Araştırma Makalesi
BibTex RIS Kaynak Göster

Fixed Points for Mappings on Product Spaces

Yıl 2018, Cilt: 1 Sayı: 2, 77 - 80, 10.11.2018

Öz

Existence of fixed points for a particular cyclic type of mappings on
a finite product of topological spaces is discussed. Existence of fixed points of a
particular cyclic type of set valued mappings on a finite product of metric spaces is
derived. Fixed points of shift type mappings are studied.

Kaynakça

  • 1. R. Cauty, Solution du probl`eme de point fixe de Schauder, Fund. Math., 170(2001) 231-246 (French)2. T. Dobrowolski, Revisiting Cauty's proof of the Schauder Conjecture, Abstract and applied analysis, 2003:7(2003) 407-433.3. W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72(1965) 1004-1006. 4. W. A. Kirk, An iteration process for nonexpansive mappings with applications to fixed point theory in product spaces, Proc. Amer. Math. Soc., 107(1989) 411-415.5. W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed point theory, 4 (2003), 79-89.W. A. Kirk and C. M. Yanez, Nonexpansive and locally nonexpansive mappings in product spaces, Nonlinear analysis, Theory, Methods and Applications, 12(1988) 719-725.6. D. R. Smart, Fixed point theorems, Cambridge University press, Cambridge, 1974.7. P. Vijayaraju, Fixed point theorems for asymptotically nonexpansive mappings in product spaces, Twiwanese J. Mathematics, 2(1998) 97-105.
Yıl 2018, Cilt: 1 Sayı: 2, 77 - 80, 10.11.2018

Öz

Kaynakça

  • 1. R. Cauty, Solution du probl`eme de point fixe de Schauder, Fund. Math., 170(2001) 231-246 (French)2. T. Dobrowolski, Revisiting Cauty's proof of the Schauder Conjecture, Abstract and applied analysis, 2003:7(2003) 407-433.3. W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72(1965) 1004-1006. 4. W. A. Kirk, An iteration process for nonexpansive mappings with applications to fixed point theory in product spaces, Proc. Amer. Math. Soc., 107(1989) 411-415.5. W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed point theory, 4 (2003), 79-89.W. A. Kirk and C. M. Yanez, Nonexpansive and locally nonexpansive mappings in product spaces, Nonlinear analysis, Theory, Methods and Applications, 12(1988) 719-725.6. D. R. Smart, Fixed point theorems, Cambridge University press, Cambridge, 1974.7. P. Vijayaraju, Fixed point theorems for asymptotically nonexpansive mappings in product spaces, Twiwanese J. Mathematics, 2(1998) 97-105.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

İruthaya Raj 0000-0002-0743-988X

Ganesa Moorthy Bu kişi benim

Yayımlanma Tarihi 10 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 2

Kaynak Göster

APA Raj, İ., & Moorthy, G. (2018). Fixed Points for Mappings on Product Spaces. Mathematical Advances in Pure and Applied Sciences, 1(2), 77-80.
AMA Raj İ, Moorthy G. Fixed Points for Mappings on Product Spaces. MAPAS. Kasım 2018;1(2):77-80.
Chicago Raj, İruthaya, ve Ganesa Moorthy. “Fixed Points for Mappings on Product Spaces”. Mathematical Advances in Pure and Applied Sciences 1, sy. 2 (Kasım 2018): 77-80.
EndNote Raj İ, Moorthy G (01 Kasım 2018) Fixed Points for Mappings on Product Spaces. Mathematical Advances in Pure and Applied Sciences 1 2 77–80.
IEEE İ. Raj ve G. Moorthy, “Fixed Points for Mappings on Product Spaces”, MAPAS, c. 1, sy. 2, ss. 77–80, 2018.
ISNAD Raj, İruthaya - Moorthy, Ganesa. “Fixed Points for Mappings on Product Spaces”. Mathematical Advances in Pure and Applied Sciences 1/2 (Kasım 2018), 77-80.
JAMA Raj İ, Moorthy G. Fixed Points for Mappings on Product Spaces. MAPAS. 2018;1:77–80.
MLA Raj, İruthaya ve Ganesa Moorthy. “Fixed Points for Mappings on Product Spaces”. Mathematical Advances in Pure and Applied Sciences, c. 1, sy. 2, 2018, ss. 77-80.
Vancouver Raj İ, Moorthy G. Fixed Points for Mappings on Product Spaces. MAPAS. 2018;1(2):77-80.