Materials Science and Engineering (Vol. 454, No. 1, p. 012193). IOP Publishing. DOI: 10.1088/1757-899X/454/1/012193
  • Kajaks, J, Kalnins K, Naburgs R. (2018), Wood plastic composites (WPC) based on high-density polyethylene and birch wood plywood production residues, International Wood Products Journal, 9(1), 15-21, DOI: 10.1080/20426445.2017.1410997
  • Kajaks, J, Kalnins K, Uzulis S, Matvejs J. 2014. Physical and mechanical properties of composites based on polypropylene and timber industry waste. Central European Journal of Engineering. 4(4), 385–390. DOI: 10.2478/s13531-013-0172-z
  • Kajaks, J, Zagorska A, Mezinskis A. (2015), Some exploitation properties of wood plastic composites (WPC) based on high density polyethylene and timber industry waste, Materials Science (Medžiagotya), 21(3), 396–399. DOI: 10.5755/j01.ms.21.3.7283
  • Kamel, M. (2010), Investigating the mechanical and physical properties of wood plastic composites (WPC) [PhD Thesis]. Cairo: The American University in Cairo.
  • Kuka, E, Cirule D, Kajaks J, Andersone I, Andersons B. (2016), Wood Plastics Composites made with thermally modified birch wood residues, International Wood Products Journal, 7(4), 225–230. DOI: 10.1080/20426445.2016. 1214439
  • Maldas, D., Kokta, B. V., Raj, R. G., Daneault, C. (1988), Improvement of the mechanical properties of sawdust wood fibre—polystyrene composites by chemical treatment, Polymer, 29(7), 1255-1265. DOI: 10.1016/0032-3861(88)90053-5
  • Narlıoğlu, N., Çetin, N. S., Alma, M. H. (2018), Karaçam testere talaşının polipropilen kompozitlerin mekanik özelliklerine etkisi, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 1(1), 38-45.
  • Nwabunma, D, Kun T. (2007), Polyolefin composites. New Jersey: 3M Company, Wiley-Inter science A. J. Wiley & Sons INC publications; p. 3–82. 87–123, 150–201. DOI: 10.1002/9780470199039.ch1
  • Rahman, M. R., Hamdan, S., Ngaini, Z. B., Jayamani, E., Kakar, A., Bakri, M. K. B., Yusof, F. A. B. M. (2019), Cellulose fiber-reinforced thermosetting composites: impact of cyanoethyl modification on mechanical, thermal and morphological properties, Polymer Bulletin, 76(8), 4295-4311. DOI: 10.1007/s00289-018-2598-1
  • Rahman, M. R., Ting, J. S. H., Hamdan, S., Hasan, M., Salleh, S. F., and Rahman, M. M. (2018), Impact of delignification on mechanical, morphological, and thermal properties of wood sawdust reinforced unsaturated polyester composites, Journal of Vinyl and Additive Technology, 24(2), 185-191. DOI: 10.1002/vnl.21545
  • Rogoziński, T., Wilkowski, J., Górski, J., Szymanowski, K., Podziewski, P., Czarniak, P. (2017), Fine particles content in dust created in CNC milling of selected wood composites, Wood and Fiber Science, 49(4), 461-469.
  • Samani, M. R., Toghraie, D. (2019), Removal of hexavalent chromium from water using polyaniline/wood sawdust/poly ethylene glycol composite: an experimental study, Journal of Environmental Health Science and Engineering, 17(1), DOI: 53-62. 10.1007/s40201-018-00325-y
  • Sombatsompop, N., Chaochanchaikul, K. (2004), Effect of moisture content on mechanical properties, thermal and structural stability and extrudate texture of poly (vinyl chloride)/wood sawdust composites, Polymer International, 53(9), 1210-1218. DOI: 10.1002/pi.1535
  • Spiridon, I., Paduraru, O. M., Rudowski, M., Kozlowski, M. Darie, R. N. (2012), Assessment of changes due to accelerated weathering of low-density polyethylene/feather composites, Industrial & Engineering Chemistry Research, 51(21), 7279-7286. DOI: 10.1021/ie300738d
  • Turgut, P. (2007), Cement composites with limestone dust and different grades of wood sawdust, Building and Environment, 42(11), 3801-3807. DOI: 10.1016/j.buildenv.2006.11.008
  • Yu, M., Mao, H., Huang, R., Ge, Z., Tian, P., Sun, L., Wu, Q., Sun, K. (2018), Mechanical and Thermal Properties of R-High Density Polyethylene Composites Reinforced with Wheat Straw Particleboard Dust and Basalt Fiber, International Journal of Polymer Science, vol. 2018, Article ID 5101937, 10 pages. DOI:10.1155/2018/5101937.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kereste, Hamur ve Kağıt
Bölüm Araştırma Makaleleri
Yazarlar

Nasır Narlıoğlu 0000-0002-1295-6558

Yayımlanma Tarihi 28 Haziran 2021
Gönderilme Tarihi 24 Nisan 2021
Kabul Tarihi 8 Mayıs 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Narlıoğlu, N. (2021). Gürgen (Carpinus betulus L.) odunu zımpara tozunun termoplastik kompozit üretiminde değerlendirilmesi. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 4(1), 9-18. https://doi.org/10.33725/mamad.927157

Uluslararası Dergidir

32217    18332 18333   3221918334 18335   18336   18339   18434   32216 32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400